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ABSTRACT
The variability of a Software Product Line is usually both described
in the problem space (by using a variability model) and in the solu-
tion space (i.e., the system implementation). If the two spaces are not
aligned, wrong decisions can be done regarding the system config-
uration. In this work, we consider the case in which the variability
model is not aligned with the solution space, and we propose an
approach to automatically repair (possibly) faulty constraints in
variability models. The approach takes as input a variability model
and a set of combinations of features that trigger conformance
faults between the model and the real system, and produces the
repaired set of constraints as output. The approach consists of three
major phases. First, it generates a test suite and identifies the con-
dition triggering the faults. Then, it modifies the constraints of the
variability model according to the type of faults. Lastly, it uses a
logic minimization method to simplify the modified constraints.
We evaluate the process on variability models of 7 applications of
various sizes. An empirical analysis on these models shows that
our approach can effectively repair constraints among features in
an automated way.
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1 INTRODUCTION
Most software systems can be configured in order to improve their
capability to address users’ needs. Configuration of such systems
is generally performed by setting system parameters [34]. These
parameters, or features, can be identified at design time. For instance,
in the case of a software product line, the designer identifies the
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ModelM Implementation (System S):

𝐴→ 𝐵

𝐴→ 𝐶

#ifdef C //Hello
char* msg = "Hello␣!";
#endif
#ifdef B // Bye
char* bye = "Bye";
#endif
#ifdef A // lowercase
msg [0] = 'h';
bye [0] = 'b';
#endif

Figure 1: Example of problem and solution spaces

features unique to individual products and features common to
all products. Such options can also be decided during compilation
time, in order to improve some characteristics of the compiled
code (scalability, efficiency, etc.) or to activate/deactivate some
functionalities. For example, in the case of preprocessor directives,
the programmer can decide which libraries to use, what code to
execute and what to ignore etc. Software configurations can also
be modified during operation time, when the system is already
running. In this case, for example, the parameters can be saved in a
configuration file and modified if necessary. Such a configuration
file can also be used to decide which features to load at startup.

Constraints exist among system features. They can prohibit sys-
tem configurations that are dangerous or undesired, or can describe
conditions leading to certain properties or errors in code, such as
preprocessor errors, parser errors, type errors, and feature effect [30].
Designers, developers, and testers can greatly benefit from mod-
elling features and constraints among them, as it allows to reduce
development effort [33] and to identify corner cases of the system
under test.

Constraints among features can be modeled using variability
models, and imposed on the implementation by means of prepro-
cessor directives, makefiles, etc. These two ways of modeling vari-
ability are usually known as problem space and solution space [30].
Fig. 1 presents an example of a variability model containing the
constraints among three system features (𝐴, 𝐵, and 𝐶) that are
implemented as preprocessor directives in the C program.

This separation between problem and solution space allows users
to model configuration without knowledge about low-level imple-
mentation details. On the other hand, these two spaces need to be
consistent; code and models, however, are often not kept synchro-
nized, and repairs are needed. In the evolution of product lines, two
common types of repair are performed: debugging and program
repair, when the variability model is correct but the implementa-
tion has to be fixed; and model repair, when the program is correct,
but the variability model is outdated. This latter case occurs when
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Figure 2: Fault-driven repair of variability models

the description of variability is evolved in the implementation, but
not in the variability model. This work tackles this problem and
proposes a technique to automatically repair variability models.
Fig. 2 shows an overview of this context.

In order to detect discrepancies between the problem space and
the solution space, classical techniques for testing of propositional
formulas (as the constraints of a variability model) can be used:
the classical decision and condition coverage, the MCDC [17], fault
based criteria [9], and also combinatorial testing [10]. In this paper,
we assume that some tests have been generated according to some
coverage criterion and some faults (i.e., non-conformances of the
model w.r.t. the solution space acting as oracle) have been detected;
our aim is to repair the constraints of the variability model in order
to remove the faults. We propose an automated process that, upon
some failing tests, is able to automatically correct the constraints
in such a way that they maintain their original validity for all the
configurations, except for those found failing.

The rest of the paper is organized as follows. Sect. 2 presents
some basic definitions. Sect. 3 presents the basic repair process and
some possible optimizations. Sect. 4 shows the empirical results.
Threats to validity are tackled in Sect. 5, whereas an overview of
the related work is given in Sect. 6. Sect. 7 concludes the paper and
proposes lines for future research.

2 BASIC DEFINITIONS
Definition 1 (Variability Model). A variability modelM is

made of a set of features 𝐹 = {𝑓1, . . . , 𝑓𝑛} and a set of constraints
Γ = {𝛾1, . . . , 𝛾𝑚} over the features.

The features 𝐹 represent the system parameters. The expressions
in Γ identify the features configurations for which the actual system
is expected to work.

Definition 2 (Configuration). A configuration (or test) 𝑡 is
a particular assignment of values for all the features 𝐹 . We identify
with 𝑡 (𝑓𝑖 ) the value of feature 𝑓𝑖 in test 𝑡 . A configuration is valid if
it respects the constraints, i.e., 𝑡 |= Γ. We also use Γ as predicate to
check the constraint satisfaction: Γ(𝑡) = true iff 𝑡 |= Γ.

Definition 3 (Test suite). A test suite 𝑇 is a set of tests. We
identify with Te the exhaustive test suite, i.e., the set of all the possible
tests.

Definition 4 (Oracle). The oracle function oracle(t) tells whether
the configuration 𝑡 is functionally correct for the system 𝑆 .

We assume that an oracle exists, that tells whether a configura-
tion is valid or not in the real system.

We assume that the set of features 𝐹 is known and correctly
modeled, while the constraints could be faulty.

Definition 5 (Model correctness). We say that the modelM
is correct if it conforms with the oracle for every possible configuration
𝑡 , i.e., ∀𝑡 ∈ Te : Γ(𝑡) = oracle(t).

Definition 6 (Conformance fault). We say that the model
contains a conformance fault if there exists a configuration 𝑡 such
that Γ(𝑡) ≠ oracle(t).

Definition 7 (Combination). A combination (or partial config-
uration) 𝑐 is an assignment to a subset features(𝑐) of all the possible
features 𝐹 , i.e., features(𝑐) ⊆ 𝐹 . A configuration (or test) is thus a
particular combination in which features(𝑐) = 𝐹 . The value assigned
by the combination 𝑐 to the feature 𝑓 is denoted as 𝑐 (𝑓 ).

Definition 8 (Propositional representation of combina-
tions). A combination 𝑐 can be expressed in propositional logic by
making the conjunction of the truth value assignments of its features:

𝑐 =
©«

∧
{𝑓 ∈features (𝑐) |𝑐 (𝑓 ) }

𝑓
ª®¬ ∧ ©«

∧
{𝑓 ∈features (𝑐) |¬𝑐 (𝑓 ) }

¬𝑓 ª®¬
Definition 9 (Combination containment). A test (or configu-

ration) 𝑡 contains a combination 𝑐 if all features values in 𝑐 are the
same in 𝑡 . Formally, ∀𝑓𝑖 ∈ features(𝑐) : 𝑐 (𝑓𝑖 ) = 𝑡 (𝑓𝑖 ).

Given a test suite𝑇 , we identify all the tests containing a combina-
tion 𝑐 as 𝑇 (𝑐). Formally, 𝑇 (𝑐) = {𝑡 ∈ 𝑇 |𝑐 ⊆ 𝑡}.

Definition 10 (Combination completeness). Given a test suite
𝑇 and a combination 𝑐 , we say that 𝑐 is complete w.r.t. 𝑇 iff 𝑇 (𝑐)
contains all possible tests containing 𝑐 .

Lemma 2.1. If 𝑐 is complete w.r.t. a test suite 𝑇 , then it holds ∀𝑡 ∈
Te \𝑇 (𝑐) : 𝑐 = false.

Definition 11 (Failure-containing combination). A combi-
nation 𝑐 is a failure-containing combination (fcc) if:

(1) 𝑐 is contained in at least a failing test of 𝑇 , i.e.,∃𝑡 ∈ 𝑇 (𝑐) : Γ(𝑡) ≠
oracle(t).

(2) every configuration containing 𝑐 has the same value in the ora-
cle, i.e., (∀𝑡 ∈ 𝑇 (𝑐) : oracle(t) = false)∨(∀𝑡 ∈ 𝑇 (𝑐) : oracle(t) =
true). In the former case, we call 𝑐 an under-constraining fcc;
in the latter case, an over-constraining fcc.

We further classify a conformance fault as under-constraining
fault if it exposed by an under-constraining fcc, or as over-constraining
fault if it is exposed by an over-constraining fcc.
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Table 1: Test suites with faults (in gray)

(a) under-constraining fault

A B C Mf1 oracle
T T F T F
T F F F F

(b) over-constraining fault

A B C Mf2 oracle
F T T T T
F F T T T
F T F F T
F F F F T

Figure 3: Context of the process to repair constraints among
features in variability models

In the following, we only consider complete fccs.

Example 1 (Under-constraining fcc). Let’s assume that the oracle
is the system (C program) of Fig. 1 with features 𝐹 = {𝐴, 𝐵,𝐶} and
that we have generated the test suite shown in Table 1a. Given
a faulty modelMf1, with only one constraint Γ = {𝐴 → 𝐵}, we
observe only one fault which is represented by the fcc 𝑐 = 𝐴 ∧ ¬𝐶 .
Note that c is a complete fcc that identifies an under-constraining
fault, i.e., it proves that the model is under-constrained.

Example 2 (Over-constraining fcc). Consider now a faulty version
Mf2 of the model in Fig. 1, characterized by Γ = {𝐴→ 𝐵,𝐶}. Given
the test suite shown Table 1b, we detect two over-constraining
faults identified by the complete fcc 𝑐 = ¬𝐴.

3 FAULT-DRIVEN REPAIR
We here propose a process to repair the constraints of a variability
model, based on the detection of conformance faults between the
model and the system, represented as failure-containing combina-
tions. Fig. 3 shows the context in which our process is applied. We
assume that a possibly faulty variability model is translated to a set
of boolean formulas representing the constraints. For example, if
the model is a feature model, semantic transformations presented
in [12] can be used. From a sufficiently large test suite, complete
fccs have been identified. To this aim, one can use well-known fault
localization techniques like [8, 20]. Our process takes as input the
fccs and the constraints and repair them. If the user wants to go
back to the initial format of the variability model, (s)he must apply
some reverse engineering (which is out of the scope of this work).

We first describe a naïve implementation of the repair process
in Sect. 3.1, and we then introduce some optimizations in Sect. 3.2.

3.1 Naïve repair approach
In Def. 11, we distinguish between two types of failure-containing
combinations (i.e., under-constraining and over-constraining fcc),
depending on how the model fails with respect to the oracle.

We can devise a naïve repair approach that applies a specific
type of repair on the base of the fault type:

(1) Strengthening repair: in case of under-constraining fcc
𝑐 , ¬𝑐 is added as a new constraint to Γ, i.e., the constraints
set Γ′ of the repaired model becomes Γ′ := Γ ∪ {¬𝑐}.

(2) Weakening repair: in case of over-constraining fcc 𝑐 , 𝑐 is
disjuncted with every constraint in Γ, i.e., the constraints set
Γ′ of the repaired model becomes Γ′ = ∪𝛾𝑖 ∈Γ{𝛾𝑖 ∨ 𝑐}.

Example 3 (Strengthening repair). The under-constraining fault
in Ex. 1 is repaired by adding ¬𝑐 = ¬(𝐴 ∧ ¬𝐶) ≡ 𝐴 → 𝐶 as a
new constraint in Γ. The repaired constraints become Γ′ = {𝐴→
𝐵,𝐴→ 𝐶}.
Example 4 (Weakening repair). The over-constraining fault in Ex. 1
is repaired by adding 𝑐 = ¬𝐴 in disjunction with all the existing
constraints, so that the repaired constraints become Γ′ = {(𝐴 →
𝐵) ∨ ¬𝐴,𝐶 ∨ ¬𝐴}. Note that the first constraint is redundant, as it
is equivalent to the original constraint 𝐴→ 𝐵. The only necessary
application of the repair is the one in the second constraint, as it
correctly allows to have both features 𝐴 and 𝐶 assigned to false (as
in the oracle).

Theorem 1 (Correctness of the naïve approach). If a com-
bination 𝑐 is complete w.r.t. its test suite 𝑇 (𝑐), the repairs applied by
the naïve approach to Γ (obtaining the modified constraints set Γ′)
are correct, i.e., they remove all existing faults in 𝑇 (𝑐) and do not
introduce new ones, i.e.,

(1) ∀𝑡 ∈ 𝑇 (𝑐) : Γ′(𝑡) = oracle(𝑡);
(2) ∀𝑡 ∈ Te \𝑇 (𝑐) : Γ′(𝑡) = Γ(𝑡).

Proof. Let’s consider the two kinds of repairs separately:
• Strengthening repair: the repaired constraints are Γ′ =
{𝛾1, . . . , 𝛾𝑚, 𝛾𝑚+1}, where 𝛾𝑚+1 = ¬𝑐 .
(1) From the definition of under-constraining fcc, we know
that it holds ∀𝑡 ∈ 𝑇 (𝑐) : oracle(t) = false. Furthermore, we
also know that ∀𝑡 ∈ 𝑇 (𝑐) : Γ′(𝑡) = false, because the new
constraint 𝛾𝑚+1 = ¬𝑐 falsifies all the tests containing the
fcc 𝑐 . Therefore, it holds ∀𝑡 ∈ 𝑇 (𝑐) : Γ′(𝑡) = oracle(t).

(2) By Lemma 2.1, we know that ∀𝑡 ∈ Te \𝑇 (𝑐) : 𝑐 = false.
Therefore, the added constraint 𝛾𝑚+1 = ¬𝑐 is always true
in tests Te \ 𝑇 (𝑐). Since 𝛾𝑚+1 has no influence on the
evaluation of these tests, it holds ∀𝑡 ∈ Te \𝑇 (𝑐) : Γ′(𝑡) =
Γ(𝑡).

• Weakening repair: the repaired constraints are Γ′ = {𝛾1 ∨
𝑐, . . . , 𝛾𝑚 ∨ 𝑐}.
(1) From the definition of over-constraining fcc, we know
that it holds ∀𝑡 ∈ 𝑇 (𝑐) : oracle(t) = true. Furthermore, we
also know that ∀𝑡 ∈ 𝑇 (𝑐) : Γ′(𝑡) = true, because all the
constraints 𝛾 ′

𝑖
= 𝛾𝑖 ∨ 𝑐 admit all the tests containing the

fcc 𝑐 . Therefore, ∀𝑡 ∈ 𝑇 (𝑐) : Γ′(𝑡) = oracle(t).
(2) By Lemma 2.1, we know that ∀𝑡 ∈ Te \𝑇 (𝑐) : 𝑐 = false.
Since 𝑐 is added as a disjunction to the existing constraints,
it leaves the constraints equivalent to the original ones,
i.e., ∀𝑡 ∈ Te \𝑇 (𝑐) : Γ′(𝑡) = Γ(𝑡).
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Figure 4: Single iteration of the optimized repair approach

□

3.2 Optimized repair approach
The naïve repair approach described in Sect. 3.1 could generate some
redundancy, as shown in Ex. 4. Therefore, we introduce techniques
for constraint selection and simplification to reduce the potential
redundancy generated by the naïve approach. The goal is to make
fewer edits as possible to the model, since we assume that a model
with fewer edits better preserves domain knowledge.

Fig. 4 shows the optimized repair approach. It consists of three
phases: (1) selection of some constraints to modify, (2)modification
of the selected constraints, and (3) simplification of the modified
constraints. Note that the process can be iterative if we identified
more than one fcc (as in the experiments in Sect. 4). In the following,
we consider one iteration of the process.

3.2.1 Update phase: selection and modification. To preserve the do-
main knowledge embedded in the constraints, we want the process
to make as few changes as possible to them. Namely, we would like
that the constraints Γ are updated with the following qualities:

(1) possibly no more constraints are added;
(2) as many constraints as possible are preserved identical;
(3) some constraints can be removed.

Therefore, the process performs a pre-processing phase, which
selects only the constraints Γ𝑆 ⊆ Γ containing some configurations
in common with the fcc 𝑐 , and then modifies them. This phase is
specific to the type of repair:
Strengthening repair Only the constraints𝛾𝑖 sharing at least one

feature with the fcc 𝑐 , are selected. Formally, Γ𝑆 = {𝛾𝑖 ∈
Γ | (features(𝛾𝑖 ) ∩ features(𝑐)) ≠ ∅}, where features collects
the features contained in a formula. Then, the modification
phase updates only one constraint𝛾𝑠 selected randomly from
Γ𝑆 , by conjuncting ¬𝑐 . The repaired constraints set becomes
Γ′ = (Γ \ {𝛾𝑠 }) ∪ {𝛾𝑠 ∧ ¬𝑐}.

Weakening repair Only the constraints 𝛾𝑖 that exclude at least
one configuration contained in the fcc 𝑐 are selected. For-
mally, Γ𝑆 = {𝛾𝑖 ∈ Γ |isSAT (¬𝛾𝑖 ∧ 𝑐) = true}, where isSAT
tells whether a formula is satisfiable or not. Then, the modifi-
cation phase updates all the constraints in Γ𝑆 by disjuncting
them with 𝑐 . The repaired constraints set becomes Γ′ =

(Γ \ Γ𝑠 ) ∪
⋃
𝛾𝑖 ∈Γ𝑠 {𝛾𝑖 ∨ 𝑐}.

3.2.2 Simplification phase. The constraint simplification proce-
dure aims at reducing redundancy in the repaired model, especially
when failure-containing combinations involve many features. A
straightforward way to simplify a formula (or make it more read-
able) is to find the smallest, but equivalent expression. This problem
is known as the minimum-equivalent-expression problem [14, 21].

We compared the three existing formula minimization tech-
niques, and one minimization method based on mutations we have
implemented (ATGT):

(1) JBool1: a tool that recursively applies logic rules and pre-
processing techniques, preserving equivalence [13]: literal
removal, negation simplification, and/or reduplication and flat-
tening, child expression simplification, and propagation, De
Morgan’s law.

(2) Quine-McCluskey (QM) [27], a generalization of the Kar-
naugh Maps method. It requires the constraints to be in
Disjunctive Normal Form (DNF) and its exponential com-
plexity in the number of features makes it suitable only for
small models (up to 15 features).

(3) Espresso2, a faster version of the QM method that relies on
some heuristics [37].

(4) ATGT3 [15]: a hill-climbing process we implemented that
iteratively mutates a formula randomly and checks it for
equivalence.

We propose different methods, as we have seen that, in prac-
tice, these techniques often produce different outputs and none of
them is guaranteed to generate an output which is always minimal
compared to the others.

3.2.3 Correctness. Does the optimized approach produce correct
repairs? A repair 𝑟 is correct if it is equivalent to the one obtained
by the naïve approach.

Theorem 2 (Correctness of the optimized approach). The
optimized approach is correct.

Proof. The techniques applied in the simplification phase pre-
serve equivalence. Therefore, we only show that the repairs com-
puted in the update phase are equivalent to those computed by the
naïve approach, because the two following properties hold:
1JBool: https://github.com/bpodgursky/jbool_expressions
2Espresso logic minimizer, sources available at https://ptolemy.berkeley.edu/projects/
embedded/pubs/downloads/espresso/index.htm
3ATGT: ASM Test Generation Tool. http://fmse.di.unimi.it/atgtBoolean.html

https://github.com/bpodgursky/jbool_expressions
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
http://fmse.di.unimi.it/atgtBoolean.html
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• The strengthening repair is correct because of distributivity
and commutativity of boolean conjunction: 𝛾1 ∧ . . . ∧ 𝛾𝑠 ∧
. . . ∧ 𝛾𝑚 ∧ ¬𝑐 ≡ 𝛾1 ∧ . . . ∧ (𝛾𝑠 ∧ ¬𝑐) ∧ . . . ∧ 𝛾𝑚 .
• The weakening repair is by definition equivalent to the naïve
approach for all the constraints 𝛾𝑖 that are selected in Γ𝑆 to
be modified in the optimised approach (i.e., it performs the
same operation of the naïve approach). It is correct also for
each non-selected constraints 𝛾 𝑗 , since for these constraints
it holds 𝛾 𝑗 ∨ 𝑐 = 𝛾 𝑗 (as 𝑐 is false in the non-selected con-
straints): thus, 𝛾 𝑗 can be left as it is. In fact, by translating
this expression to a satisfiability problem, we obtain the con-
dition under which the process does not select the constraint:

((𝛾 𝑗 ∨ 𝑐) = 𝛾 𝑗 ) ⇔ ¬isSAT ((𝛾 𝑗 ∨ 𝑐) ≠ 𝛾 𝑗 )
⇔ ¬isSAT ((𝛾 𝑗 ∨ 𝑐) ⊕ 𝛾 𝑗 )
⇔ ¬isSAT ((𝛾 𝑗 ∧ ¬𝛾 𝑗 ) ∨ (𝑐 ∧ ¬𝛾 𝑗 ) ∨ (¬𝛾 𝑗 ∧ ¬𝑐 ∧ 𝛾 𝑗 ))
⇔ ¬isSAT (¬𝛾 𝑗 ∧ 𝑐)

□

4 EVALUATION
In order to apply our process, we need a faulty variability modelM,
a set of failure-containing combinations FCC, and an oracle. For the
sake of experiments, we take as oracle another variability model
M𝑜 , instead of the real oracle; in this way, we can also extract the
set FCC by comparingM andM𝑜 .

4.1 Benchmarks
We have built two sets of benchmarks: BENCHMUT with seeded faults,
and BENCHREAL with versioned models.

BENCHMUT (seeded faults). In order to build this benchmark set,
we first selected some models to be used asM𝑜 , from previous
papers and feature model repositories:
• example, from Example 1.
• register, a VSpec model for a register typically found in
supermarkets, inspired by [38].
• django, an open source web application framework writ-
ten in Python. Each Django project has a configuration file
loaded at launch time. We considered 12 Boolean param-
eters (features), with constraints devised in our previous
work [18].
• tight_vnc from FeatureIDE repository [28].

In order to obtain the initial faulty modelM, we seeded random
faults inM𝑜 using the following mutation operators:
• RC: removal of a constraint. There are studies showing that
this is the most common case in practice [26].
• RL: removal of a literal in a constraint.
• SL: substitution of a literal in a constraint.

We generated 30 faulty versionsM of each modelM𝑜 (10 with
each mutation operator).

BENCHREAL (versioned models). For this benchmark set, we have
considered two versions of variability models of the same system.
We use the second version as oracleM𝑜 , and the first one as the

Table 2: Benchmarks size

Name # features # constraints # literals
avg(min - max)

BE
NC

H M
UT

example 3 1.67 (1-2) 3.0 (2-4)
register 3 1.67 (1-2) 3.87 (2-5)
django 12 4.6 (4-5) 10.87 (9-12)
tight_vnc 24 11.67 (11-12) 53.2 (45-55)

BE
NC

H R
EA
L rhiscom 36 70 140

ERP-SPL 43 75 151
windows 335 943 2031

faulty modelM. We picked three models of industrial applications
from the SPLOT repository4 [29]:
• the process model rhiscom, between versions 2.0 and 3.0;
• an enterprise resource planner (ERP-SPL);
• a windows accessibility module, between versions 7.0 and
8.0.

Table 2 reports the size of all the faulty modelsM to be repaired
in the two benchmarks, in terms of number of features, number of
constraints, and total number of literals in the constraints. For the
constraints and literals of BENCHMUT, it reports the average number
across the 30 mutants and the minimum and maximum number
between parentheses (the number of features is the same across
the mutants).

4.2 Failure-containing combinations
For the sake of experiments, we obtain the set FCC from the faulty
modelM (having constraints Γ) and the model we use as oracle
M𝑜 (having constraints Γ𝑜 ), using the following process:

(1) first, we generate a test showing the difference (i.e., confor-
mance fault) between the two models. The test is built as
𝑡 = getModel(Γ ≠ Γ𝑜 ), where getModel returns a model of
the propositional expression, if it exists, or null (in this case,
the models are equivalent).

(2) then, we start from 𝑐 ← 𝑡 , and,
• if Γ𝑜 (𝑡), for each feature 𝑓 ∈ 𝐹 , if ¬isSAT (¬Γ𝑜 ∧ rem(𝑓 , 𝑐))
holds, then we do 𝑐 ← rem(𝑓 , 𝑐), where rem removes the
assignment of 𝑓 in 𝑐 and returns the modified 𝑐 .
• if ¬Γ𝑜 (𝑡), for each feature 𝑓 ∈ 𝐹 , if ¬isSAT (Γ𝑜 ∧ rem(𝑓 , 𝑐))
holds, then we do 𝑐 ← rem(𝑓 , 𝑐).

This way we can obtain fccs that are as minimal as possible, and
complete (i.e., the oracle is always true in case of over-constraining
fcc, and always false in case of an under-constraining fcc).

4.3 Repair quality metrics
We want to assess the quality of a repair w.r.t. two goals: (i) simpli-
fication of the constraints, and (ii) minimization of the impact of
edits. To this aim, we introduce two quality metrics that are used
to compare Boolean expressions. We apply them to compare the
conjunction of the constraints Γ of the original modelM and the
constraints Γ′ of the repaired modelM ′ obtained as output of the
approach. The metrics are defined as follows:

4http://52.32.1.180:8080/SPLOT/feature_model_repository.html

http://52.32.1.180:8080/SPLOT/feature_model_repository.html
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Table 3: Experimental results (mut.: mutation type; s.: strengthening repairs; w.: weakening repairs; ED: edit distance; CD:
complexity distance; t: time inmilliseconds, T/O: timeout occurred). In gray the best results (CD andEDover all the approaches,
time over the simplification approaches)

fccs and repairs Naïve onlySelection simplification
ATGT Espresso JBool QM

name mut. # (s.+w.) size (s./w.) CD ED t CD ED t CD ED t CD ED t CD ED t CD ED t

BE
NC

H M
UT

example
RC 1.0+0.0 2.0 / – 2.0 5.0 0.1 2.0 5.0 0.4 2.0 5.0 1064 2.0 5.0 53.4 2.0 4.0 5.3 2.0 4.0 24.2
RL 0.3+1.0 2.0 / 1.0 3.8 10.8 0.2 2.2 6.0 0.3 2.2 6.0 1371 2.2 6.0 68.2 1.6 4.2 1.0 1.6 4.2 30.9
SL 0.5+0.3 2.0 / 1.0 1.2 3.2 0.0 1.0 2.6 0.0 1.0 2.6 1060 1.0 3.0 52.4 1.0 2.6 1.1 1.0 2.6 23.3

register
RC 1.0+0.0 2.6 / – 2.3 5.6 0.0 2.3 5.6 0.3 2.3 5.6 1065 2.3 5.6 52.4 2.3 4.9 1.0 2.3 4.9 24.0
RL 0.2+1.1 2.6 / 1.3 5.5 14.6 0.0 2.9 7.7 0.3 2.5 6.9 1388 2.9 8.5 68.1 2.2 6.6 0.6 2.2 6.6 30.8
SL 0.9+0.3 2.1 / 1.4 2.9 7.4 0.2 2.1 5.2 0.2 2.1 5.2 1433 2.1 6.0 69.2 2.1 5.7 1.2 2.1 5.7 32.9

django
RC 0.5+0.0 1.7 / – 0.8 2.2 0.0 0.8 2.2 0.0 0.8 2.2 1062 0.8 2.2 52.2 0.8 1.3 1.0 0.8 1.3 24.2
RL 0.4+1.4 2.0 / 4.0 8.0 22.8 0.0 1.6 4.4 0.6 1.2 3.2 2424 1.6 4.4 119.9 1.2 3.0 2.5 1.2 3.2 58.1
SL 0.8+2.3 1.0 / 4.0 33.3 94.4 0.0 6.5 18.3 2.1 5.8 16.6 3720 6.5 19.2 180.3 7.4 21.7 4.2 5.8 18.4 116.0

tight_vnc
RC 4.7+0.0 2.7 / – 14.0 39.1 0.1 14.0 39.1 11.0 14.0 39.1 8252 14.0 39.1 267 14.0 27.1 23.5 14.0 39.6 11199
RL 0.7+31.8 1.9 / 14.2 2422 6000 1.2 202.2 499.5 402 – – T/O 202.2 499.5 2275 – – T/O – – T/O
SL 1.5+18.5 4.1 / 11.2 3734 8860 0.7 244.0 585.8 165 – – T/O 244.0 585.8 1369 – – T/O – – T/O

BE
NC

H R
EA
L rhiscom – 9+6 1.2 / 35.3 13977 30634 2 197 504 128 – – T/O 197 511 2717 – – T/O – – T/O

ERP-SPL – 9+232 2.0 / 37.1 723426 1604116 15 16562 37273 8555 – – T/O 16562 37273 16562 – – T/O – – T/O
windows – 989+55 2.3 / 453.8 8537492 17028426 87 175380 1918927 114028 – – T/O 174200 1917875 245532 – – T/O – – T/O

• Complexity Distance (CD) as difference of formula sizes
CD(Γ, Γ′) = literals(Γ) − literals(Γ′), where literals returns
the number of literals in a formula. As in [43], we also con-
sidered other measures (number of operators and node count
in the parsed tree representation), but they do not change
the overall results, therefore we do not report them here.
• Edit Distance (ED) computed between the syntactic trees
of the two formulas Γ and Γ′. ED(Γ, Γ′) is defined as the
number of edits (addition, substitution, or elimination) that
we have to apply to Γ in order to obtain Γ′. A node of the
tree can either be a literal or an operator. We use APTED as
a tool to efficiently compute tree edit distances [32].

4.4 Experiments
We run experiments on the two benchmark sets BENCHMUT and
BENCHREAL: namely, we applied the naïve approach (see Sect. 3.1),
the optimized approach (see Sect. 3.2) without the simplification
phase (onlySelection), and with the simplification phase (employing
the ATGT, Espresso, JBool and QM methods). Experiment code
was written in Java and experiments were executed on a Linux
PC with Intel(R) i7-3770 CPU (3.4 GHz) and 16 GB of RAM. All
reported results are the average of 10 runs with a timeout for a
single repair of 1 hour. The code and the benchmarks are available
at https://github.com/fmselab/VMConstraintsRepair.

Results of the experiments are reported in Table 3. For bench-
marks BENCHMUT, results are categorized by the type of mutation.
For each benchmark model, the table reports the number and size
of strengthening and weakening repairs (note that each repair cor-
responds to one fcc); moreover, for each process setting, it reports
the execution time, and the quality of the final modelM ′ in terms
of CD and ED distances. Values of the strategies ATGT, JBool and
QM for repairing RL and SL mutations of tight_vnc and for all the

benchmarks of BENCHREAL are not reported, because the experiment
exceeded the timeout (T/O) of 1 hour.

We evaluate the process using three research questions.

RQ1: Which quality do the constraints repaired by the process have?
The main goal of this repair process is to not destroy domain

knowledge. We consider the quality measures ED and CD to be
proxies for domain knowledge preservation, under the assumption
that having fewer edits means more preservation of the domain
knowledge contained in the constraints. We therefore consider an
approach better than another approach if it has smaller values of
the quality measures.

The process (in all its versions) completely repairs all the bench-
marks models, as the fccs in FCC are complete (see Thms. 1 and
2). However, the quality of the repaired models depends on the
adopted repair approach. The optimized approach only using selec-
tion (onlySelection) always outperforms the naïve process in terms
of quality of the repairs, as it modifies a subset of the constraints,
and so the two measures CD and ED for it are always lower. The
simplification approaches sometimes allow to obtain better repairs
than onlySelection, meaning that they remove some redundancy
introduced by the repair; however, there is no simplification method
that is always better than the others on all the benchmarks for both
measures (except for ATGT that is never worse than Espresso). We
observe that, in a few cases, CD and ED are higher for a simplifica-
tion method w.r.t. onlySelection (e.g., ED of Espresso for register
RL): we have checked the example and we found that the simpli-
fication has removed some redundancy that was already present
in the original modelM so modifying the model more than what
done by onlySelection.

RQ2: How efficient is the repair approach?
Computational time varies significantly for the different ap-

proaches and models: from 0-0.1ms of the smallest models, up to

https://github.com/fmselab/VMConstraintsRepair
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Table 4: Detailed results of the execution time for BENCHREAL

avg. repair time per single repair (ms)
selection simplification

name str. wea. avg. str. wea. avg.

rhiscom 2.6 4.7 3.4 57 54.3 55.9
ERP-SPL 4.3 17.7 17.2 119.8 123.3 123.2
windows 49.5 697.2 83.6 106.9 104.6 106.8

245 seconds for the windows model (the biggest model having 335
features and 943 constraints) repaired with the Espresso simplifier.

The naïve approach, and the optimized approach without simpli-
fication (onlySelection), have been the fastest approaches; execution
times of onlySelection are higher than the naïve approach for big
models, as it uses a SAT solver for identifying the constraints that
must be repaired (see Sect. 3.2.1). Simplification algorithms are the
main responsible for slow performance in terms of computation
time. ATGT is the slowest one, as it internally calls a SAT solver
several times, and the algorithm is yet in a prototypical stage. The
second slowest simplification method is Espresso, but we noticed
that it is relatively faster than other methods for large models; in-
deed, it is the only approach able to simplify all the benchmark
models, while the others cannot simplify the biggest mutations
obtained for tight_vnc and all the models in BENCHREAL in the given
timeout. For small models, JBool is the fastest simplificationmethod,
followed by QM; however, they both timeout for large models.

RQ3: Is there a repair type that our process handles more efficiently?
We are here interested in investigating whether there is an effect
of the type of repair on the performances of the process. In or-
der to better understand the computational cost of the type of
repairs, Table 4 reports, for BENCHREAL, the average execution times
of strengthening and weakening repairs in the selection and simpli-
fication phases, and also the average time of any repair (regardless
of the type). We only report the results of Espresso, as it is the only
tool that completes before the timeout of 1 hour.

We observe that, in the selection phase, strengthening repairs
are faster than weakening repairs: indeed, the former ones only do
a syntactical analysis of the constraint, while the latter ones need
to call a SAT solver (see Sect. 3.2.1). The average repair time in the
selection phase is then influenced by the number of repairs of the
two types: in ERP-SPL, since almost all the repairs are weakening
(see Table 3), the average time is mostly influenced by them; in
windows, instead, most of the repairs are strengthening (see Table 3)
and so the average repair time is influenced by them.

Regarding the simplification phase, there is no significant differ-
ence between the two types of repairs.

5 THREATS TO VALIDITY
We discuss the threats to the validity of our results along two
dimensions.

External Validity. Regarding external validity, a first threat comes
from the choice of the variability models on which we performed
the experiments. In the benchmarks, we totally selected models of
seven applications of different sizes, among them two industrial

applications from the SPLOT public repository. Although we have
not tested our process on bigger feature models, we believe that the
number and variety of input data make the results of our evaluation
generalizable to other models of similar size.

In BENCHREAL, we simulated real faults in constraints by enu-
merating the failure-containing combinations (and thus the single
repairs) between two versions of constraints. Such simulated faults
may not be accurate with respect to real usages in some scenarios.
However, we believe that such results may be generalizable in cases
when the faults are automatically detected by testing the updated
system implementation, with respect to an outdated model, as we
believe that the second version of the model accurately reflects the
underlying system implementation.

Internal Validity. Regarding internal validity, a first threat in-
volves the number of experiments and the accuracy of results. To
this aim, we executed the experiments 10 times.

Another threat comes from the metrics used to assess the effec-
tiveness and efficiency of our approach, not being a good proxy
for domain knowledge preservation. We believe, however, that the
chosen metrics well represent the concepts of formula readability
and impact of the changes (ED), that may be useful for successive
reasoning, for a reverse engineering process from propositional
formula to feature model, and for comprehension by the user.

Regarding our approach in general, we have identified the follow-
ing two threats to validity. The first one regards the applicability of
our repair technique. We assume that the variability model is given
as a set of constraints, while in general other formats (like feature
models) are widely used. However, it is almost always possible to
extract the set of features and the constraints among them, so our
approach is generally applicable. It is true that it may be not easy to
go back from the repaired model to the original format (see Fig. 3),
but we try to change the model as little as possible. This should ease
the identification of the applied repairs and facilitate the reverse
process to extract the final variability model in another format.

The second threat regards the assumption of the fccs complete-
ness. In general, we may find some conformance faults, but it may
be not enough, since our process assumes that the fccs are complete.
However, we can notice that every failing test is a complete fcc
regardless of the test suite. Trying to extract a smaller failing com-
bination from a failing test possibly requires new tests, but there
already exist several techniques for fault localization that efficiently
can do that [20].

6 RELATEDWORK
There exist methods to statistically infer constraints from sampled
configurations [1, 3, 16, 39–41]: they use a classifier to infer the
conditions among parameter values, that determine a particular
property, either a parameter above/below a certain threshold (like
in [40]), or directly the configuration being accepted or rejected
by the system (as in [41]). These machine-learning based meth-
ods are well-documented and supported by application studies to
real scenarios, such as learning constraints among parameters in
SCAD programs that may cause defects of configurable objects to
3D print [3]; and, in the case of LATEX, showing that it is possible
to obtain constraints among Boolean or numerical values, to for-
mat the paper to meet desired properties, such as a defined page
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limit [2]. Another interesting application of inferring constraints
using machine learning is the case of mining temporal and value
constraints from rich logs, for event-based monitoring in industrial
SoS (Systems of Systems) [24]. The approach, integrated also with
techniques from process mining and specification mining, was ap-
plied to the automation system of a metallurgical company, and it
consists of a ranking phase, based on some validity ratio metrics on
the classification tree outcome, in which constraints that are more
likely to be accepted by the users appear first.

The constraints learned (or mined) with such machine learning
methods achieve a good accuracy (greater than 80% on average [40]),
and they are able to completely infer constraints from scratch, or to
specialize the model by adding the new inferred constraints to the
existing ones. Our approach, however, is focused on performing
any kind of repair to an existing set of constraints, and is also able
to generalize the model, or apply arbitrary edits (as described in
the classification in [42]). Moreover, our proposed method focuses
only on the manipulation of existing constraints, and not on the
actual detection of the failure-containing combinations, that we
assume as input of our process. Unlike our approach, that takes the
failure-containing combinations as input, those ML processes also
include automatic detection of such fccs (in the form of constraints),
given a sample of configurations classified as valid or non-valid [40].
For these reasons, the approaches are not alternative but comple-
mentary, as our approach is not comparable to those ML methods;
however, as future work, we believe that it could be interesting to
combine our process with those machine learning approaches, to
have a more complete process for real case scenarios.

A quality-based model refactoring framework assessing the
quality of merging operations among SPL models, expressed in
UML [36], supports maintainability of models describing relations
among features. It represents another approach to model repair,
although it is not focused on repairing constraints in propositional
logic. There is a comprehensive general work on repair of mod-
els by Reder et al. [35], with a method to detect inconsistencies
using a validator, and to generate a repair tree representing in a
compact way all the different viable actions to repair the model.
This approach has been evaluated on UML models and OCL design
rules, and is currently integrated in the Model/Analyzer plug-in
for the IBM Rational Software Architect (RSA). We believe that our
approach, instead, is a particular case of such repair framework in
which the repair actions are fixed and determined by the selection
and simplification algorithms (i.e., Espresso, QM, etc.), whereas the
inconsistency detection is left to the engineer, who has to provide
a set of failure-containing combinations in input to our process.
However, despite our process has a fixed repair type and in this
paper we evaluated its application, it may be possible to integrate
the idea of [35] and build a sort of repair-action tree in which the
fccs are applied in different order, for example, or with a different
simplification method for each fcc, and we believe that the result of
following another path in that repair-action tree could give slightly
different results (that could be better or could also be worse).

Program repair techniques, such as SemFix [31], GenProg [25],
and Par [23] already apply successive patch transformations, but
to repair single faults in the code directly.

A process to detect and repair feature models from conformance
faultswith respect to another model has been presented in [11]. Our

work, however, is able to handle arbitrary constraints of a variability
model, and adds also the simplification of such modified constraints.
The need for a fault-driven constraint repair process was already
envisioned in [22], but no experiments were yet performed.

In the classification of edits to variability models presented
in [26], our process fits the categories build fix and adherence to
changes in code; in the classification of edits to variability models
presented in [42], our process is able to address all kind of edits: in
the case of arbitrary edits, it achieves them by applying specializa-
tion (what we call strengthening repair) and generalization (what
we call weakening repair) sequentially.

A different technique for feature model repair in the context of
system evolution, with different versions of systems, used mutation
operators to make the model meet a specific update request [6, 7];
however, that approach does not handle arbitrary constraints, and
does not guarantee to completely fulfil the update request, and
thus to repair the model. We believe that that approach could be
extended with our process, to be able to repair not only the feature
tree, but the constraints as well.

Repair of constraints has usage also in other contexts, such as
the repair of parameter values of timed automata clock guards,
by applying tests and specializing the constraints [5]; and in the
detection of constraints among parameters that let the built attack
string trigger an XSS vulnerability in the system [19].

7 CONCLUSION
We proposed a process that, given a (faulty or outdated) variability
model, and the faults in terms of failure-containing combinations,
identifies the constraints involved in the fault, repairs them ac-
cording to the oracle value, and simplifies them to make the edit
minimal. We conducted an empirical evaluation on 7 models of
different sizes, and found that the process of selecting only some
constraints is indeed more effective than the naïve approach that
modifies all of them. Moreover, we observed that simplification
approaches can further improve the quality of the repair. However,
their applicability is limited by the model size, as most of them do
not scale on big models.

As future work, we plan to adapt our approach to larger mod-
els and to include in the evaluation the performances of reverse
engineering the final constraints into a variability model (in case
the repairs affected the structure of the initial variability model).
As future work, we also want to address the current limitations;
for example, by designing better selection and simplification strate-
gies, by extending the method to non-boolean variables, and by
including new simplification techniques. Furthermore, in order to
better preserve domain knowledge, we plan to design an approach
that interacts with domain engineers, for instance by highlighting
implicit constraints as in [4].
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