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Abstract

Feature models are a widely used modeling notation for variability and commonality management in software product line (SPL)
engineering. In order to keep an SPL and its feature model aligned, feature models must be changed by including/excluding new
features and products, either because faults in the model are found or to reflect the normal evolution of the SPL. The modification
of the feature model to be made to satisfy these change requirements can be complex and error-prone. In this paper, we present a
method that is able to automatically update a feature model in order to satisfy a given update request. The method is based on an
evolutionary algorithm that iteratively applies structure-preserving mutations to the original model, until the model is completely
updated or some other termination condition occurs. Among all the possible models achieving the update request, the method
privileges those structurally simpler. We evaluate the approach on real-world feature models; although it does not guarantee to
completely update all the possible feature models, empirical analysis shows that, on average, around 89% of requested changes are
applied.
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1. Introduction

Software Product Lines (SPLs) are families of products that
share some common characteristics, and differ on some oth-
ers [1, 2]. Software product line engineering consists in the
development and maintenance of SPLs by taking into account
their commonalities and differences. The variability of SPLs
is usually already described at design time by using variability
models [3]; one of the main used variability models are fea-
ture models (FMs). A feature model lists the features in an
SPL together with their possible constraints. In this way, it can
represent, in a compact and easily manageable way, millions
of variants, each describing a possible product. The availabil-
ity of a feature model enables several analysis activities on the
SPL, like verification of consistency, automatic product config-
uration, interaction testing among features on the products, and
similar actions [4].

Overtime, feature models need to be updated in order to
avoid the risk of having a model with wrong features and/or
wrong constraints. Two main causes for change requirements
can be identified: either the model is incorrect (it excludes/in-
cludes some products that should be included/excluded), or the

1P. Arcaini is supported by ERATO HASUO Metamathematics for Sys-
tems Design Project (No. JPMJER1603), JST. Funding Reference number:
10.13039/501100009024 ERATO.

SPL has changed. The change requirements can come from
different sources: failing tests identifying configurations eval-
uated not correctly, or business requirements to add new prod-
ucts, to allow new features, to not support some products any
longer, and so on. All these change requirements identify con-
figurations/features to add or remove, but do not identify a way
to modify the feature model to achieve them (differently from
other approaches [5]). Manually updating a feature model to
achieve all the change requirements can be particularly difficult
and, in any case, error-prone and time consuming; moreover,
also an analytical approach to apply the required changes is dif-
ficult to devise.

For these reasons, in this paper we investigate an approach
to automatically update a feature model upon change require-
ments. The user must only specify an update request, based on
the change requirements coming from testing or from business
requirements. The update request is composed of three kinds of
feature-based change requirements and two kinds of product-
based ones; the feature-based ones consist in features that must
be renamed, and features that must be added to and removed
from the products of the original feature model; the product-
based ones, instead, consist in configurations that should be no
more accepted as products by the final model, and configura-
tions that should instead be accepted as new products (both re-
moved and added configurations can be defined in a symbolic
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way). Starting from the update request, the approach tries to ap-
ply the feature-based change requirements directly on the start-
ing model; however, some of these requirements could be not
completely fulfilled. Then, by means of an evolutionary algo-
rithm, the approach tries to obtain a feature model that captures
all the change requirements: the feature-based ones not fulfilled
in the previous phase, and the product-based ones. The pro-
cess iteratively generates, from the current population of candi-
date solutions, a new population of feature models by mutation.
All the members of a population are evaluated considering pri-
marily the percentage of correctly evaluated configurations, and
secondly a measure of the structural complexity of the model,
defined in terms of number of cross-tree constraints. When
a correct model is found or some other termination condition
holds, the process terminates returning as final model the one
having the highest fitness value.

We originally proposed the approach and did some prelim-
inary experiments in [6]. This paper extends the work in [6]
by (a) defining a more expressive way to specify the update re-
quest (allowing feature renaming and the specification of sets
of products to be added/removed in a symbolic way), (b) intro-
ducing a new version of the fitness function that also considers
the structural complexity of the model, (c) introducing new mu-
tation operators, (d) checking, during the evolutionary process,
that a mutant does not contain any anomaly, and (e) perform-
ing a more extensive evaluation using real evolutions of feature
models.

The paper is structured as follows. Sect. 2 provides some
basic definitions on feature modeling. Sect. 3 introduces the
definitions of update request and target, and Sect. 4 describes
the process we propose to modify the starting feature model
in order to achieve the specified update request. Then, Sect. 5
presents the experiments we performed to evaluate the approach,
and Sect. 6 discusses possible threats to its validity. Finally,
Sect. 7 reviews some related work, and Sect. 8 concludes the
paper.

2. Basic definitions

In software product line engineering, feature models are
a special type of information model representing all possible
products of an SPL in terms of features and relations among
them. Specifically, a feature model fm is a hierarchically ar-
ranged set of features F, where each parent-child relation be-
tween them is a constraint of one of the following types2:
• Or: at least one of the sub-features must be selected if the

parent is selected.
• Alternative (xor): exactly one of the children must be se-

lected whenever the parent feature is selected.
• And: if the relation between a feature and its children is

neither an Or nor an Alternative, it is called and. Each
child of an and must be either:

2As done by FeatureIDE [7], we assume that each feature can be the father
of only one group (either Or, Alternative, or And). This is not a limitation,
as having different groups as children can be obtained by using abstract fea-
tures [8].

– Mandatory: the child feature is selected whenever
its respective parent feature is selected.

– Optional: the child feature may or may not be se-
lected if its parent feature is selected.

Only one feature in F has no parent and it is the root of fm.
In addition to the parental relations, it is possible to add

cross-tree constraints, i.e., relations that cross-cut hierarchy de-
pendencies. Simple cross-tree constraints are:
• A requires B: the selection of feature A in a product im-

plies the selection of feature B. We also indicate it as
A→ B.

• A excludes B: A and B cannot be part of the same prod-
uct. We also indicate it as A→ ¬B.

Some frameworks for feature models also support complex
cross-tree constraints [9] through general propositional formu-
las. In our approach, we allow feature models to contain com-
plex cross-tree constraints.

Feature models can be visually represented by means of fea-
ture diagrams, and their semantics can be expressed by using
propositional logic [2, 4]: features are represented by proposi-
tional variables, and relations among features by propositional
formulae. We identify with bof(fm) the BOolean Formula rep-
resenting a feature model fm.

Definition 1 (Configuration). A configuration c of a feature
model fm is a subset of the features F of fm (i.e., c ⊆ F).

If fm has n features, there are 2n possible configurations.

Definition 2 (Validity). Given a feature model fm, a configura-
tion c is valid if it contains the root and respects the constraints
of fm. A valid configuration is called product.

For our purposes, we exploit the propositional representa-
tion of feature models for giving an alternative definition of
configuration as a set of n literals c = {l1, . . . , ln} (with n = |F|),
where a positive literal li = fi means that feature fi belongs to
the configuration, while a negative literal li = ¬ fi means that
fi does not belong to the configuration. We will also repre-
sent a configuration as a BOolean Formula as follows: bof(c) =∧n

i=1 li.
Furthermore, since in the proposed approach we need to

evaluate a feature model over a possibly wider set of features
U, we introduce bof(fm,U) = bof(fm) ∧

∧
f∈U\F ¬ f , where fm

explicitly refuses all the configurations containing a feature not
belonging to its set of features F; such technique has been al-
ready employed by different approaches that need to compare
feature models defined over different sets of features [10, 11].

Example 1. Let’s consider the feature model shown in Fig. 1. It
is the third version of the CAR SPL described in [5]. It is com-
posed of eight features F = {CarBody, MultimediaDevices,
OtherFeatures, Radio, Navigation, MonochromeRadio-
Display, MonochromeNavigationDisplay, ColorNavigation-
Display}. CarBody is the root feature; its children Multi-
mediaDevices and OtherFeatures are respectively optional
and mandatory. MultimediaDevices has two optional chil-
dren: Radio that is the father of the mandatory feature Mono-
chromeRadioDisplay, and Navigation that is the father of
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Figure 1: Example of feature model (taken from [5])

the alternative group between MonochromeNavigationDisplay
and ColorNavigationDisplay.

3. Specifying an update request

We suppose that the product line engineer wants to update
an existing feature model fmi (initial feature model); although
(s)he knows which are the desired updates in terms of products
and features to add or remove, (s)he does not know how to write
a feature model fm′ that satisfies all these updates.

In this section, we describe how the user can specify her/his
change requirements. By analysing existing evolutions of fea-
ture models described in literature [5, 12, 13, 14, 15], we iden-
tified the following five types of change requirements:
• a feature must be identified with a new name. Although

this change requirement is straightforward to achieve, it
is widely used (e.g., for the SmartHome SPL [13] consid-
ered in the Ample Project, we have observed 12 feature
renames) and it is important to keep track of it, otherwise
someone reading the updated feature model may have
the impression that one feature has been added and one
removed (in particular, if also other changes have been
done on the feature model and, therefore, spotting the re-
named feature is not easy).

• a feature must be added to the feature model. This change
requirement occurs when a new feature must now be sup-
ported by the SPL. For example, in the CAR SPL [5], the
support for DVD entertainment has been introduced in
2012 (documented in the fourth version of the SPL fea-
ture model).

• a feature must be removed from the feature model. This
change requirement occurs when a feature is no more
supported by the SPL.3 For example, in the CAR SPL [5],
feature Color Radio Display has been removed in 2011
(third version of the SPL feature model).

• some products must now be accepted by the SPL. This
change requirement occurs when some constraints exist-
ing on the SPL (due to technical reasons or regulations)
do not hold anymore and so some configurations that

3Note that this change requirement could be achieved by removing all the
products containing the feature (see last change requirement), but not removing
the feature from the feature model. However, in this way, the feature would
become dead [4], making the feature model less readable.

were forbidden in the past can now be accepted. For ex-
ample, in the second version of the Pick-&-Place (PPU)
Unit SPL [12], the system is able to process either plas-
tic or metal workpieces; in the third version of the SPL,
instead, a technical improvement has allowed to handle
plastic and metal workpieces in combination.

• some products cannot be accepted anymore by the SPL.
This change requirement happens when some constraints
over the SPL emerge (e.g., due to new regulations). For
example, in the HelpSystem SPL [14], the second version
of the SPL does not allow anymore that the sensor only
detects either pressure or not pressure, i.e., the products
with only pressure or not pressure are not allowed and
have been removed.

In the following, we provide the formal definition of update
request. We assume that the initial feature model does not con-
tain any dead feature or redundant constraint [4, 16]; in case it
has any, we can remove them using standard techniques, as, for
example, that provided by FeatureIDE [7].

Definition 3 (Update request). Given an initial feature model
fmi defined over a set of features F, we call update request UR
the modifications a user wants to apply to fmi in order to obtain
the desired updated model fm′. An update request is composed
of five change requirements, three regarding the features of the
feature model, and two the configurations/products. The first
feature-based change requirement regards the features names:
• Rename features: FTBR = { f1, . . . , fm} is a subset of fea-

tures of F that must be renamed and ren a renaming func-
tion; FR is the set obtained by replacing every feature fi ∈
FTBR with ren( fi), i.e., FR = (F \FTBR)∪

⋃
fi∈FTBR

{ren( fi)}.
We identify with fmren the feature model obtained by re-
naming the features according to FTBR and ren.4

The other two feature-based change requirements over the fea-
tures of fmren are:
• Add features: Fadd is a set of features the user wants to

add to fmren. For each e in Fadd, the user has to define in
FR∪Fadd the parent of e, denoted by parent(e). By adding
a feature e with parent p, we assume that the user wants
to duplicate all the products that contain p by adding also
e.5

• Remove features: Frem is a subset of the features of FR

to remove; by removing a feature f , we assume that the
user wants to remove f from all the existing products and
prohibit its selection in new products.

We identify with F′ the new set of features that must be used in
the updated feature model fm′, namely (FR ∪ Fadd) \ Frem.

Two product-based change requirements, instead, are re-
lated to the products/configurations of the feature model (over
the new set of features F′):

4Note that feature renaming is already supported by feature model editors,
such as FeatureIDE. We keep it among our change requirements for complete-
ness with respect to the feature model evolutions observed in literature.

5Note that this corresponds to have e as optional feature of p. However,
this could not be always achievable, as explained in Sect. 4.2.1 (unless abstract
features [8] are used); therefore, we define the change requirement in this more
general form, in order to keep the semantics of change requirement and the way
to achieve it clearly distinguished.
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Figure 2: Added and removed products

• Add products: Crelax is a set of predicates {ρ1, . . . , ρn}

over F′ that denote conditions that must be allowed in
fm′. The logical models satisfying ρi are products that
must be added to the feature model, provided that they
do not violate feature model constraints defined over fea-
tures not included in ρi.

• Remove products: Crem is a set of predicates {γ1 . . . , γm}

over F′ that denote a set of products to be removed. Each
product (i.e., logical model) satisfying a γi must be re-
moved from the valid product set.

The meaning of Crelax and Crem is to modify the set of valid
products, as depicted in Fig. 2. The new product set (in dotted
line) is enriched by configurations identified by Crelax but de-
prived of the products identified by Crem; note that Crem could
also remove some products added by Crelax.

If the user wants to include/exclude a specific configuration
c, then (s)he simply adds bof(c) to Crelax/Crem.6

3.1. Well-formedness of an update request
We impose some constraints on the update request to be

sure that the different change requirements are not contradictory
and useful (i.e., they actually affect the product set):

1. Each added feature in Fadd must have an ancestor in FR \

Frem. This implies that it is not possible to remove by
Frem the parents p of features added in Fadd, i.e., Frem ∩

(
⋃

f∈Fadd
{parent(f )}) = ∅.

2. It is not possible to remove features that have been re-
named, i.e., Frem ∩ (

⋃
fi∈FTBR

{ren( fi)}) = ∅.
3. Predicates in Crelax cannot predicate over features that

have been removed in Frem.
4. Crelax actually increases the set of products: for each ρi

in Crelax, there exists at least one non-valid configuration
that satisfies ρi.

5. Crem actually deletes some products: for each γi in Crem,
there exists at least one product that satisfies γi.

6. Crem does not remove all the configurations that must be
added by Crelax, i.e., for each ρi and γ j there exists a con-
figuration that satisfies ρi (it must be added) and it does
not satisfy γ j.

6This is what we actually do in the experiments in Sect. 5 where update re-
quests are computed as differences between different versions of feature mod-
els, and Crelax and Crem can only be identified in terms of sets of configurations.

7. The update request should be achievable by a consistent
feature model (i.e., accepting at least one product) with-
out dead features (i.e., each feature is selected in at least
one model).

Constraints 1, 2, and 3 can be easily checked directly at
the syntactical level on the update request. If one of these con-
straints is not satisfied, the update request cannot be applied and
we ask the user to fix it.

Checking constraints 4, 5, and 6, instead, requires to reason
over the propositional representation of fmren (i.e., bof(fmren))
and the predicates in Crelax and Crem; for example, checking
constraint 4 consists in verifying that, for each ρi ∈ Crelax,
¬bof(fmren) ∧ ρi is satisfiable. If one of these constraints is not
satisfied, the update request is still consistent, although the cor-
responding change requirement is useless; in case of constraint
violation, we warn the user about the useless change require-
ment and, if (s)he confirms that the change requirement is in-
deed not necessary, we continue the updating process without
that requirement.

Checking constraint 7, instead, requires to reason about the
interaction of the different change requirements and can only be
done after we define the target, as explained in the next section.

Example 2. Given the CAR SPL model shown in Fig. 1 and
described in Ex. 1, an update request could be the following7:
• Rename features FTBR = {MonochromeRadioDisplay}

and ren (MonochromeRadioDisplay) = RadioDisplay.
• Add features Fadd = {DVDEntertainment}

and parent(DVDEntertainment) = MultimediaDevices.
• Remove features Frem = {OtherFeatures}.
• Add products Crelax = {MultimediaDevices ∧ Navi-
gation∧ (MonochromeNavigationDisplay↔ Color-
NavigationDisplay)}. We also want to allow products
with support for navigation, and having both displays or
having no display at all.

• Remove products Crem = {Navigation∧¬Radio}. We
want to exclude that navigation is present when the radio
is not.

3.2. Update request semantics

We here precisely define the semantics of an update request
UR. In order to do this, we define a formula that accepts and
rejects configurations as the updated feature model should do.

In order to define the semantics of Frem and Crelax, we need
to be able to represent the feature model without some features.
We exploit the approach used in [8] to remove features from
feature models. To eliminate a feature f from a propositional
formula, we substitute f by its possible values (true or false).

7Note that the change requirement Fadd is the same reported in [5] for the
evolution from the third version (shown in Fig. 1) to the fourth version of the
CAR SPL; Crem, instead, is taken from the evolution from the first to the second
version of the same SPL. In order to have a complete example, the other three
change requirements have been identified by us; FTBR and Frem resemble simi-
lar change requirements observed in literature, respectively in the SmartHome
SPL [13] and in the CAR SPL [5].
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Definition 4 (Features removal). Given a feature model fm and
a set of features K = { f1, . . . , fk} to remove, we recursively
define filter(fm,K) as follows:

filter(fm,K) =


bof(fm) if K = ∅

filter(fm,K′)[ f ← >]∨
filter(fm,K′)[ f ← ⊥]

if K = K′ ∪ { f }

The formula filter(fm,K) has as logical models the same
models as bof(fm) except that all the features in K have been
removed.

Exploiting Def. 4, the semantics of Frem is captured by the
formula

φrem = filter(fmren,Frem)

whose logical models (i.e., products) are those of fmren without
the removed features.

In order to capture the semantics of a ρi ∈ Crelax, we need
to characterize the set of configurations to add. These are those
that satisfy ρi but still respect the constraints of φrem, except for
those involving the features of ρi. This is captured by

φi
relax = filter(φrem, features(ρi)) ∧ ρi

being features a function returning the features (i.e., proposi-
tional variables) contained in a formula. The filter on φrem has
the effect of making the features in ρi unconstrained, i.e., it
keeps only the constraints of φrem that do not interfere with ρi.

We can now build the formula that defines the semantics of
the whole update request. We name the formula as target as it
will be used as oracle to guide the proposed updating process
(see Sect. 4).

Definition 5 (Target). The target t is a propositional formula
whose models exactly correspond to the products of the de-
sired updated feature model. Assume an update request UR =

{ren, parent,Frem,Crelax,Crem} defined over a feature model fm,
with the functions ren defined over FTBR and parent defined over
Fadd. Let fmren be the feature model renamed according to ren;
the target is defined as:

t =(

remove Frem
from products︷︸︸︷

φrem ∨

add products︷        ︸︸        ︷∨
ρi∈Crelax

φi
relax ) ∧

add Fadd features
only when possible︷                   ︸︸                   ︷∧

f∈Fadd

f → parent(f )∧

disable Frem
features︷   ︸︸   ︷∧

f∈Frem

¬ f ∧

remove
products︷   ︸︸   ︷∧
γ∈Crem

¬γ

The target correctly rejects all the configurations of Crem

and those containing a removed feature in Frem; the accepted
configurations are those in Crelax, plus those of φrem (i.e., the
original feature model without the removed features) possibly
extended with each added feature f of Fadd only when parent(f )
is present.

Note that the target correctly predicates over all the features
FU = F′ ∪ Frem: those of the original feature model (after re-
naming), those added, and those removed.

Checking the target. On the target, we can finally check con-
straint 7 described in Sect. 3.1, requiring that the update request
does not produce anomalies.

First of all, we check that the target accepts at least one
product (i.e., it is satisfiable); if not, we warn the user that the
update request cannot be applied.

Moreover, we also check that each feature f ∈ F′ can be
actually selected in at least one product; it this is not possible,
it means that f is required to be dead in the final model. If
this is the case, we warn the user about this and, if this is the
intended behavior, we move f in Frem, so that we can directly
try to remove it during the repairing process.

4. Evolutionary updating process

Modifying the initial feature model fmi such that it satis-
fies the update request as specified by the target is a challeng-
ing task. Note that, in general, there could be no fm′ that ex-
actly adds and removes the specified configurations and fea-
tures, unless complex cross-tree constraints are used. However,
we claim that the usage of these constraints should be discour-
aged. Urli et al. [17] observe that “they make FMs complex
to understand and maintain”, Reinhartz-Berger et al. [18] ex-
perimentally assessed that they are more difficult to understand
than parent-child relationships (at least, by modelers who are
unfamiliar with feature modeling), and Berger et al. [19] report
that “they are known to critically influence reasoners”. Also
the authors of FeatureIDE noted that cross-tree constraints “are
harder to comprehend than simple tree constraints" and that “re-
lations among features should be rather expressed using the tree
structure if possible” [7]. In this paper, we therefore avoid the
addition of complex cross-tree constraints, as we not only aim
at correctness (i.e., full achievement of the update request), but
also at readability of the final model. Some approaches that aim
at simplifying complex constraints exist [9, 20], but they may
diminish readability and other qualities, such as compactness,
traceability, and maintainability.8

This paper proposes a heuristic approach that tries to achieve
the update request as much as possible. In order to do this, we
use the target as oracle to compute the fault ratio. The fault
ratio tells how close we are to the correct solution. In Sect. 4.1,
we give the definition of fault ratio and then, in Sect. 4.2, we
describe the updating process we propose.

4.1. Correctness

We can use the target to evaluate whether a feature model
fm′ captures the desired change requirements, i.e., fm′ is equiv-
alent to the target (|= t ↔ bof(fm′, FU)). In the following, we
will only compare feature models fm′ whose features Ffm′ are,
at most, those in FU , i.e., Ffm′ ⊆ FU .

Although a feature model could not fulfill all the change
requirements, it could satisfy them partially. We give a measure

8In Sect. 8, we discuss how complex cross-tree constraints could be used to
achieve all the change requirements and the issues that could be related to that
approach.
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2|FU |

correct configurations
wrong configurations

Figure 3: Faults

Figure 4: Updated feature model

of the difference between a feature model fm (either the initial
one fmi or a modified one fm′) and the target as follows.

Definition 6 (Fault ratio). Given a feature model fm and a
target t, the fault ratio of fm w.r.t. t is defined as follows:

FR(fm, t) =
|AllConfs(bof(fm, FU) , t, FU)|

2|FU |

where AllConfs(ϕ,V) returns all the logical models of formula
ϕ, i.e., all the truth assignments m to propositional variables V,
such that m |= ϕ.9

If the fault ratio is equal to 0, it means that fm accepts as
products the same configurations that are logical models of t;
otherwise, there are some configurations that are wrongly eval-
uated by fm, as shown in Fig. 3: fm could wrongly accept some
configurations and/or wrongly refuse some others.

Example 3. Fig. 4 shows a possible updated model that exactly
satisfies all the change requirements reported in Ex. 2 for the
model in Fig. 1. Note that the fault ratio of the initial renamed
feature model fmi w.r.t. to the target t (that corresponds to the
final feature model) is 20

29 , as fmi wrongly accepts all its 7 prod-
ucts and wrongly rejects all the 13 products of the target.

4.2. Updating process

The process we propose to update an initial feature model
fmi, given an update request UR, is depicted in Fig. 5. As ini-

9In our approach, we represent formulas as Binary Decision Diagrams
(BDDs) in JavaBDD that implements |AllConfs| by means of the method
satCount that directly computes the cardinality of the set without enumerating
all the models.

tial step, we generate the target t as a Binary Decision Dia-
gram (BDD), as described in Def. 5. Then, we start the up-
dating process, that is composed of two consecutive macro-
phases. We first try to deal with the feature-based change re-
quirements (see Sect. 4.2.1) and then with the product-based
ones (see Sect. 4.2.2).

4.2.1. Dealing with feature-based change requirements
First of all, we apply FTBR to rename features, obtaining the

feature model fmren.
Then, we modify fmren in order to try to achieve the change

requirements of Fadd and Frem. For each f ∈ Fadd, we add f
as child of parent(f ) as follows: if parent(f ) is the father of
an Or or an Alternative group, f is added to the group; in all
the other cases, it is added as Optional child of parent(f ). We
name as fmA the feature model obtained after this step. Then,
for each feature f ∈ Frem, f is removed from fmA and replaced
by its children Chf (if any). The relation of the moved children
Chf of f with their new parent p is set according to the way
FeatureIDE removes features [7]:

1. If f was the only child of p, p takes the group type of f .
2. If p has group type And, (a) if the children Chf are in

And relationship, they keep their type (either Mandatory
or Optional) (b) otherwise (they are in Alternative or Or),
they are set to Optional.

3. Otherwise, if p has group type Alternative or Or, features
in Chf are simply added to the group (regardless of their
type).

We name as fmAR the feature model obtained after this step.
Note that the model fmAR could still be not equivalent to

the target, i.e., 6|= t = bof(fmAR, FU). This could be due to two
reasons. First of all, the update request could also require to
add as products configurations described by constraints in Crelax

and/or remove configurations described by constraints in Crem.
Moreover, the two previous transformations do not guarantee
to precisely implement the required change requirements Fadd

and Frem, and they could introduce some wrong configurations
(either wrongly accepted or rejected). For example, in order to
implement the addition of a feature f with parent(f ) = p and p
father of an alternative group, we add f to the group; however,
this is not the exact semantics of Fadd that requires to duplicate
the products containing p and adding f to them.

4.2.2. Dealing with product-based change requirements
Starting from fmAR, we apply an evolutionary updating ap-

proach to try to obtain an updated feature model equivalent to
the target. The process is an instance of classical evolutionary
algorithms [21]; an evolutionary algorithm can be understood
(in a metaphor-free language [22]) as an optimization problem
in which different solutions are modified by random changes
and their quality is checked by an objective function. Precisely,
the steps are as follows:

1. Initial population: at the beginning, a population P is
created. P is a set of candidate solutions.

2. Iteration: the following steps are repeatedly executed:
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Figure 5: Proposed evolutionary approach

(a) Evaluation: each member of the population P is
evaluated using a given fitness function, represent-
ing the objective function.

(b) Termination: a termination condition is checked in
order to decide whether to start the next iteration. If
the termination condition holds, the candidate with
the best fitness value is returned as final model.

(c) Selection (Survival of the Fittest): some members
of P having the best values of the fitness function
are selected as parents of the next generation and
collected in the set PAR.

(d) Evolution: parents PAR are mutated to obtain the
offspring to be used as population in the next itera-
tion. The mutation performs random changes suit-
able to improve the existing solutions.

In our approach, we assume that the population P is a mul-
tiset (i.e., possibly containing duplicated elements) with fixed
size M equal to H · |F′|, where H is a parameter of the process.
In the following, we describe each step in details.

Initial population. As initial population, we generate the set
P by cloning fmAR M times (step 1 in Fig. 5). In this way, if
fmAR is already correct, it will be returned as final model in the

termination condition phase.

Evaluation. As first step of each iteration (step 2 in Fig. 5),
each candidate member fm′ of the population P is evaluated
using a fitness function that tells how good the member is in
achieving the overall goal. We define the fitness function both
in terms of fault ratio (see Def. 6) and of complexity of the
model structure. Indeed, we would like to avoid that, during
the updating process, the feature model becomes unreadable,
unnecessarily complex, and difficult to maintain [19, 17, 18, 7].
We have decided to consider, at least initially, the number of
cross-tree constraints as indicator of complexity, since the con-
straints among features should be expressed by structural rela-
tionships and cross-tree constraints should be used only when
really necessary. We introduce the following fitness function:

fitnesst(fm′) = 1 − FR(fm′, t) − k × ctc(fm′) (1)

where ctc is a function returning the number of cross-tree con-
straints of a feature model and k a constant. In our approach, the
quality of a candidate must be mainly given by the percentage
of configurations that it evaluates correctly, i.e., 1 − FR(fm′, t);
if a candidate c1 evaluates correctly more configurations than
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a candidate c2, its fitness should be guaranteed to be greater
than that of c2. However, for models having the same fault ra-
tio, the fitness should penalize those that are structurally more
complex. In order to obtain this effect, we use as k:

k =
1

2|FU | × 2|FU |
2 (2)

Note that 2|FU |
2 is a safe strict upper bound on the num-

ber of cross-tree constraints among the features of the feature
model. Indeed, among the possible 2|FU |

2 cross-tree constraints,
some of them are not introduced because redundant (e.g., two
excludes constraints between (a, b) and (b, a) are redundant and
only one is necessary). Therefore, the term ctc(fm′)

2|FU |×2|FU |
2 is guar-

anteed to be less than 1
2|FU |

that is the minimal possible variation
of the fault ratio due to the change of evaluation of a single con-
figuration. This means that the term can only affect the ranking
of feature models having the same fault ratio.

Termination condition. In this step (step 3 in Fig. 5), the pro-
cess checks whether at least one of the following conditions is
met:
• a defined level of fitness Thf is reached, i.e., there ex-

ists an fm′ in P with fitnesst(fm′) ≥ Thf . For example,
Thf = 1 means that we want to obtain a completely cor-
rect model without any cross-tree constraint; with Thf =

1 − 1
2|FU |+1 , instead, we still want to have a correct model,

but we allow to have any number of cross-tree constraints;
• in the previous ThNI iterations there has been no improve-

ment of the fitness value of the best candidate;
• a maximum number Thi of iterations have been executed;
• a total time threshold Tht has been reached.
If at least one of the previous conditions holds, the fm′ in P

with the highest fitness value is returned as final model.10

Selection. In the selection step (step 4 in Fig. 5), starting from
population P, a multiset of parents PAR of size p is built, being
p a parameter of the evolutionary process. Different selection
strategies have been proposed in literature:
• Truncation: it selects the first n = dK · |P|e members of

the population with the highest fitness value, where K
is a parameter specifying a percentage of the population
(0 < K ≤ 1). Then, the first n elements are added to PAR
as many times as necessary to reach the size p. Such
strategy could result in premature convergence, as candi-
dates with lower fitness values are not given the opportu-
nity to improve their fitness.

• Roulette wheel: p members of the population are selected
randomly; each member can be selected with a probabil-
ity proportional to its fitness value. Note that one or more
individuals could be selected multiple times.

• Rank: it is similar to roulette wheel, except that the se-
lection probability is proportional to the relative fitness
rather than the absolute fitness, i.e., the probability of

10If there is more than one model with the highest fitness value, we randomly
select one of these models.

Table 1: Mutation operators

Name Description

OptToMan an optional feature is changed to mandatory
ManToOpt a mandatory feature is changed to optional

OrToAl an or group is changed to alternative
OrToAnd an or group is changed to and with all children mandatory

OrToAndOpt an or group is changed to and with all children optional
AlToOr an alternative group is changed to or

AlToAnd an alternative group is changed to and with all children mandatory
AlToAndOpt an alternative group is changed to and with all children optional

AndToAl an and group is changed to alternative
AndToOr an and group is changed to or

PullUp a feature is moved as sibling of its parent
PushDown a feature is moved as child of one of its siblings
PullUpCh all children of a feature are moved as siblings of their parent

PushDownSibl all siblings of a feature are moved as children of that feature

DelConstr a cross-tree constraint (requires or excludes) is deleted
ReqToExcl a requires constraint is changed to an excludes constraint
ExclToReq an excludes constraint is changed to a requires constraint

AddReq a requires constraint is created
AddExc an excludes constraint is created

selecting a member is inversely proportional to its rank-
ing number (where the member with highest fitness has
ranking number 1). This strategy tends to avoid prema-
ture convergence by mitigating the selection pressure that
comes from large differences in fitness values (as it hap-
pens in truncation selection).

Evolution. In the evolution step (step 5 in Fig. 5), the parents
PAR are used to generate the offspring that constitutes the pop-
ulation of the next generation.

The idea we assume here is that the feature model should
be updated applying a limited number of mutations. Making
updates through the use of mutation operators has the benefit
of reducing the risk of loss of domain knowledge, by changing
the feature model as less as possible. Note that this assumption
is similar to the competent programmer hypothesis [23] that as-
sumes that the user has defined the artifact close to the correct
one. If our approach is used for removing faults, we can di-
rectly rely on the competent programmer hypothesis. On the
other hand, if the approach is used to evolve the feature model
to align it with the SPL, we can still assume that the mutation
operators are sufficient to obtain the updated model; indeed, it
is unlikely that the updated version of the feature model should
be too different from the initial one.

In order to build the next population P, we mutate all the
feature models in PAR using the operators presented in Table 1.
We set an upper bound M to the size of the new population. If
the mutation operators generate a maximum of M mutants, we
take all of them as the new population, otherwise we randomly
select M of them. In our approach, the offspring replaces the
entire population.

Description of mutation operators In [11], we have pro-
posed some mutation operators for feature models, divided in
feature-based and constraint-based operators that are a subset
of the edit operations identified in [12]. We use eight of the
feature-based mutation operators proposed in [11], and intro-
duce two new ones (OrToAndOpt and AlToAndOpt) that pro-
vide slightly different versions of OrToAnd and AlToAnd. More-
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over, we also introduce two operators that permit to move a
feature as sibling of the parent (PullUp) or as child of one its
siblings (PushDown); we also introduce two versions of these
operators that move all the children of a feature (PullUpCh)
and all the siblings of a feature (PushDownSibl). Note that we
do not allow the movement of a feature in any part of the fea-
ture model as this would produce too many mutants and could
change too much the structure of the feature model. However,
if in order to obtain the correct feature model a feature should
be moved far from its current position, this is still obtainable by
a suitable sequence of PullUp and PushDown mutations.

Finally, we use all the constraint-based operators11 pro-
posed in [11], and introduce two new ones (AddReq, AddExc)
to create requires and excludes constraints; in order to limit
the number of generated mutants, we only create constraints
among features that belong to different sub-trees of the feature
model, i.e., neither feature of the constraint is ancestor of the
other. Moreover, we avoid to create constraints that would be
redundant or that would introduce dead features: for instance,
A→ ¬B is not added if A→ B is already present in the model,
because A would become a dead feature.

Although we allow feature models with constraints also in
general form, we decided to not modify them, nor introduce
new ones, in order to avoid the introduction of too many mu-
tants and to achieve better readability of the final model.

In general, we cannot evaluate a priori if a mutant intro-
duces an anomaly; therefore, for each mutant, we check if it
is infeasible, it contains redundant constraints, or it has dead
features. If it has any of these anomalies, we do not select it.

5. Experiments

The process12 has been implemented in Java by using Watch-
maker13 as evolutionary framework, FeatureIDE [7] to repre-
sent and mutate feature models, and JavaBDD for BDDs ma-
nipulation.

We conducted a set of experiments to evaluate the proposed
evolutionary approach; they have been executed on a Windows
10 system with an Intel i7-3770 3.40GHz processor, and 16 GB
RAM.

5.1. Benchmarks

For the experiments, we used two sets of benchmarks, both
shown in Table 2.

Real models. The first benchmark set BENCHREAL is constituted
by SPLs described in literature for which different versions of
their feature model have been developed. First, we have iden-
tified in the SPLOT repository14 four SPLs that evolved over
time:

11Note that the mutation operator DelConstr corresponds to operator MC
described in [11].

12The code is available at https://github.com/fmselab/eafmupdate
13https://watchmaker.uncommons.org/
14http://52.32.1.180:8080/SPLOT/feature_model_repository.

html

Table 2: Benchmark properties

model size UR size
SPL input target |FTBR| |Fadd | |Frem| |Crelax| |Crem|

B
E
N
C
H
R
E
A
L

MobileMedia d1 (V5..8) 18.7 (15-23) 22.3 (18-26) 11.3 (1-17) 4 (3-5) 0.33 (0-1) 26.7 (0-48) 258 (24-560)
MobileMedia d2 (V5..8) 16.5 (15-18) 24.5 (23-26) 12 (11-13) 8 (8-8) 0 (0-0) 64 (48-80) 536 (528-544)
MobileMedia d3 (V5,V8) 15 26 9 11 0 80 1648
HelpSystem (V1, V2) 25 26 0 1 0 672 2016
SmartHome (V2.0, V2.2) 39 60 12 23 2 1.92 × 109 2.31 × 1010

ERP_SPL (V1, V2) 43 58 0 15 0 0 1.51 × 107

PPU d1 (V1..9) 13.9 (9-17) 14.9 (11-17) 0 (0-0) 1.13 (0-4) 0.125 (0-1) 3.75 (0-27) 27.8 (0-183)
PPU d2 (V1..9) 13.4 (9-17) 15.4 (11-17) 0 (0-0) 2.14 (0-6) 0.142 (0-1) 9 (0-27) 54.4 (0-243)
PPU d3 (V1..9) 12.8 (9-17) 16.2 (13-17) 0 (0-0) 3.5 (1-6) 0.167 (0-1) 16 (0-27) 77.5 (9-156)
CAR d1 (V2009..2012) 7 (6-8) 9.33 (7-13) 0 (0-0) 2.67 (1-5) 0.333 (0-1) 5 (0-13) 16 (1-40)
CAR d2 (V2009..2012) 6.5 (6-7) 10.5 (8-13) 0 (0-0) 4.5 (3-6) 0.5 (0-1) 6 (0-12) 34 (9-59)
CAR d3 (V2009,V2012) 6 13 0 7 0 0 87

B
E
N
C
H
M
U
T Register 11 11 0 0 0 11.85 (0-40) 62.28 (0-210)

Graph 6 6 0 0 0 12.71 (0-28) 0 (0-0)
Aircraft 13 13 0 0 0 196.86 (0-315) 53.53 (0-365)
Connector 20 20 0 0 0 8.23 (0-18) 26.02 (0-336)

• MobileMedia: a program to manipulate multimedia on
mobile devices (four versions) [15];

• HelpSystem: a cyber-physical system with multiple sen-
sors (two versions) [14];

• SmartHome: a set of smart house components (two ver-
sions) [13];

• ERP_SPL: an Enterprise Resource Planner (two versions).
Then, we have also considered the industrial case of a Pick-and-
Place Unit (PPU) [12]; for this system, the feature model has
been changed eight times to adapt to new requirements (there-
fore, there are nine feature models available [12]). Finally, we
have also considered the product line model of a CAR [5], for
which four different feature models have been produced.

For each SPL, we identified couples (fmi, fmt) of their fea-
ture models: the latest version was considered as target model15

fmt, and the oldest one as the initial model fmi we want to up-
date. For SPLs with more than two feature models, in addition
to couples of feature models of consecutive versions, we also
considered models with version distance 2 and 3 (in the table,
d1, d2, and d3 indicate the distance). In this way, we attempt
to reproduce update requests of different complexity. In total,
BENCHREAL contains 36 couples of models.

Generated models. The second benchmark set BENCHMUT has
been built with the aim of evaluating our approach under the
assumption we did in Sect. 4.2.2 that mutation operators are
sufficient to update the feature model. We selected four feature
models developed for four SPLs (for which only one model is
available):
• Register: a register of supermarkets, adapted from [24];
• Graph: a graph library;
• Aircraft: the configurations of the wing, the engine,

and the materials of airplane models;
• Connector: IP connection configurations.

From these models (used as target models fmt), we automati-
cally generated other versions to be used as input models fmi;
we randomly mutated the target models (using 1 to 10 muta-
tions), applying the operators described in Table 1. For each tar-
get model, we generated 100 input models. Therefore, BENCHMUT
contains 400 couples.

15Note that, in the real usage of our approach, we do not have a target fea-
ture model, but an update request UR from which we generate the target as
propositional formula.
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5.1.1. Deriving the update request
In the devised usage of the approach, the user should specify

the update request that must be provided as input to the evolu-
tionary process; however, for our experiments, we do not have
any update request available. Therefore, we automatically gen-
erated an update request UR from the initial feature model fmi
and the target feature model fmt of each couple (fmi, fmt) of the
benchmarks.

In order to detect renamed features in FTBR, we manually
inspected the two feature models and produced the renamed
model fmren. Then, from fmren and fmt, we automatically identi-
fied the differences of their features for building Fadd and Frem;
moreover, using their BDD representation, we identified the
configurations that are differently evaluated in order to build
Crelax and Crem (we built a predicate for each wrongly evaluated
configuration16). Note that configurations that are added and
removed by Fadd and Frem are not also specified in Crelax and
Crem.

Table 2 reports, for all the benchmarks, the size of the in-
put and target models in terms of number of features, and the
number of requirements of the update request. For the SPLs
in BENCHREAL having more than one couple of feature models,
the reported values are aggregated by distance; for each SPL in
BENCHMUT, the values are aggregated among its 100 input mod-
els. For these aggregated models, we report the average, mini-
mum, and maximum number of elements in the update request.
In BENCHMUT, since we did not add or remove features for pro-
ducing the input models, their size is the same of that of the
target model and so Fadd and Frem are empty; moreover, we do
not even rename features and so also FTBR is empty.

5.2. Analysis

We now evaluate the proposed approach by a series of re-
search questions. In these experiments, we set the parameters
of the termination conditions as follows: Thf to 1 − ctc(fmi)

2|FU |×2|FU |
2 ,

ThNI to 15, Thi to 25, and Tht to 30 minutes. Note that the value
chosen for Thf requires to have a totally correct model, with at
most the same number of cross-tree constraints of the starting
feature model. The parameter H used to determine the maxi-
mum population size M (as defined in Sect. 4.2.2) has been set
to 5, and the parameter p of the selection phase has been set to
M/2. All the reported data are the averages of 30 runs.

In [6], we experimented the effect of the different selection
policies of the evolutionary approach and we found that trun-
cation with K=5% is the best policy in terms of fault ratio re-
duction, and the second best as execution time. Therefore, we
here select it as selection policy and evaluate the approach using
other research questions.

RQ1: Is the proposed approach able to achieve the change re-
quirements specified by the update request?

16Note that, in this way, the sets Crelax and Crem are very large because they
contain a predicate for each added and removed configuration. However, in a
real setting, the user should specify predicates capturing sets of configurations
and so the sets should be much smaller.

Table 3: Performance of the updating process

SPL
time
(s)

initial
FR (%)

final
FR (%)

FR
reduction (%)

#
iterations

sem.
eq. (%)

synt.
eq. (%) ctc ED

B
E
N
C
H
R
E
A
L

MobileMedia d1 71.11 4.17e-03 1.10e-04 96.03 8.42 64.44 17.78 0.23 14.86
MobileMedia d2 157.98 3.90e-03 4.41e-04 86.54 16.00 0.00 0.00 0.63 34.32
MobileMedia d3 178.46 2.57e-03 3.57e-04 86.13 16.00 0.00 0.00 0.80 36.97
HelpSystem 112.41 4.01e-03 1.24e-04 96.92 8.80 86.67 0.00 5.57 25.53
SmartHome 1990.40 7.24e-07 8.39e-08 88.42 6.10 0.00 0.00 0.43 57.60
ERP_SPL 2014.30 5.24e-09 8.86e-10 83.08 6.00 0.00 0.00 0.43 18.80
PPU d1 5.98 0.09 2.27e-03 97.44 3.88 86.67 48.33 1.23 7.40
PPU d2 10.23 0.10 0.54e-03 96.48 6.84 68.57 36.67 1.39 11.63
PPU d3 15.90 0.09 0.01 87.43 9.69 48.89 28.89 1.94 17.04
CAR d1 3.85 1.13 0.25 69.81 11.18 57.78 6.67 0.77 8.02
CAR d2 4.21 1.31 0.17 80.31 10.52 50.00 0.00 1.83 10.15
CAR d3 6.59 1.06 0.37 65.52 16.00 0.00 0.00 2.37 20.13

B
E
N
C
H
M
U
T Register 4.35 3.62 0.17 95.84 7.15 80.27 65.20 0.22 2.32

Graph 0.12 19.86 0.00 100.00 1.76 100.00 99.03 2.67e-03 0.02
Aircraft 8.09 3.06 0.07 97.49 6.58 84.53 68.63 0.29 2.89
Connector 28.68 3.27e-03 6.87e-05 98.11 5.80 94.00 68.47 0.20 2.27

For each benchmark SPL, Table 3 reports (among other
things) the initial and final values of FR, and the FR reduc-
tion. For the models in BENCHREAL, the table reports the av-
erages among couples at the same distance; for the models in
BENCHMUT, instead, it reports the averages among the 100 in-
put models of each SPL.17 We observe that for all models we
can reduce the fault ratio of at least 65%, with an average of
89.1%. Comparing the two benchmark sets, we notice that the
reduction is higher in BENCHMUT (on average, 97.86%) than in
BENCHREAL (on average, 86.15%); this means that, as expected,
if the assumption that the models can be updated using the
proposed mutation operators holds, the approach behaves very
well. However, also for general models as those in BENCHREAL,
the performance of the approach is quite good.

RQ2: Which is the computational effort of the proposed ap-
proach?

We are here interested in the effort required by the proposed ap-
proach in terms of computation time and iterations of the evo-
lutionary process. Table 3 also reports the total execution time
of our process and the number of iterations of the evolutionary
approach. For all but two models, the process takes at most
179 seconds; as expected, smaller models (as CAR, Graph, and
Register) are updated faster than larger models (as Mobile-
Media, HelpSystem, SmartHome, and ERP_SPL). We observe
that the process terminates when one of these three terminating
conditions occurs: (i) Thf , i.e., the model is completely updated
(as in HelpSystem and Graph), (ii) Tht, i.e., the timeout has
occurred (as in SmartHome and ERP_SPL18), or (iii) ThNI , i.e.,
no fitness improvement has been observed in the previous 15
iterations (as, for example, all the models of MobileMedia d2
and d3, and those of CAR d3). Note that the process never ter-
minates because of the maximum number of iterations Thi.

RQ3: Is there a relation between the initial fault ratio and its
updatability?

17Non-aggregated results are reported online at http://foselab.unibg.
it/eafmupdate/

18Note that the time for these two models is around 3.5 minutes above the
threshold Tht of 30 minutes; indeed, the terminating condition is checked at the
end of an evolution step, but the threshold could be overcame during the step.
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We are here interested in investigating whether there is a
relation between the initial fault ratio and its reduction. Fig. 6
shows, for each benchmark model (a point in the plot), its ini-
tial fault ratio and the fault ratio reduction. It seems that there
is no proper correlation: we reduce (or do not reduce) the fault
ratio in the same proportion among models having different ini-
tial fault ratios. We checked the correlation with the Spearman
rank-order correlation coefficient [25], and indeed we found a
value of 0.23 indicating almost no correlation [26].

RQ4: Are the final models similar to those produced by SPL
designers?

The main aim of the proposed approach is to obtain a feature
model that satisfies all the change requirements; to this purpose,
we use the fault ratio as measure of model correctness. How-
ever, the final model we obtain, although correct, may be not
readable by and not useful for an SPL designer. Although we
could not ask real SPL designers to validate our models in terms
of usefulness and readability, we have access to models devel-
oped by SPL designers to achieve the same update requests we
tackled in the experiments (models fmt used as target in the ex-
periments). We can assume that SPL designers are likely to find
our models useful if models produced by our process are simi-
lar to their models. We therefore measure the readability of the
final model of our process in terms of distance from the model
fmt developed by a designer for the same update request. We
compute the edit distance [27, 28] of the final model fm f from
fmt, defined as the number of edits (insertion, deletion, and re-
name of tree nodes) that we have to apply to fm f in order to
obtain fmt.

19 Table 3 reports also the edit distance (ED) to the
target model (average among the models), and the percentage of
models that are syntactically equal and semantically equivalent
to the target model. Of course, models not completely updated
are not syntactically equal to the target and have edit distance
greater than 0. Completely correct models (semantically equiv-
alent) are often also syntactically equal (for example, 86.67% of
the PPU d1 models are semantically equivalent and 48.33% are
also syntactically equal); however, there are some correct final
models that are different from the target model fmt (for exam-
ple, HelpSystem is completely updated 86.67% of the times,
but always in a different way than fmt).

RQ5: Does considering the number of cross-tree constraints
in the fitness impact the final results?

As explained in Sect. 4.2.2, our fitness function (see Eq. 1)
can also take into consideration the number of cross-tree con-
straints (ctc); the value we selected for k (see Eq. 2) has the
aim of penalizing models with higher ctc at the same fault ra-
tio (in order to limit the insertion of such constraints and in-
stead give precedence to changes of the parental relations). In
order to assess the impact of this choice, we have executed

19Note that these edit operations are more fine-grained than our mutation
operators and we are always able to compute the distance between two feature
models.

Table 4: Performance of the updating process with the two versions of the
fitness

SPL Fitness without constr. (k = 0) Fitness with constr. (k as in Eq. 2)

FR
reduction (%)

sem.
eq. (%)

synt.
eq. (%) ctc

FR
reduction (%)

sem.
eq. (%)

synt.
eq. (%) ctc

B
E
N
C
H
R
E
A
L

MobileMedia d1 94.10 61.11 17.78 0.69 96.03 64.44 17.78 0.23
MobileMedia d2 84.83 0.00 0.00 1.85 86.54 0.00 0.00 0.63
MobileMedia d3 85.16 0.00 0.00 2.43 86.13 0.00 0.00 0.80
HelpSystem 97.22 86.67 0.00 5.57 96.92 86.67 0.00 5.57
SmartHome 88.42 0.00 0.00 0.53 88.42 0.00 0.00 0.43
ERP_SPL 82.96 0.00 0.00 0.40 83.08 0.00 0.00 0.43
PPU d1 98.10 87.50 45.83 1.62 97.44 86.67 48.33 1.23
PPU d2 95.89 68.57 37.14 2.11 96.48 68.57 36.67 1.39
PPU d3 87.25 50.00 27.22 2.95 87.43 48.89 28.89 1.94
CAR d1 73.61 55.56 3.33 1.89 69.81 57.78 6.67 0.77
CAR d2 78.06 45.00 0.00 3.22 80.31 50.00 0.00 1.83
CAR d3 62.80 0.00 0.00 4.63 65.52 0.00 0.00 2.37

B
E
N
C
H
M
U
T Register 96.11 82.70 64.03 0.60 95.84 80.27 65.20 0.22

Graph 100.00 100.00 99.37 0.00 100.00 100.00 99.03 0.00
Aircraft 97.43 85.97 68.73 0.42 97.49 84.53 68.63 0.29
Connector 98.05 93.70 63.00 0.48 98.11 94.00 68.47 0.20

the same experiments presented before with k = 0 in the fit-
ness function (that becomes fitnesst(fm′) = 1 − FR(fm′, t)) and
Tht = 1. Table 4 reports the data in terms of average fault ratio
reduction, percentage of semantically equivalent, percentage of
syntactically equal models, and the average number of cross-
tree constraints. For easing the comparison, we also report the
same data of the results obtained with the previous experiment
(already reported in Table 3). In order to check whether the
consideration of cross-tree constraints has some effect on the
final results, we have applied to the data the classical hypothe-
sis testing by performing the Wilcoxon signed-rank test20 [25]
between the results with the two versions of fitness. The null
hypothesis that considering ctc has no impact of the final model
cannot be rejected for the percentage of totally updated models
(i.e., semantically equivalent), but it is rejected for the syntac-
tical equivalence with p-value equal to 0.0038. This confirms
that penalizing the usage of cross-tree constraints in the fitness
improves the quality (readability) of the final model without
compromising the ability of the approach in achieving the up-
date request.

6. Threats to validity

We discuss the threats to the validity of our results along
two dimensions, external and internal validity [25].

6.1. External validity

Regarding external validity, a threat is that the obtained re-
sults could be not generalizable to real-world (industrial) fea-
ture models having specific update requests. However, as first
benchmark, we have selected 9 couples of models showing the
evolution of real SPLs [15, 14, 13] taken from the SPLOT repos-
itory, and other 27 couples from the evolution of other two real
SPLs described in literature [12, 5] (see Sect. 5.1); moreover,
in order to enlarge the set of evaluated models, we generated

20We performed a non-parametric test as we found, with the Shapiro-Wilk
test, that the distributions are not normal.
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Figure 6: Relation between the initial fault ratio and the fault ratio reduction

400 input models by randomly mutating other 4 feature mod-
els (acting as target). We believe that this way of selecting the
benchmarks reduces the bias w.r.t. other real models this pro-
cess may be applied to in the future.

Another threat to the external validity could be that the pro-
posed process does not scale well to models larger than those
considered in the experiments. In particular, the time for com-
puting the fitness function grows exponentially with the num-
ber of features, as it is based on BDD construction. In order
to address this problem, as future work, we plan to devise a
technique that, given a single change requirement c, identifies
the sub-tree st of the feature model affected by c, i.e., c can be
achieved by only modifying st; only considering st would allow
to improve the process performance, as the mutations would be
more targeted and the fitness computation would be performed
on a smaller BDD.

Another threat to the external validity is that the update re-
quests that we use in the experiments could be different by those
written by SPL designers. However, update requests have been
obtained by computing the difference of consecutive versions
of feature models written by SPL designers. While change re-
quirements FTBR, Fadd, and Frem are guaranteed to be the same
as those specified by SPL designers, Crelax and Crem are only
semantically equivalent. However, this is not a threat, as the
evolutionary approach only considers the semantics of the Crelax

and Crem, not their structure.

6.2. Internal validity

Regarding internal validity, a threat is that the obtained re-
sults could depend on the values chosen for the parameters of
the evolutionary process (parameters of termination conditions,
and parameters of the selection and evolution phases) and that,
with some other values, the results would have been different
(e.g., a given selection strategy could perform better); although
we kept all the parameters fixed, we believe that the overall
result that our approach is able to actually update the feature
model is not affected. However, as future work, we plan to per-
form a wider set of experiments in which the effect of each sin-

gle parameter is evaluated. For finding the best parameter set-
ting, we could use a parameter-tuning framework as irace [29].

7. Related work

Different approaches have been proposed for updating and/or
repairing feature models.

In a previous work, we proposed a technique to generate
fault-detecting configurations (tests) able to show conformance
faults (i.e., configurations wrongly accepted or wrongly rejected)
in feature models [11]; in [30], we then presented an iterative
process based on mutation that first shows these fault-detecting
configurations to the user who must assess their correct evalu-
ation, and then modifies the feature model to remove the faults
(if any). The approach proposed here is different, since it is
based on an evolutionary approach, it is completely automatic,
and does not require the interaction with the user who must
only provide the initial update request. Moreover, in the current
approach we consider update requests not only coming from
failing tests but also from the normal evolution of the SPL.

Another approach trying to remove faults from feature mod-
els is presented in [31]: it starts from a feature model and,
through a cycle of test-and-fix, improves it by removing its
wrong constraints; the approach uses configurations derived both
from the model and from the real system and checks whether
these are correctly evaluated by the feature model. The ap-
proach is similar to ours in considering wrong configurations,
but does not allow to add and remove features. The main dif-
ferences with our approach are that we have a precise defini-
tion of target we need to reach, we rely on an evolutionary ap-
proach, and we assume that the model evolution can be obtained
through mutation.

In [32], we proposed an approach to repair variability mod-
els by modifying the constraints of the model using some re-
pairs; that approach differs from the one presented in this work
in different aspects. First of all, the oracle (similar to our target)
in [32] is given by the implementation constraints, while here
the target comes from update requests. Then, the aim of [32] is
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only to remove faults from the model, while here we also sup-
port the evolution of the model. Finally, the approach in [32]
always improves the conformity index (similar to our fitness
function) during the process, with the risk of obtaining local
optima; in the current approach, instead, we maintain a set of
candidate solutions in which some of them may decrease the
fitness function in some iteration, but that could obtain a better
result at the end.

Regarding the use of evolutionary algorithms for feature
models, the work in [33] proposes a process to reverse engineer
feature models starting from a set of products: the process starts
from a population of randomly generated models and evolves
it using as fitness function the number of correctly evaluated
products. The approach is similar to ours in using an evolution-
ary approach based on mutation (some used mutation operators
are similar to ours), but differs in the aim and in the starting
point: we start from an existing feature model that we want to
update to achieve some change requirements (removing faults
or business requirements), while the approach in [33] wants to
build a new feature model starting from some known products.

Evolutionary approaches have been widely used also for
testing and repairing programs. For example, GenProg [34] is a
repair tool based on genetic programming. It uses mutation and
crossover operators to search for a program variant that passes
all tests.

8. Conclusion

We proposed an evolutionary approach that, given a set of
change requirements in terms of features to rename, features to
add/remove to/from existing products, and products to add/re-
move from a feature model, through a sequence of mutations,
tries to obtain another feature model that exactly captures the
requested changes. The approach tries to achieve all the change
requirements without producing unnecessary complex models,
by limiting the number of cross-tree constraints.

We evaluated the approach on feature models of ten SPLs.
For some of these SPLs, different versions of their feature mod-
els have been produced during the evolution of the SPL: this
allowed us to assess the approach on update requests of differ-
ent complexity. Experiments showed that the process is indeed
able to update the feature model, although the update could be
partial when the model is particularly big. On the other hand, it
seems that the initial fault ratio does not influence the percent-
age of fault ratio that can be reduced.

Some models cannot be completely updated by the pro-
posed approach. One of the reasons could be that we produce
too many mutants and we lose time in evaluating all of them (as
for SmartHome in the experiments); as future work, we plan to
devise more tailored ways to select the mutants, maybe reason-
ing on the structure of the update request. In a similar way, we
could also reduce the size of the initial feature model by keeping
only the part that is interested by the change requirements; this
should permit to obtain a better process performance. More-
over, in this work we did not consider abstract features [8] that,
however, could be necessary to achieve some change require-
ments. As future work, we plan to use also abstract features

in the updating process, but only when really needed, since too
many abstract features could reduce readability.

Experiments show that the models we obtain at the end of
the updating process, although semantically correct, could be
not so readable. The fitness function already tries to reduce
the complexity (and so preserve the readability) of the model
by penalizing the addition of cross-tree constraints; as future
work, we plan to integrate additional syntactical measures in
the fitness function.

Other approaches could be devised to achieve the change
requirements of the update request. One possible way could be
to add the update request as cross-tree constraints and then sim-
plify them using approaches as those described in [20, 9]. As
future work, we plan to compare our approach with this alterna-
tive approach in terms of readability and other qualities of the
obtained final models, such as compactness, traceability, and
maintainability.

Moreover, in the experiments we used a given setting for the
parameters of the evolutionary approach. As future work, we
plan to use a framework such as irace to find the best parameters
setting.
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