Evolutionary Testing of PHP Web Applications
with WETT

Francesco Bolis, Angelo Gargantini, Marco Guarnieri, and Eros Magri

Dip. di Ing. dell’Informazione e Metodi Matematici, Universita di Bergamo, Italy
{francesco.bolis,angelo.gargantini,marco.guarnieri,eros.magri}Qunibg.it

Abstract. One of the current core requirements of web applications is
the continuity of the service, because loss in availability can lead to severe
economic losses. This is the main reason behind the growing interest
in web application testing that offers to researchers several challenges,
due to the peculiar nature of these applications. Several classical testing
techniques have been extended to deal with web testing. In this paper
we propose to extend to web application testing a recent search-based
approach that optimizes the generation of the whole test suite. This
approach has several advantages over common approaches that optimize
the generation of a single test case at a time. We show the technological
challenges we have had to face, the architecture of the tool WETT we
have developed, and some preliminary results of the experiments.

1 Introduction

The wide diffusion of Internet combined with mobile technologies has produced a
significant growth in the demand of web applications with more and more strict
requirements of reliability, usability, inter-operability and security [4]. Due to
market pressure and very short time-to-market, the testing of web applications
is often neglected by developers, although several works, such as [9], analyze the
high costs of unavailability of web applications.

To address this problem, the testing community has tried to extend tradi-
tional testing methods in order to make them suitable for testing web applica-
tions. However, traditional testing theories, methods, and tools cannot be used
in most cases just as they are, because of the peculiarities and complexities of
web applications. For instance, web applications are almost always connected
to databases and they are distributed with a client part (often a simple web
browser) and a server part (a web server). The diversity of technologies and pro-
gramming languages involved in the development of modern web applications
represents a serious problem for traditional testing techniques. For instance unit
tests may have limited efficacy, and thus acceptance testing techniques are pre-
ferred, since they try to capture the behavior of the entire web application [2].
However, the automated generation of oracles for acceptance testing is a hard
task, because it requires a formal model from which the oracles can be extracted,
and thus the manual definition of them is yet a concrete alternative. Due to this
fact the test suite must remain of manageable size to avoid the burden of intro-
ducing oracles in large test suites.

For these reasons, web application testing still offers many open research
issues and challenges. One possible way to deal with it, is to adapt search-based
techniques for test generation [8]. Note that there exist several approaches for
web testing [2,4], however, only a few of them attempt to extend search-based
approaches to web application [1,7]. In our paper we try to apply the approach
presented in [6,5] and implemented in a tool called EVOSUITE, that generates
and optimizes whole test suites towards satisfying a coverage criterion. That
approach improves over the state of the art in search-based testing by keeping
the size of the test suite under control and by maximizing the coverage of the
whole test suite instead of that of single tests.

An evolutionary approach for test generation of web applications has already
been presented in [1]. Whilst we share with it several concepts, our approach is
different also because we do not assume any automated oracle. This has a strong
impact in the design choices we have made, including the following ones.

(1) Our tests are described in terms of user actions in a high level language
(presented in Section 2) and not like [1] as arrays of parameters. Tests preserve
an intelligible meaning and the user can better complete the oracle part and
reproduce the actual scenario that causes a possible bug. (2) The size and the
length of our tests is constantly under control. For example, in [1] test suites
had around 160 tests, while our tests for the same case study contains only
around 10 tests. (3) Our tool evolves the whole test suite and not single test
cases, so coverage is maximized but overlapping in coverage among tests is also
minimized.

Also Marchetto and Tonella [7] use a search-based approach in order to test
Ajax web applications. A search-based algorithm is used for the exploration of
the state space. Their approach shares with ours the goal of making the generated
tests more efficient, i.e. of increasing the coverage with respect to the number of
events in the tests. To this goal, they use a hill climbing algorithm in order to
create test suites that maximize diversity.

In this paper we explain the basic algorithms and the architecture of the Web
application Evolutionary Testing Tool - WETT- we have developed. We report
also some initial experimental results.

2 Our Approach

Given the fact that an important part of web application behavior, and thus
code, is tightly related to the interaction with the users, we have chosen to
define our test suites in terms of the events that can be executed on the web
application interface, and thus, in order to automate the testing phase, we have
chosen to use Sahi', a capture and replay tool that lets users express test cases
using scripts and then execute them. Each test case is a list of Sahi statements,
chosen among the ones presented in Figure 1. We choose a random test suite
T'S as initial population. We call |¢| the length of the test case ¢ (i.e. the number
of statements in ¢), AUT the application under test, and we have defined a
threshold k that represents the maximum length of a test case.

! Sahi Web Automation and Testing Tool - http://sahi.co.in/

_navigateTo ()
The genetic algorithm used in our application | setValue (textbox ())

is shown in Algorithm 1. The algorithm is adapted | setValue(textarea ())
from [5]. It takes as input the initial test suite 'S, | _setSelected ()
the maximum number of iterations it, the fitness | _click (radio ())

threshold ft, and the probability of a crossover | _click (link ())
cp. It evolves the initial test suite and returns as —CFCIIE (—fmage é) {))
output the evolved test suite population. The al- | =€ '€ (_imageSubmit ())
. click (_submit ())
gorithm evolves the test suite until the iteration | — . -
_click (_reset())

threshold is reached or an adequate test suite is
found. At each iteration the algorithm selects the Fig.1: Sahi statements
subset of the current population with the best val-

ues of fitness using the function elite(population), then it evolves the current
elite. It selects two individuals using tournament selection, with the function
tournament(population), and it modifies them using the crossover operator with
a probability cp. Then the two individuals are mutated and the algorithm adds
the two parents or the two new individuals to the current elite, depending on
which are the best ones in terms of the fitness. The algorithm continues to evolve
the elite until the test suite has grown more than the current population, then
it starts another iteration considering the current elite as the population.

We have defined the fitness function in terms of the statement coverage
achieved by the test suite. However, given the fact that a web application con-
sists of several pages, in our fitness function we consider also the number of pages
covered by the test suite, i.e. we increase the fitness function of a certain value
(n = Dr if the number n of covered pages is greater than a certain threshold I,
where r represents the reward per page. In this way, we can reward with higher
fitness values those test suites that exercise the AUT both in terms of covered
statements and in terms of visited pages. Explicitely, the fitness achieved by the
test suite T is f(T) = a*x C(T) + B *r * (max(n,l) — 1), where o and 3 are two
parameters used to weight the influence of the statement coverage and the page
coverage on the overall fitness value.

Our approach uses the two points crossover technique, i.e. given two individu-
als P; and P», we generate two new individuals O; and O5 such that O; contains
the firsts x statements of Py, then the next y — x statements of P», and the lasts
| P1| —y statements of P; and the opposite for Po, where z,y € [0, min(|Py|, | P])]
are random values such that x < y.

In the mutation phase we apply three operators, each one applied with prob-
ability %: (a) Remove: Given a test case t, each statement is removed with a
probability ﬁ, (b) Change: Given a test case t, each statement is modified with
a probability ﬁ (we change the parameters of the statement by choosing new
parameters at random from configuration files), (c) Insert: We add a new state-
ment to the test case ¢ with a probability 32, when a new statement is added we
add another statement with probability 3?2 (where i is the number of already
inserted statements), until no new statements are added or the maximum length
of the test case is reached. The statements to add are selected randomly among
the ones presented in Listing 1, and the parameters are chosen at random from

Algorithm 1: Genetic Algorithm

Input : ts, it, ft, cp
QOutput: population
begin
population < T'S;
iteration < 0;
while (iteration < it) A (fitness(population) < ft) do
E <« elite(population);
while |E| < |population| do
Py, Py <+ tournament(population);
if random([0,1]) < cp then O1, Oz < crossover(P1, Pz);
else 01,02 < P1,P2;
mutate(O1, O2);
fp < mazx(fitness(P1), fitness(P2));
fo < max(fitness(O1), fitness(O2));
Ty < best individual of population;
if fp > fo then E < EUJ{P1, P2};
else

for O € {O1,02} do

L if length(O) < 2 xlength(T,) then E + EJ{O};

else E + EJ{P1 or P2};

| population < E;

the configuration files. Configuration files contain the definitions of the elements
of the AUT that can be used as arguments for the Sahi statements.

In order to prevent the undefined growth in length of the test cases, which
could cause a bloat, we adopted several strategies: (i) we have defined a maximum
length for the test cases, (ii) we have used the tournament selection method,
that lets us choose only the individuals with high fitness values, (iii) our fitness
function considers also the number of pages explored and, thus, we can reward
better the individuals that explore several pages instead of the ones that explore
exhaustively a single page.

2.1 Architecture

CLIENT

SERVER

PHP COVERAGE
TooL

Result of
Execution

Initial Population
Sahi Script

WETT
Test Suite
Evolution

Unsatisfactory

SAHI
Test Execution

XML

WEB
APPLICATION

Fitness
Evaluation

i=n OR

PHP-COVERAGE
Coverage

Population
Data

Computation

WETT
Final Population
Report

(a) Process.

<>

DataBase

REPORTER

(b) Architecture.

Fig.2: Our Approach

As already said, each WETT test case is a list of Sahi statements, which
are executed by the Sahi tool that invokes the browser and executes the scripts.
Figure 2(a) presents our process, whereas Figure 2(b) shows the architecture of
the WETT tool. In order to generate the initial population, we execute manually
a certain number of test cases using Sahi, and then we select at random the
population among the statements used in these test cases. Then we parse the
scripts in order to import them into the WETT application, where we evolve
the current population. In order to compute the fitness function, we execute the
evolved test suite by using Sahi, which communicates with the AUT using the
HTTP protocol. We use XDebug? and PHP-Coverage®, which are installed on
the server that executes the AUT to measure the coverage achieved by the test
suite. Given the fact that these tools produce coverage reports on the server, we
import the coverage results in WETT via FTP. When WETT computes a test
suite that satisfies the fitness requirement or it reaches the iteration threshold,
we produce the final test suite and an XML report containing the information
about the process. Given the fact that usually web applications use databases to
store the current state of the application, we delete the content of the database
after the execution of each iteration by executing an appropriate script (RESET
DB) by SSH.

3 Initial Experimental Results

In order to evaluate the performance of WETT, we have selected as case study
the Schoolmate® PHP application, which was already used in other works [1,3].
We report here the results of our preliminary experiments. We run WETT five
times, each one with a different seed. The use of Sahi implies a considerable
time overhead since the execution of a single candidate test case is around one
minute. Each experiment started from a test suite with 10 randomly generated
test cases and with the elitism that chooses at each iteration the 5 best test cases
in terms of fitness. The results in Figure 3 show how the fitness evolves during
the iterations. Note that the fitness of the test suite can also decrease from an
iteration to the next one due to the elitism that selects each time only a subset
of the current population and to the bloat control that limits the length of the
test cases.

Table 1 reports the size of the best test suite for every iteration, the cov-
erage achieved by the test suite, and the number of PHP interpreter warnings,
which are non-fatal errors. The table reports also the number of visited pages.
In comparison with other approaches, our test suite achieves the average state-
ment coverage of 21.7% with 13 test cases, while [1] achieves the 56.5% of branch
coverage with 167 test cases and [3] achieves the 64.9% of line coverage with 724
tests. In comparison with a random approach [3], we achieve much better results
in terms of coverage (8.3% with random) and test suite size (1396 tests with

2 XDebug, Debugger and Profiler Tool for PHP - http://xdebug.org/
3 PHPCoverage, code coverage tool for PHP - http://phpcoverage.sourceforge.net/
* Schoolmate - http://sourceforge.net /projects/schoolmate/

random). Note that although our approach achieves a low coverage, it keeps the
test suite very small. Our approach visits, in average, 18.4 pages out of 63 pages.

a0 Bz o P , #| Test |Coverage/Warnings|Visited
Becs T / . s Suite Size Pages
// DA 1 12 24.94% 36 19
e 2] 17 24.44% 96 20
4 3 7 10.06% | 132 15
w /) 4 13 26.87% 72 20
5/ 13 22.12% | 144 18
o : : ; Avg.| 124 | 21.69% 96 18.4

Iteration Number

Fig. 3: Fitness Function Table 1: Experimental results

4 Conclusion and Future Work

We found that extending the whole test suite generation approach to web ap-
plication testing is feasible and that our approach has some advantages and
drawbacks. We were able to automatically generate small tests suites achieving
a discrete coverage. However, the achieved coverage remains low and the re-
quired time for test generation makes the number of iteration small. The former
drawback is primarily due to the fact that our approach does not consider the
state of the web application when mutating test cases and that the initial test
suite is randomly chosen: this results in test scripts with a low quality and slows
the evolution process. We plan to integrate a model-based /model discovery ap-
proach in order to solve this problem. The latter drawback is due to the use of
Sahi as capture and replay tool. We plan to consider other alternative tools.

References

1. N. Alshahwan and M. Harman. Automated web application testing using search
based software engineering. In Proc. of ASE 2011.

2. A. Andrews, J. Offutt, and R. Alexander. Testing web applications by modeling
with FSMs. Software and Systems Modeling, 2005.

3. S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. Ernst. Finding
bugs in web applications using dynamic test generation and explicit-state model
checking. IEEE Trans. Softw. Eng., 36(4), 2010.

4. G. Di Lucca and A. Fasolino. Testing web-based applications: The state of the art
and future trends. Information and Software Technology, 48(12), 2006.

5. G. Fraser and A. Arcuri. Evolutionary generation of whole test suites. In Proc. of
QSIC 2011.

6. G. Fraser and A. Arcuri. Evosuite: Automatic test suite generation for object-
oriented software. In Proc. of ACM SIGSOFT ESEC/FSE, page 416-419, 2011.

7. A. Marchetto and P. Tonella. Search-based testing of ajax web applications. In
Proc. of SSBSE 2009.

8. P. McMinn. Search-based software test data generation: a survey. Softw. Test, Verif.
Reliab, 14(2), 2004.

9. S. Pertet and P. Narasimhan. Causes of failures in web applications.
2005.

CMU TR,

	Evolutionary Testing of PHP Web Applications with WETT

