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Abstract. We consider the case where a knowledge base consists of in-
teractions among parameter values in an input parameter model for web
application security testing. The input model gives rise to attack strings
to be used for exploiting XSS vulnerabilities, a critical threat towards the
security of web applications. Testing results are then annotated with a
vulnerability triggering or non-triggering classi�cation, and such security
knowledge �ndings are added back to the knowledge base, making the
resulting attack capabilities superior for newly requested input models.
We present our approach as an iterative process that evolves an input
model for security testing. Empirical evaluation on six real-world web
application shows that the process e�ectively evolves a knowledge base
for XSS vulnerability detection, achieving on average 78.8% accuracy.
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1 Introduction

Computer users of today often interact via web-applications with services o�ered
by various parties. This new way of connecting the client and server side with
each other has brought about a multitude of novel security challenges, both for
the client and the server [3]. One major threat to web applications is posed by
Cross-Site Scripting (XSS), which continues to be included in the OWASP Top 10
most critical web application security risks [5]. Security testing is a vital and ex-
pensive part of the software development lifecycle. An e�ective testing technique
applied to security testing is Combinatorial Testing (CT), for the capability of
detecting failures and fail conditions with a small amount of tests that need to be
executed compared to the whole input space [14]. Given a discrete �nite model
of the system under test (SUT), made of parameters with a �nite list of possible
values, called input parameter model (IPM), and given an interaction strength
t, CT creates a test suite guaranteeing the appearance of all t-way interactions
of parameter values, for any selection of t parameters [11]. In the case for testing
for exploiting XSS vulnerabilities, the IPM speci�es an attack grammar and is
also called (abstract) attack model. The aim of this paper is to present a way to
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Model wavsep_xss

Parameters :
JSO : { P1 P2 P3 P4 P5 P6 P7 P8} PAY: { P1 P2 P3 P4 P5 }
INT : { P1 P2 P3 P4 P5 P6 P7 P8 P9 P10} EVH: { P1 P2 P3 }
PAS : { P1 P2 P3 P4 P5 P6 P7 P8 P9 P10} WS: Boolean

JSE : { P1 P2 P3 P4 P5 P6 P7 P8 P9}

Con s t r a i n t s :
# ! JSE==JSE . P2 # # ! JSE==JSE . P3 # # ! JSE==JSE . P4 #
# ! INT==INT . P9 # # ! (JSO==JSO . P2 && WS==f a l s e && PAS==PAS . P7) #
. . .

Fig. 1: Knowledge base K3 for NavigateCMS: abstract attack model (initially it
had no constraints), with detected XSS vulnerability constraints, in CTWedge

evolve knowledge bases for security testing. In our approach, the evolution of a
knowledge base consists in the integration of learned constraints, using BEN [9],
into the IPM. In particular, the contribution of this paper consists in an au-
tomated technique to detect all the conditions under which vulnerabilities are
triggered, by using combinatorial testing. Evaluation shows that the process is
able to evolve the knowledge base to achieve, on average over all the benchmarks,
78.8% accuracy, in 14 minutes computation time.

The rest of the paper is structured as follows. In Sect. 2 we give basic de�ni-
tions, in Sect. 3 we discuss our proposed process, and Sect. 4 presents the results
of our case study experiments. We provide a brief overview over related work in
Sect. 5, and we conclude the paper with further research directions in Sect 6.

2 Preliminaries

In the course of combinatorial security testing (cf. [14]), attack models have
appeared in the form of a BNF grammar, e.g. [2], [13]. In this paper, we will
follow this established terminology for designing XSS attack models to be used in
conjunction with combinatorial methods. We denote with Ki a knowledge base
at time i, encoded as an abstract attack model (IPM, see Fig. 1). Given an IPM,
an abstract test case f is a particular assignment of values for its parameters.
An abstract test suite is used to derive a concrete test suite, where abstract
test cases are being translated into concrete XSS attack strings via a translation
function τ . For example, given the following abstract test case:

(JSO = 2,WS = 1, INT = 3,EVH = 2,PAY = 2,PAS = 5, JSE = 7)

for each parameter, the respective integer value corresponds to a concrete
parameter value (i.e., a string), and the translated concrete test case is obtained
by concatenating all these strings together in the order given by the IPM:

<script> onError= alert(1) ') '\>

The resulting string can be submitted against the SUT, and a boolean func-
tion orac decides if the outcome of the execution of the translated test case
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τ(f) against the SUT triggers an XSS vulnerability or not. We denote also the
function eval(f) := oracle(τ(f)), that is true if the test case f triggered an XSS
vulnerability (i.e., f is a vulnerability triggering test case). The generated test
vectors aim at producing valid JavaScript code when these are executed against
SUTs. A description of parameters that appear in the attack model is mentioned
in [2, 8, 13]. At any time point i, the knowledge base Ki may be used to create
test cases, and to classify an abstract test case as either vulnerability-triggering
or not, depending on whether the constraints are satis�ed. This capability of the
knowledge base is denoted as a model function, which takes as input an abstract
test case, and gives as output a �best guess� that may or may not be correct w.r.t.
the actual result of the function eval. The attack model initially contains only
combinatorial parameters and no constraints. During the process, the knowledge
base is enriched by the conditions used to identify the vulnerabilities.

To put this problem into a formal setting, a knowledge base fault occurs
when a test f is classi�ed as non-vulnerable in the model (¬model(f)), despite
it actually triggers a vulnerability in the SUT (eval(f)) (False Negative: it
entails a loss of potentially valuable information for �xing the vulnerability); or
when a test is being marked as vulnerability-triggering in the model (model(f)),
despite it does not trigger a vulnerability (¬eval(f)) (False Positive: it triggers
a false alarm, and the programmers may consequently waste e�ort in �xing pieces
of code that did not trigger any vulnerability). When such a discrepancy is �xed
by updating the model function, we say that the knowledge base evolves.

Since in our experiments it yielded better results, we decided to consider
the convention for which the initial model function considers any test to be non-
vulnerability triggering; and during the process constraints are added in order to
identify and subsequently exclude all the tests that do not trigger any vulnerabil-
ity. We call this convention pessimistic approach, in contrast with the optimistic
one in which initially any test is vulnerability-triggering, and constraints are
added to isolate the tests that actually trigger some vulnerability.

Let us complete some notation for combinatorial analysis. A combination
c is an assignment (i.e. con�guration) on a subset Dom(c) of all the possible
parameters P in the attack model, such that Dom(c) ⊆ P . We call size of the
combination the cardinality of Dom(c). A combination c identi�es a set of tests:
c represents a test f if all the parameters in c are also present in f , associated
to the same values. Formally, c ⊆ f : ∀p ∈ Dom(c), f(p) = c(p). A combination
c is suspicious in a test set F ⊆ Γ if c represents only failed tests in F . Formally,
∀f ∈ F : c ⊆ f → model(f) 6= eval(f). For the purposes of this work, we assume
that the constraints are in conjunctive relation among each other.

3 Process for Model Evolution

Fig. 2 shows an overview of our process to automatically evolve an abstract
attack model initialized without constraints, to detect conditions that trigger
XSS vulnerabilities. The process proceeds according to the following steps:

1. From a de�ned initial interaction strength t, derive a t-way test suite.
2. Mark the test cases as failing or passing according to the current model

and the evaluator. If all the tests pass and Tht is not yet reached, increment the
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metaprocess.png

Fig. 2: Condition detection meta-process

strength t← t+1, and go to point 1. Otherwise, evaluate the tests. Internally, the
evaluator executes the translation function τ to obtain the concrete test string
to insert in the re�ection URL to query the SUT. PhantomJS3 then analyzes
the HTML code returned by the SUT for a speci�c target function (the alert()
function in our case4) that was included as payload. If any of the target functions
were executed, the injection was successful; if the page loads normally and does
not produce any errors, the injection is deemed unsuccessful. Lastly, if JavaScript
errors are observed on the page, it is likely that some content was injected, but
not in a form that constitutes a usable injection (thus resulting in incorrect
syntax). Our current approach regards these test cases as failing, but future
evolutionary approaches might take advantage of this particular classi�cation.

3. Pass the evaluated test suite to BEN [9] to derive suspicious combinations,
together with their suspiciousness level. We call BEN multiple times specifying

3 PhantomJS (http://phantomjs.org/) is a headless browser environment enabling in-
trospection of events such as network requests, document edits and JavaScript errors.

4 in theory, any valid JavaScript functions that will not be called during the normal
operation of the SUT can be chosen instead.
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the size tBEN of the suspicious combinations to detect5, from 1 to ThBEN .
BEN may also ask for a few additional tests (up to 10 tests at a time: inner
BEN cycles) to reduce the amount of suspicious combinations and improve the
accuracy of the computed suspiciousness levels.

4. The suspicious combinations from BEN are then translated into a set of
constraints for the current knowledge base Ki, by negating the corresponding
boolean expression (obtained by putting the assignments in conjunction) of ev-
ery combination whose suspiciousness value is above the threshold ThS . Due to
low accuracy in the detected suspicious combinations, we noticed that Ki often
results to be a contradiction, which is normally not the case in real-world sys-
tems.Therefore, we post-process the constraints by computing the unsat-cores of
Ki and removing all such clauses starting from the least-suspicious constraints
(according to BEN), until Ki is not a contradiction any longer. The process
eventually quits if either the user is satis�ed with the quality of Ki

6, or the
threshold Tht is reached. Otherwise, increase t and go to point 1.

4 Experiments

The process has been implemented in Java using CTWedge [7] to represent and
update attack models, ACTS [16] to generate combinatorial test suites of a de�ned
strength, and BEN [9] as a tool to detect suspicious combinations and compute
suspiciousness. Experiments were executed on a PC with Intel i7 3.40GHz pro-
cessor and 16 GB RAM. We run the process on six real web-applications: four
are part of the WAVSEP7 project, and two are open source content management
systems: MiniCMS and NavigateCMS. Each SUT receives over HTTP one GET
parameter which is rejected on the page in di�erent contexts, and might option-
ally be altered by a speci�c sanitization function. Tab. 1 shows, for each SUT,
the respective vulnerability ratio, i.e., the ratio of tests that triggered an XSS
vulnerability (eval(f)) out of the total number of tests executed, that, given the
practical infeasibility of the exhaustive test suite, we compute on all the tests
generated up to strength t=5 (42830 tests).8

To assess the quality of the evolved knowledge base from our method, we use
the typical metrics of information retrieval: in particular, precision ( TP

TP+FP ),

and recall ( TP
TP+FN ) give a measure of how the process isolates true positives,

accuracy gives an overall ratio of correctly classi�ed tests, and the F1 score is
considered to be a good candidate synthesis index of the inferred model's quality.
For the experiments, we set the parameters of the process as follows:

� ThBEN = 3. We limited the size of detected suspicious combinations as the
BEN process becomes too slow when computing suspiciousness of the too
many combinations of size 4 (or larger) on these attack models.

5 note that tBEN is di�erent from the strength t for generating the initial test suite
6 in this case, we believe that the suspiciousness average and standard deviation could
be useful indicators of the F1 score that the currently inferred model may have

7 WAVSEP: Web Application Vulnerability Scanner Evaluation Project, https://

github.com/sectooladdict/wavsep.
8 The tests suites were generated using the IpoF algorithm, implemented in ACTS
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Table 1: XSS re�ection sites on WAVSEP benchmarks

SUT
ID SUT name Re�ection site

vulnerability

ratio (t=5)

1 Tag2HtmlPageScope <body>$input</body> 17.08 %
2 Tag2TagStructure <input type="text" value="$input"> 4.06 %
3 Event2TagScope <img src="$input"> 4.63 %
4 Event2DoubleQuotePropertyScope <img src="$input"> 3.45 %
5 MiniCMS /mc-admin/page.php?date=$input 80.2 %
6 NavigateCMS /navigate.php?�d=$input 60.0 %

Table 2: Quality metrics for the inferred models (ThBEN = 3, and ThS = 0)

sut
time
(s) constraints

suspiciousness
avg. ± s.d. accuracy precision

recall
(TPR)

speci�city

(TNR) F1 score

T
h
t
=
4

1 246 146 0.254 ± 0.0288 72.6 32.5 55.7 76.1 41.0
2 141 38 0.362 ± 0.00753 93.3 32.6 59.5 94.8 42.1
3 1437 794 0.137 ± 0.0456 87.4 15.7 39.7 89.7 22.5
4 1088 551 0.136 ± 0.0483 89.0 13.7 42.3 90.6 20.7
5 1445 623 0.342 ± 0.0287 78.3 87.0 85.8 48.3 86.4
6 679 80 0.344 ± 0.0147 52.0 66.6 40.0 70.0 50.0
avg 839 372 0.263 ± 0.0289 78.8 41.4 53.8 78.3 43.8

T
h
t
=
3

1 9.3 644 0.196 ± 0.0423 41.4 19.8 79.8 33.5 31.8
2 4.2 164 0.224 ± 0.0874 78.9 14.2 83 78.7 24.2
3 28.5 764 0.207 ± 0.0628 75.4 12.9 75.7 75.3 22
4 9.3 123 0.125 ± 0.0379 72.3 8.53 73.7 72.2 15.3
5 58.5 1340 0.318 ± 0.0268 80.1 80.2 99.9 0.306 89
6 37.6 2460 0.296 ± 0.0245 62.2 61.8 97.1 9.91 75.5
avg 24.6 915 0.228 ± 0.0470 68.4 32.9 84.9 45.0 43.0

� t, the initial strength of test suite, is set to 2.
� Tht = 4. We limit the maximum strength of the initial test suite since even
t=5 (about 36000 tests) would make the BEN process too slow.

� ThS = 0, as we want all the suspicious combinations to be considered.

Test suites for interaction strengths t ∈ {3, 4} had 900 and 7200 test cases,
respectively. For each SUT, Tab. 2 reports the number of constraints included
in the inferred model, the average suspiciousness with its standard deviation,
and the accuracy, precision, recall, speci�city, and F1 score of the �nal model,
computed over all tests up to strength 5, as for the vulnerability ratio in Tab. 1.

RQ1:What is the quality of the model obtained by the approach? We observe
that the inferred model achieves an average accuracy of 78.8%, with a maximum
of 93.3%. Precision has an average of 41.4%, ranging from 13.7% to 87%, and
recall (54% on average) is higher than precision. F1 score is on average 43.8%,
with a maximum of 86.4% on SUT5. With relatively few tests (t=4 out of 7
parameters), the �nal model is of good quality, but not completely accurate. We
can also observe that F1 is proportional to the vulnerability ratio of the SUT.
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Fig. 3: Achieved F1 score of �nal model by varying ThS , when Tht = 4

RQ2: How does the quality of the inferred model vary depending on Tht?
By increasing Tht from 3 to 4, the time taken, as expected, increases, while the
number of constraints, in most cases, decreases, meaning that with more tests
our process is able to describe the vulnerability conditions with fewer constraints.
On average, although recall decreases, both precision, accuracy and speci�city
increase, and F1 slightly increases. This means that the classi�cation improves.

RQ3: Which is the computational e�ort of the proposed process? Tab. 2
also reports the total execution time, excluding the actual test execution, as test
results are cached, except for the few tests (30 at most) that BEN may ask during
the process. For the �rst two SUTs, the process takes less than 250 seconds to
complete, but up to 24 minutes are needed for SUT5 with Tht = 4. Most of the
computation time is used internally by BEN; by limiting to 3 the strength of the
initial test suite, the total time is always below 1 minute for every SUT.

RQ4: How does variations of ThS a�ect model quality? The highest F1 score
is achieved with low values of ThS (see Fig. 3), except for SUT3 and SUT4, for
which a ThS ' 0.13 achieves the maximum F1 score. However, we can notice
that at least around 25% of the constraints (starting from the least suspicious
ones) can be removed with negligible impact on the �nal F1 score.

5 Related Work

XSS vulnerability detection is not a novel topic in computer science research.
Duchene et al. [4] used model based testing and fuzzing to discover XSS vul-
nerabilities; Melicher et al. [12] proposed improvements on using the DOM
model to generate and detect XSS attacks; Simos et al. [13] proposed a com-
binatorial approach to �nd attack vectors that trigger XSS vulnerabilities; Jia
et al. [10] used machine learning and hyper-heuristic search to improve combi-
natorial tests; Temple et al. [15] proposed a machine-learning approach to infer
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constraints among parameters that, although not sound, achieves high precision
(about 90%) and recall (80%). Although these works use model-based testing,the
usage of combinatorial testing for XSS vulnerability detection to classify vulner-
abilities based on the input and describe completely the vulnerability space of a
part of a web application, evolving a knowledge base, is the main novelty of our
approach. The �rst phase of BEN [9] as a failure-inducing combination detection
and ranking tool has been used by Gargantini et al. [6] to repair constraints in
combinatorial models, evaluating di�erent test generation policies.

6 Conclusion and Future Work

We presented an automated iterative process based on combinatorial testing to
evolve an attack model to include conditions among input parameters that trig-
ger XSS vulnerabilities in web applications. Our approach is based on the notion
of suspicious combination, i.e., whose appearance in a test vector would trigger
a discrepancy between the best-guess of the current model, and the actual out-
come when executed against the SUT. Identi�cation of constraints among XSS
attack parameters helps to better understand the root cause of an XSS vulner-
ability and provides insights about how to �x a �awed sanitization function.
As future work, we plan to improve the process by reducing the required tests,
using information from previous step, and evaluating alternatives to BEN, such
as MixTgTe [1]. We believe that this approach can be extended to other secu-
rity vulnerabilities related to sanitization functions, and to detect discrepancies
between a functional system speci�cation and its implementation. Another di-
rection is to further simplify the detected constraints, to reduce them in number
and present them to the user in a more readable way.

References

1. P. Arcaini, A. Gargantini, and M. Radavelli. E�cient and guaranteed detection of
t-way failure-inducing combinations. In IEEE International Conference on Soft-
ware Testing, Veri�cation and Validation ICST Workshops, 2019.

2. J. Bozic, B. Garn, I. Kapsalis, D. Simos, S. Winkler, and F. Wotawa. Attack
pattern-based combinatorial testing with constraints for web security testing. In
IEEE Int. Conf. on Software Quality, Reliability and Security, 2015.

3. D. Catteddu. Cloud computing: bene�ts, risks and recommendations for informa-
tion security. In Web application security, pages 17�17. Springer, 2010.

4. F. Duchene, R. Groz, S. Rawat, and J.-L. Richier. Xss vulnerability detection
using model inference assisted evolutionary fuzzing. In IEEE Int. Conference on
Software Testing, Veri�cation and Validation (ICST), pages 815�817, 2012.

5. O. Foundation. OWASP Top 10 2017. https://www.owasp.org/index.php/Top_
10-2017_A7-Cross-Site_Scripting_(XSS). [Online; accessed 19-April-2018].

6. A. Gargantini, J. Petke, and M. Radavelli. Combinatorial interaction testing for
automated constraint repair. In IEEE Int. Conf. on Software Testing, Veri�cation
and Validation ICST Workshops, pages 239�248, March 2017.

7. A. Gargantini and M. Radavelli. Migrating combinatorial interaction test modeling
and generation to the web. In IEEE International Conference on Software Testing,
Veri�cation and Validation ICST Workshops, pages 308�317, 2018.

8. B. Garn, I. Kapsalis, D. E. Simos, and S. Winkler. On the applicability of com-
binatorial testing to web application security testing: a case study. In Proceedings



9

of the 2014 Workshop on Joining AcadeMiA and Industry Contributions to Test
Automation and Model-Based Testing, pages 16�21. ACM, 2014.

9. L. S. Ghandehari, Y. Lei, R. Kacker, D. R. R. Kuhn, D. Kung, and T. Xie. A
combinatorial testing-based approach to fault localization. IEEE Transactions on
Software Engineering, 2018.

10. Y. Jia, M. B. Cohen, M. Harman, and J. Petke. Learning combinatorial interaction
test generation strategies using hyperheuristic search. In Proceedings of the Int.
Conf. on Software Engineering - Volume 1, ICSE '15, pages 540�550, 2015.

11. D. Kuhn, R. Kacker, and Y. Lei. Introduction to Combinatorial Testing. Chapman
& Hall/CRC, 2013.

12. W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia. Riding out DOMsday:
Towards Detecting and Preventing DOM Cross-Site Scripting. In Proceedings of
Network and Distributed System Security Symposium. Internet Society, 2018.

13. D. E. Simos, K. Kleine, L. S. G. Ghandehari, B. Garn, and Y. Lei. A Combina-
torial Approach to Analyzing Cross-Site Scripting (XSS) Vulnerabilities in Web
Application Security Testing. In Testing Software and Systems. Springer, 2016.

14. D. E. Simos, R. Kuhn, A. G. Voyiatzis, and R. Kacker. Combinatorial methods in
security testing. IEEE Computer, 49:40�43, 2016.

15. P. Temple, J. A. Galindo, M. Acher, and J.-M. Jézéquel. Using machine learning to
infer constraints for product lines. In Proceedings of the 20th International Systems
and Software Product Line Conference, pages 209�218. ACM, 2016.

16. L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Acts: A combinatorial test generation
tool. In IEEE Int. Conf. on Software Testing, Veri�cation and Validation, 2013.


