
Offline Model-based Testing and Runtime
Monitoring of the Sensor Voting Module

Paolo Arcaini1, Angelo Gargantini1, and Elvinia Riccobene2

1 Dipartimento di Ingegneria, Università degli Studi di Bergamo, Italy
{paolo.arcaini,angelo.gargantini}@unibg.it

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

Abstract. Formal specifications are widely used in the development of
safety critical systems, as the Sensor Voting Module of the Landing Gear
System. However, the conformance relationship between the formal spec-
ification and the concrete implementation must be checked. In this paper,
we show a technique to formally link a Java class with its Abstract State
Machine formal specification, and two approaches for checking their con-
formance: an offline model-based testing approach and an online runtime
monitoring approach.

1 Introduction

For safety critical components, formal verification and validation of models must
be combined with the validation of the implementation. The user wants to gain
confidence that the system has been implemented as specified, i.e., it conforms
to its requirements. Indeed, regardless the correctness of the model (guaranteed
by formal verification, simulation and so on), the implemented system must be
validated itself. As aptly stated by Ed Brinksma in his 2009 keynote at the Dutch
Testing Day and Testcom/FATES, “Who would want to fly in an airplane with
software proved correct, but not tested?”.

We here focus on the model-driven design and validation of the sensor voting
module (SVM) in a landing gear system [7]. A sensor voting system, similar to
that presented in our case study, is verified in [16] using the UML Verification
Environment. In this paper, we describe the validation activity of a Java imple-
mentation of the SVM, using the Abstract State Machines (ASMs) as formal
language. For a complete description of the modeling of the whole landing gear
system case study using ASMs through the ASMETA framework, we refer to [5].

In this paper, we first introduce the SVM case study, and give a brief in-
troduction to two conformance validation techniques, model-based testing and
runtime monitoring, reporting some related literature (Section 2). Then, we show
the ASM model for the SVM and which activities the designer should perform,
even before the conformance checking is started, to be sure that the model is
correct (Section 3.1). We then implement the SVM in Java (Section 3.2) and
we validate it against the ASM model. We describe how the formal specification

Fig. 1: Sensor Voting Module Interface

can be linked with the implementation (Section 3.3), and then we present the
application of model-based testing (Section 4) and of runtime monitoring (Sec-
tion 5) to the case study. Finally, we compare the strengths and the weaknesses
of the two approaches through some experiments (Section 6), and conclude the
paper in Section 7.

2 Background

2.1 The sensor voting module

The Landing Gear System (LGS) has proposed in the ABZ conference as a real-
life case study [7] with the aim of showing how different formal methods can be
used for the specification, design and development of a complex system.

In the LGS the state of the equipments (i.e., doors and gears) is computed
by a set of discrete sensors; the digital part of the landing gear system takes
decisions and sends commands (e.g., stimulating the electro-valves) relying on
the sensor values. In order to prevent sensor failures, each sensor value is based
on the values of three micro-sensors [7]; a sensor receives the values of the three
micro-sensors from three channels. The duty of the Sensor Voting Module (SVM)
is to select one of these three values according to the following policy.

Let X be a sensor and Xi(t) (i = 1, 2, 3) the values for X received at time t:
– If at t the three channels are considered as valid and are equal, then the

value considered by the control software is this common value.
– If at t one channel is different from the two others for the first time (i.e.,

the three channels were considered as valid up to t), then this channel is
considered as invalid and is definitely eliminated. Only the two remaining
channels are considered in the future. At time t, the value considered by the
control software is the common value of the two remaining channels.

– If a channel has been previously eliminated, and if at t the two remaining
channels are not equal, then the sensor is definitely considered as invalid.

We can represent an SVM by the black box reported in Fig. 1. It has three
inputs corresponding to the three channels for the sensor and two outputs: one
that represents the value of the sensor and one that informs whether the sensor
is valid or invalid.

2.2 Model-based off-line testing

Model-based conformance testing [13,17] of reactive systems consists in taking
benefit from the model for mechanizing both test data generation and verdicts

computation (i.e., to solve the oracle problem). In off-line approaches, test suites
are pre-computed from the model and stored under a format that can be later
executed on the System Under Test (SUT). The model can be used both to
guide the test generation, in order to discover which aspects of the model must
be covered, and to decide when to stop testing, when coverage of the model has
reached a certain level.

A classical technique to generate tests from models exploits the use of model
checkers. In this case, the model of the system is translated to the language of
the model checker, and a suitable property (also called trap property) is proved
false by the model checker by means of a counterexample. This counterexample
represents a possible system behavior and it can be translated to a test through
a concretization process.

MBT for ASM For ASMs, we have developed a tool, called ATGT [11], which
is capable of generating tests from ASMs following several testing criteria [10],
like rule coverage, update rule coverage, parallel rule coverage, etc.

For example, a test suite satisfies the rule coverage criterion if, for every rule
ri, there exists at least one state in a test sequence in which ri fires and there
exists at least one state in a test sequence (possibly different from the previous
one) in which ri does not fire.

2.3 Runtime Monitoring

According to [14], runtime monitoring (also runtime verification) is “the disci-
pline of computer science that deals with the study, development, and application
of those monitoring techniques that allow checking whether a run of a system
under scrutiny satisfies or violates a given correctness property”.

The aim of runtime monitoring is to check that the observed executions of a
system ensure some correctness properties. Runtime monitoring is a lightweight
verification technique that, considering the ability to detects faults, can be clas-
sified halfway between those techniques that try to ensure universal correctness
of systems – as model checking and theorem proving – and those techniques like
testing that ensure the correctness only for a fixed set of executions.

The main difference with techniques like model checking is that, whereas
these techniques check all possible executions of a program, runtime monitoring
only checks those executions that are actually performed by the program un-
der scrutiny. So, it is possible that, although the program contains a fault, its
executions never produce a failure that evidences that fault.

The main difference with testing, instead, is that the number of executions
over which the program is checked is not fixed. Sometimes, runtime monitoring
is seen as the process of testing the system forever [14], since, as in testing, the
actual output is checked with respect to an expected output (usually described
by an oracle), but, unlike testing, every execution of the system is checked.

Finally, whereas traditional validation and verification activities are only ex-
ecuted offline, i.e., before the deployment, runtime monitoring can also be exe-
cuted online, i.e, after the deployment of the program.

In order to describe the expected correctness properties, several formalisms
have been used in literature as, for example, temporal logics [12,6], extended
regular expressions [8], and Z specifications [15].

Coma: conformance monitoring between ASMs and Java In [3] we pro-
pose CoMA, runtime Conformance Monitoring of Java code by ASM specifica-
tions. The CoMA monitor allows online monitoring, namely it considers exe-
cutions in an incremental fashion. It takes as input an executing Java software
system and an ASM formal model. The monitor observes the behavior of the
Java system and determines its correctness w.r.t. the ASM specification working
as an oracle of the expected behavior. While the software system is executing,
the monitor checks conformance between the observed state and the expected
state.

2.4 Comparing Offline Testing and Runtime Monitoring

Offline testing is much simpler than runtime monitoring: once the tests are gen-
erated, they can be easily reused as long as the model does not change. The test
generation time may be an issue, especially if the model is large and the model
checker takes a lot of resources for test generation; however, efficient test genera-
tor tools can generate tests also for big models. Once the tests are obtained, they
can be launched and, if the SUT passes all the tests, the tester can be confident
that the implementation is correct and therefore the system can be deployed.

However, the system could strongly depend on the environment in which it
is executed [9]. If such environment is not available at testing time or, although
available, it is not practically possible to interact with it (because maybe too
much time consuming), testing the system could become difficult. In unit testing
this problem is sometimes mitigated by using mock objects that mimic the be-
havior of the environment: nonetheless, if the actions of the environment are not
fully predictable, also using mock objects could be not useful. Moreover, safety-
critical systems as medical devices, aircraft flight controls, nuclear systems, etc.,
although tested and verified deeply, could require an additional degree of confi-
dence that they behave as expected. Runtime monitoring here acts as a double
check that everything goes well [14].

Furthermore, in the presence of nondeterministic systems, an MBT approach,
as that described in Section 4, is not suitable because it is not able to correctly
judge the implementation output: the implementation could deviate from a test
case, taking a different but valid execution path, and the test case would falsely
fail. For such kind of systems, a runtime monitoring approach able to deal with
nondeterminism, as that described in Section 5, can also benefit the testing [4].

3 Specification and implementation of the SVM

The following sections describe the ASM model (Section 3.1) and the Java im-
plementation (Section 3.2) for the SVM. The ASM and the Java implementation

have been developed independently: once we have agreed upon the interface, one
author has developed the ASM and another one the Java code. In this way, the
two artifacts may be quite different. Finally, Section 3.3 describes how to link
the Java code with the ASM; such linking will be exploited in Section 4 and
Section 5 for the testing and the runtime monitoring of the implementation.

3.1 ASM model of the SVM

Code 1 reports the ASM model. The signature of the ASM contains the enumer-
ative domain Channel representing the three input channels of the sensor; one
unary monitored function channel represents the signals coming from the three
channels. The controlled unary function validCh keeps track if each channel is
still valid; in the initial state all the channels are valid. The output value of the
sensor is computed by the machine and recorded with the function sensor, while
its validity is simply defined as a derived function valid, which is true if there
exist two different channels still valid.

In the main rule, if the sensor is not valid, the machine state is no longer
updated. Otherwise, if the sensor is valid, the following rules are called:
– r allValidChannels checks if all the channels are still valid and, in this case, it

controls if the values of the three channels are equal. Since the comparison
is performed by considering each pair of channels, r allValidChannels calls
r threeValidChannels three times, in order to actually compare each pair ($vc1
and $vc2); if they are equal, it also checks the third channel ($vc3) and, if
necessary, it updates its validity. The sensor value is updated to the majority
value of the three channels.

– r twoValidChannels checks if two channels are still valid, in case the third
channel ($nvc) is no longer valid; the rule is called three times, one for each
pair of channels. The sensor value is updated only if the two valid channels
are equal.

Note that the specification can be easily extended in case there are more
than three channels.

Model validation We have performed the following preliminary activities over
the ASM model using the framework ASMETA3, in order to be sure that the
model exactly captures the intended behavior of the system. In fact, in model-
based testing and in runtime monitoring, it is of extreme importance that the
models are correct, otherwise faults in the model jeopardize the entire activity
of the implementation validation.

Simulation Through simulation with the ASM simulator AsmetaS, we have sim-
ulated the scenarios of a channel becoming invalid and then the entire sensor
becoming invalid. Simulation is useful to gain confidence that the specification
actually captures the intended behavior. The simulator, at each step, checks that

3 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/

asm SensorVotingModule

signature:
enum domain Channel = {ONE | TWO | THREE}
dynamic monitored channel: Channel −> Boolean
dynamic controlled validCh: Channel −> Boolean
dynamic controlled sensor: Boolean
derived valid: Boolean

definitions:
function valid =

(exist $c1 in Channel, $c2 in Channel with $c1!=$c2 and validCh($c1) and validCh($c2))

rule r threeValidChannels($vc1 in Channel, $vc2 in Channel, $vc3 in Channel) =
if channel($vc1) = channel($vc2) then

par
sensor := channel($vc1)
if channel($vc1) != channel($vc3) then

validCh($vc3) := false
endif

endpar
endif

rule r allValidChannels =
if (forall $c in Channel with validCh($c)) then

par
r threeValidChannels[ONE,TWO,THREE]
r threeValidChannels[TWO,THREE,ONE]
r threeValidChannels[THREE,ONE,TWO]

endpar
endif

rule r twoValidChannels($nvc in Channel, $vc1 in Channel, $vc2 in Channel) =
if not(validCh($nvc)) then

if channel($vc1) = channel($vc2) then
sensor := channel($vc1)

else
par

validCh($vc1) := false
validCh($vc2) := false

endpar
endif

endif

invariant over validCh: size({$c in Channel | validCh($c) : $c}) != 1

main rule r Main =
if valid then

par
r allValidChannels[]
r twoValidChannels[ONE,TWO,THREE]
r twoValidChannels[TWO,THREE,ONE]
r twoValidChannels[THREE,ONE,TWO]

endpar
endif

default init s0:
function validCh($c in Channel) = true

Code 1: ASM specification of the SVM

all the specified invariants are satisfied. In the model (before the main rule), we
have introduced an invariant specifying that it is not possible that only one sin-

rule r twoValidChannels($vc1 in Channel, $vc2 in Channel, $vc3 in Channel) =
if not(validCh($vc1)) then

if channel($vc2) = channel($vc3) then
sensor := channel($vc2)

else
par

validCh($vc1) := false //error
validCh($vc2) := false

endpar
endif

endif

Code 2: Faulty model – Error in the rule r twoValidChannels

gle channel is valid. The requirements indeed specify that at least two channels
must be valid, otherwise the entire sensor must be considered invalid (i.e., all
the channels must be considered invalid).

Model Advisor During the development of the model, we have applied the
model advisor [2], a tool we developed for looking for common errors that are
usually introduced in the model development using ASMs. The model advisor
has discovered an error in the model. Code 2 shows the faulty implementation
of rule r twoValidChannels. The model advisor signals that, when the update
validCh($vc1) := false is executed, the location validCh($vc1) is always yet false.
Indeed, the model is faulty and the location that should be updated to false
is validCh($vc3). We have fixed the error, and we have given more meaningful
names to the rule parameters, as shown in Code 1.

Formal Property Verification We have been able to formally prove some prop-
erties by using the model checker AsmetaSMV [1]. The first property simply
checks that the specified invariant is satisfied in all the states. Indeed, by default
AsmetaSMV translates each invariant ϕ in the Computation Tree Logic (CTL)
formula ag(ϕ).
The following temporal properties have also been proved:
– Once the sensor becomes invalid, then it will always remain invalid in the

future:
CTLSPEC ag(not(valid) implies ag(not(valid)))

– There exists a path in which the sensor eventually becomes invalid:
CTLSPEC ef(not(valid))

– There exists a path in which the sensor always remains valid:
CTLSPEC eg(valid)

3.2 Java implementation

Code 3 shows the Java implementation of the SVM. The method computeSen-
sorValue, given the values of the three parameters s1, s2, and s3 (representing
the input channels), updates the value of the sensor and marks if the sensor is no
more valid (field sensorValid). The boolean array chValid records which channels
are still valid. Two methods return the values of fields value and sensorValid.

@Asm(asmFile = ”models/SensorVotingModule.asm”)
public class Sensor {

private boolean value;
private boolean sensorValid;
private boolean[] chValid;

@StartMonitoring
public Sensor() {

sensorValid = true;
chValid = new boolean[]{true, true, true};

}

@RunStep
public void computeSensorValue(@Param(func = ”channel”, args={”ONE”}) boolean s1,

@Param(func = ”channel”, args={”TWO”}) boolean s2,
@Param(func = ”channel”, args={”THREE”}) boolean s3) {

if (sensorValid) {
if (chValid[0] && chValid[1] && chValid[2]) {

if (s1 == s2 && s2 == s3) {
value = s1;

} else if (s1 != s2 && s2 == s3) {
chValid[0] = false; // first channel invalid
value = s2;

} else if (s2 != s1 && s1 == s3) {
chValid[1] = false; // second channel invalid
value = s3;

} else {
chValid[2] = false; // third channel invalid
value = s1;

}
} else if (!chValid[0]) {

if (s2 == s3)
value = s2;

else
sensorValid = false;

} else if (!chValid[1]) {
if (s1 == s3)

value = s1;
else

sensorValid = false;
} else if (!chValid[2]) {

if (s1 == s2)
value = s2;

else
sensorValid = false;

}
}

}

@MethodToFunction(func = ”sensor”)
public boolean getValue() {

return value;
}

@MethodToFunction(func = ”valid”)
public boolean isValid() {

return sensorValid;
}

}

Code 3: Java implementation of the SVM

3.3 Linking Java code and ASM specifications

Linking a Java code with its ASM formal specification permits to establish a
conformance relation between the ASM and the implementation. In the follow-
ing, we provide an informal description; a complete description of the technique
with all the formal definitions can be found in [3].

We use Java annotations to establish this link; Java annotations are meta-
data tags that can be used to add some information to code elements as class
declarations, field declarations, etc. In addition to the standard ones, annotations
can be defined by the user similarly as classes. For our purposes, we have defined
a set of annotations [3]. The retention policy (i.e., the way to signal how and when
the annotation can be accessed) of all our annotations is runtime: annotations
can be read by the compiler and by any program through reflection. In the
tools developed for supporting our model-based testing and runtime monitoring
approaches, we read the annotations in order to discover the relation between
the ASM and the Java code.

In order to link a Java class with its corresponding ASM specification, first
the class must be annotated with the annotation @Asm, having the path of the
ASM model as string attribute (asmFile). The Java class Sensor (Code 3) is
linked to the ASM specification SensorVotingModule (Code 1).

Then the class data must be connected with the signature of the ASM. A
field of the Java class can be connected with a function/location of the ASM,
through the field annotation @FieldToFunction; the annotation has a manda-
tory attribute func for specifying the function name, and an optional attribute
args, for specifying the arguments’ values (if one wants to connect the field to
a specific location). Moreover, it is also possible to link a pure method4 with a
function/location, using the method annotation @MethodToFunction, having the
same attributes of @FieldToFunction. In the presented case study, pure meth-
ods getValue and isValid are respectively linked to functions sensor and valid.

Linked fields (those annotated with @FieldToFunction) and linked methods
(those annotated with @MethodToFunction) constitute the observed Java state.
In the case study, the observed Java state is given by the methods getValue and
isValid.

Finally, the execution of the Java code must be linked with an execution
(i.e., a run) of the ASM. The annotation @StartMonitoring is used to select
one constructor5 which builds the desired observed initial state of the object. The
annotation @RunStep, instead, permits to identify the method (called changing
method) that changes the observed state, i.e., the values of the linked fields
and the return values of the linked pure methods6. Both linked constructors

4 Pure methods are side effect free methods with respect to the object/program state.
They return a value but do not assign values to fields.

5 We do not consider the default constructor. If the class does not have any constructor,
the user has to specify an empty constructor and annotate it with @StartMonitoring.

6 The user can identify several changing methods, but, in this case, each changing
method must be linked with a different monitored value by the two annotation
attributes setFunction, specifying the name of a 0-ary monitored function of the

and linked methods can have some parameters, that can be linked to the ASM
as well. The annotation @Param can be used to link parameters to monitored
functions/locations of the ASM; it has a mandatory attribute func to specify
the name of a monitored function of the ASM model, and an optional attribute
args to specify the function arguments. In the case study, the parameters of
method computeSensorValue are linked to the locations of function channel.

State and step conformance The linking previously described allows the
following notion of conformance between an instance OC of a class C and the
ASM specification ASMC linked to C.

Definition 1. State conformance We say that a state sJ of OC conforms
to a state sA of ASMC , i.e., conf(sJ , sA), if all the observed elements of C
(fields annotated with @FieldToFunction and methods annotated with @Method-

ToFunction) have values in OC conforming to the values of the functions in
ASMC linked to them.

Intuitively, the Java state and the ASM state are conformant, if the values
of the linked fields and the values returned by linked methods are equal to the
values of the corresponding functions/locations.

Definition 2. Step conformance Given the execution of a changing method
m (i.e., a method annotated with @RunStep) and a step of simulation of the ASM,
we say that the Java step (sJ , s′J) and the ASM step (sA, s′A) are conformant
if conf(sJ , sA) and conf(s′J , s

′
A).

ASMC sA
simulation step // s′A

OC sJ

conf

OO

invocation of changing method m // s′J

conf

OO

Intuitively, a Java object is step conformant with the corresponding ASM
specification, if their states are conformant before and after the changing method
execution and the ASM simulation step.

4 Offline testing

4.1 Test generation

We have used ATGT to generate tests from the SVM model, using the basic
rule coverage (BRC) and the update rule coverage (URC). BRC requires that
every rule is executed at least once, while URC requires that every update is
executed at least once without being trivial, i.e., by actually changing the value

ASM model, and toValue, specifying a value of the function codomain. setFunction
should have the same value in all the annotations, while toValue must assume dif-
ferent values.

of the location that it updates. For every coverage goal (e.g., a rule to execute
in BRC), ATGT computes a test predicate which is a predicate over the state
of the machine, representing the condition that must be reached to cover that
particular goal. For instance, the basic rule coverage of the update rule in the
inner conditional rule of rule r threeValidChannels is specified by the following
test predicate.

BR r threeValidChannels TTT21:
valid and (validCh(ONE) and validCh(TWO) and validCh(THREE)) and
(channel(ONE) = channel(TWO)) and (channel(ONE) != channel(THREE))

ATGT has derived, for the entire specification, 38 test predicates (20 for
the BRC and 18 for the URC). For every test predicate tp, ATGT has built, if
possible, an abstract test sequence, which is a valid sequence of states, leading
to a state where tp becomes true. ATGT exploits the SPIN model checker and
its capability to produce counterexamples upon property violations. If a test
predicate cannot be covered, we say that it is unfeasible and it means that there
is no valid system behavior that can cover that case. Unfeasible test predicates
must be discarded and no longer considered. For the SVM, we found no unfeasible
test predicates.

In order to reduce the test suite size, ATGT can perform a coverage evalua-
tion of the tests, by checking if a test sequence, generated for a test predicate,
unintentionally covers also other test predicates. Without coverage evaluation,
ATGT produces 38 test sequences, while, with coverage evaluation, ATGT pro-
duces only 11 test sequences.

4.2 Test concretization

We devise a novel technique that derives a concrete Java test, consisting of a
sequence of method calls with suitable checks (i.e., asserts), from each abstract
test sequence ATS ; in this work, we automatically build JUnit tests. The test
concretization leverages the linking between the Java class and the ASM (see
Section 3.3) and the definitions of state conformance (Def. 1) and step confor-
mance (Def. 2).

First, it identifies the constructor annotated with @StartMonitoring, builds
an instance of the class, and associates it to the reference variable sut. For
example, given a class C whose constructor without parameters is annotated
with @StartMonitoring, the produced statement is C sut = new C();

If the constructor has some parameters, these must be annotated with @Param.
The technique identifies the actual parameters to use in the object instantiation
by reading, in the first state of the abstract test sequence, the values of the
monitored functions that are linked with the parameters.

The procedure that identifies the inputs in the ATS and maps them in
method invocations with values for their parameters exploits the Java anno-
tations @RunStep and @Param. For each state of the ATS, the method annotated

−−−− state 0 −−−−−
−− controlled −−

valid = true
−− monitored −−

channel(ONE) = false
channel(TWO) = false
channel(THREE) = true
−−−− state 1 −−−−−
−− controlled −−

sensor = false
valid = true

(a) Abstract test sequence

@Test
public void test() {

// state 0
Sensor sut = new Sensor();
assertEquals(true, sut.isValid());
sut.computeSensorValue(false, false, true);
// state 1
assertEquals(false, sut.getValue());
assertEquals(true, sut.isValid());

}

(b) JUnit test case

Fig. 2: Example of test concretization for BR r threeValidChannels TTT21

with @RunStep is called7. The (possible) actual parameters in the method invo-
cation are fixed by the values of the monitored functions/locations linked in the
@Param annotations of the method formal parameters. For instance, the formal
parameters s1, s2 and s3 of changing method computeSensorValue are connected
to the monitored locations channel(ONE), channel(TWO), and channel(THREE).

After each method invocation and after the object instantiation, the oracle is
built, exploiting the annotations @FieldToFunction and @MethodToFunction.
For each state of the ATS :
– given a function/location linked with an annotation, we obtain its value v

from the ATS ;
– if the annotation annotates a field f , we build an assertion as follows:

assertEquals(v, sut.f);
– if the annotation annotates a pure method m, we build an assertion as fol-

lows:
assertEquals(v, sut.m());

Fig. 2 shows the translation of the ATS built for covering the test predicate
BR r threeValidChannels TTT21 (Fig. 2a) in a JUnit test case (Fig. 2b).

5 Runtime Monitoring

Although a model-based testing approach as that described in Section 4 can give
enough confidence that the implementation is correct, for safety-critical systems
as the sensor voting module, we may want to continue checking the conformance
of the implementation with respect to its specification also after the deployment.

7 If there are several changing methods, the value v of the monitored function/loca-
tion linked in the @RunStep annotations identifies what method must be called (the
method having value v in the annotation argument toValue). In our case study, since
only method computeSensorValue is annotated with @RunStep, it is always called.

Fig. 3: The CoMA runtime monitor for Java

We propose CoMA [3], a runtime monitoring approach for Java code using
ASMs. The schema of the proposed runtime framework is shown in Fig. 3. The
monitor is composed of: an observer that evaluates when the Java (observed)
state is changed (1), and leads the abstract ASM to perform a machine step
(2), and an analyzer that evaluates the step conformance between the Java ex-
ecution and the ASM simulation (3). When the monitor detects a violation of
conformance, it reports the error. It can also produce a trace in form of coun-
terexample, which may be useful for debugging. Note that the use of CoMA can
be twofold, since also faults in the specification can be discovered by monitor-
ing the software. For instance, by analysing and re-executing counterexamples,
faults in the model can be exposed.

The technique exploits the linking described in Section 3.3 and the definitions
of state conformance (Def. 1) and step conformance (Def. 2). In the following,
we give the definition of runtime conformance.

Definition 3. Runtime conformance We say that C is runtime conforming
to its specification ASMC if the following conditions hold:
1) the initial state s0J of the computation of OC conforms to one and only one

initial state s0A of the computation of ASMC , i.e., ∃! s0A initial state of ASMC

such that conf (s0J , s
0
A);

2) for every Java step (sJ , s
′
J) induced by the execution of a changing method

m, ∃! (sA, s
′
A) step of ASMC with sA the current state of ASMC , such that

the two steps are conformant.

The runtime framework has been implemented using AspectJ. By means of
an aspect, AspectJ allows to specify different pointcuts, i.e., points of the program
execution one wants to capture. For each pointcut, it is possible to specify an
advice, i.e., the actions that must be executed when a pointcut is reached (before
or after the execution of the code specified by the pointcut). In our runtime
framework, we have defined some pointcuts for identifying the instantiation of a
class under monitoring (when a constructor annotated with @StartMonitoring

is called) and the execution of a changing method (i.e., a method annotated
with @RunStep). Moreover, for each pointcut we have defined an advice actually
implementing the monitoring:
– when a monitored object is instantiated, the corresponding advice creates

an instance of the ASM simulator AsmetaS;

– when a changing method is executed, the corresponding advice forces a step
of simulation of the ASM, and it checks the conformance between the ob-
tained Java state and the ASM states that can be reached in one step.

6 Experimental comparison

We have executed the 38 Junit tests, obtained as explained in Section 4, and
applied CoMA, as explained in Section 5. In CoMA, we have simulated the
environment by instantiating 10 times a new sensor and computing 10 times
the sensor value by the method computeSensorValue, passing three random
values as inputs for the three channels. We have measured the code coverage
by EclEmma and the mutation score by PIT8. In both cases, we found line and
branch code coverage of 100%, and mutation score of 57 killed mutants over 74.
The not killed mutants involve code inserted by AspectJ and are not relevant
for the case study. We can state that both techniques are equivalent regarding
detecting faults inserted by the standard PIT mutation operators. However, we
have simulated a delayed short circuit fault that causes isValid to return true
after 5 times it is called. We have modified the code as follows:

int nvCount = 0;
boolean isValid() {

return valid | nvCount++ > 5;
}

The tests produced from the specification do not detect this fault, since the
rule coverage of the specification does not imply the coverage of this faulty be-
havior in the implementation. However, monitoring the code with CoMA exposes
the failure by any run in which valid becomes false and isValid is called at least
5 times. In general, we can assume that unforeseen and unspecified anomalous
behaviors of the implementation are better detected by runtime monitoring than
by MBT.

7 Conclusions

We have presented the model-driven development and validation activity of a
critical module in the Landing Gear System. We have applied the formal method
of ASMs from the design to the conformance checking of the implementation.
We have presented two methodologies for actual system validation (model-based
testing and runtime monitoring) and briefly compared them.

References

1. P. Arcaini, A. Gargantini, and E. Riccobene. AsmetaSMV: a way to link high-
level ASM models to low-level NuSMV specifications. In Abstract State Machines,
Alloy, B and Z, 2nd Int. Conference (ABZ 2010), volume 5977 of Lecture Notes
in Computer Science, pages 61–74. Springer, 2010.

8 http://www.eclemma.org/ and http://pitest.org/

http://www.eclemma.org/
http://pitest.org/

2. P. Arcaini, A. Gargantini, and E. Riccobene. Automatic Review of Abstract State
Machines by Meta Property Verification. In C. Muñoz, editor, Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010), pages 4–13. NASA, 2010.

3. P. Arcaini, A. Gargantini, and E. Riccobene. CoMA: Conformance monitoring of
Java programs by Abstract State Machines. In S. Khurshid and K. Sen, editors,
Runtime Verification, volume 7186 of Lecture Notes in Computer Science, pages
223–238. Springer, 2012.

4. P. Arcaini, A. Gargantini, and E. Riccobene. Combining model-based testing and
runtime monitoring for program testing in the presence of nondeterminism. In
IEEE Sixth International Conference on Software Testing, Verification and Vali-
dation Workshops (ICSTW), pages 178–187, 2013.

5. P. Arcaini, A. Gargantini, and E. Riccobene. Modeling and analyzing using ASMs:
the Landing Gear System case study. In Proceedings of 4th International Confer-
ence on Abstract State Machines, Alloy, B and Z (ABZ 2014) – Case study track,
Communications in Computer and Information Science. Springer, 2014.

6. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Transactions on Software and Methodology (TOSEM), 20, 2011.

7. F. Boniol and V. Wiels. Landing gear system http://www.irit.fr/ABZ2014/

landing_system.pdf. Technical report, ONERA-DTIM, 2014.
8. F. Chen, M. D’Amorim, and G. Roşu. A formal monitoring-based framework for

software development and analysis. In Formal Methods and Software Engineering,
volume 3308 of Lecture Notes in Computer Science, pages 357–372. Springer Berlin
/ Heidelberg, 2004.

9. S. Colin and L. Mariani. Run-time verification. In Model-Based Testing of Reac-
tive Systems, volume 3472 of Lecture Notes in Computer Science, pages 525–555.
Springer Berlin / Heidelberg, 2005.

10. A. Gargantini and E. Riccobene. ASM-Based Testing: Coverage Criteria and Au-
tomatic Test Sequence Generation. J. Universal Computer Science, 7:262–265,
2001.

11. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to Generate Tests from
ASM Specifications. In Proceedings of ASM 2003, volume 2589 of Lecture Notes
in Computer Science. Springer Verlag, 2003.

12. K. Havelund and G. Roşu. Efficient monitoring of safety properties. International
Journal on Software Tools for Technology Transfer, 6:158–173, August 2004.

13. R. Hierons and J. Derrick. Editorial: special issue on specification-based testing.
Software Testing, Verification and Reliability, 10(4):201–202, 2000.

14. M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of
Logic and Algebraic Programming, 78(5):293 – 303, 2009.

15. H. Liang, J. Dong, J. Sun, and W. E. Wong. Software monitoring through formal
specification animation. Innovations in Systems and Software Engineering, 5:231–
241, 2009.

16. C. Mrugalla, O. Robbe, I. Schinz, T. Toben, and B. Westphal. Formal verification of
a sensor voting and monitoring UML model. In Proceedings of the 4th International
Workshop on Critical Systems Development Using Modeling Languages (CSDUML
2005). Technische Universität München, Sept. 2005.

17. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan-Kaufmann, 2006.

http://www.irit.fr/ABZ2014/landing_system.pdf
http://www.irit.fr/ABZ2014/landing_system.pdf

	Offline Model-based Testing and Runtime Monitoring of the Sensor Voting Module

