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Abstract

We present a temporal framework suitable for the spec-
ification and verification of safety properties of real time
hybrid systems. We show that, given suitable assumptions
(like non Zenoness and left continuity) continuous time can
be discretized by introducing a next operator that is simi-
lar to the one usually found in discrete time temporal logics
and can be safely and effectively used in specifications as
well as in verification. The proofs of properties can be con-
ducted in a deductive style, and can be easily automated,
especially when they are based on induction. We validate
this approach by applying it to a simple hybrid system, the
well-known thermostat example.

1. Introduction

In this paper, we propose a temporal framework suitable
to describe and prove properties of hybrid systems [2]. Hy-
brid systems contain variables ranging on continuous and
on discrete domains. Moreover in hybrid systems the events
(like the acquisition of an input signal in a reactive system
or a variable value reaching a given threshold) can occur
asynchronously, so that there is no minimum distance be-
tween two events or between two occurrences of the same
event. On the other hand, we exclude Zeno behaviors: in a
given finite interval of time only a finite number of events
can occur, and the value of any continuous variable has a
finite variability (this notion will be explained in detail in
Section 2).

Formal notations dealing with timed systems typically
make some assumptions on the underlying time structure.
The temporal domain can be discrete, dense or continuous.
For any time instant in a discrete time domain, there is a
unique successor (often called next) and predecessor. On
the other hand, in a dense or continuous time domain there
always exists a third time instant between any two given
ones. Clearly, selecting the appropriate temporal domain

is a crucial part of defining a temporal model also for hy-
brid systems. Discrete time has a fixed minimal distance
between any two events or values of variables, hence it is
not suitable for modeling values that change in a continu-
ous fashion nor asynchronous events.

In the present work we are not interested in distinguish-
ing the features of dense and continuous time (for an inter-
esting survey on this issue see [18]): for the sake of simplic-
ity and generality we adopt as a time model simply �: time
is linear and for each instant the system is exactly in one
state: we avoid interleaving (where a system can traverse
several states at the same time) and adopt a natural formal-
ization for time dependent variables, as functions from �
to their domain. The variable values can be visualized us-
ing customary timing diagrams. We do not introduce a new
state variable time nor a new action that increases time.

The adoption of � as a time model allows for a higher
generality, but inevitably poses some problems. First, in a
continuous temporal domain Zeno behaviors are possible;
we will therefore adopt some explicit assumptions on time-
changing entities, taken from [16], to ensure that all entities
of our models have the non-Zeno property. Furthermore,
the use of continuous time makes specifying and verifying
hybrid systems more complex and difficult than in the dis-
crete case.

In � one cannot use a next operator, and using temporal
induction can be cumbersome as we have to deal with prop-
erties of real numbers. In fact, the use of discrete time is
often intuitively appealing: for instance, in [11] the authors
title a Section “The Joy of Discrete Time”. On the contrary,
in our experience [16] reasoning with real numbers can be
time consuming and require skill and ingenuity, besides a
very good tool support.

In the present paper we try to combine the generality of
a continuous time domain with the simplicity and intuitive
appeal of a discrete one. Thanks to the hypothesis of non-
Zeno behavior, we show that a next operator can be intro-
duced, that refers to the state of the system "immediately
after the present time" and makes it possible to adopt a sim-
ple axiom of induction to derive properties in a manner that
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Figure 1. Hybrid automata for a thermostat

can be automated by means of a general-purpose theorem
prover like SAL [13].

In Section 2 we briefly recall basic definitions of the
TRIO language [21] and state our assumptions about tem-
poral entities in terms of TRIO formulas. In Section 3 we
introduce a next operator for continuous time and in Section
4 we present a framework for verification based on induc-
tion, which is embedded in an automatic theorem prover as
explained in Section 5. Section 6 discusses some related
literature and Section 7 concludes and presents some future
work. Due to space limitations, we were forced to omit
proofs of theorems and a few extensions of the presented
results; the full version of the paper can be found in [17].

Throughout the paper, we use a simple specification of a
thermostat (Fig. 1) which is a linear hybrid automaton and
constitutes a simplified version of a case study presented
in [1]. The thermostat continuously senses the temperature
of the room and turns the heater on (state = Heat) and off
(state = Cool). It monitors a continuous variable T temper-
ature which linearly increases when in state Heat by one
temperature degree every time unit (for example every one
minute) (Ṫ = 1) and linearly decreases when in state Cool
(Ṫ = −3). The system can switch from Heat to Cool only
when T is greater or equal to 9. It can turn on the heat again
when T is less or equal to 6. Moreover both states have in-
variants: in Heat the temperature must not exceed 10 and
in Cool the temperature must be greater or equal to 5. The
invariants are assumptions about the states: they ensure that
“some discrete transition must be taken before the invariant
becomes false”[1].

2. TRIO

TRIO, originally introduced in [21] as a formal method
for the specification and verification of real time systems,
is a first order logic augmented with temporal operators to
express properties whose truth value may change over time.
The meaning of a TRIO formula is given with respect to
a current time instant which is left implicit and in the fol-
lowing it will often be denoted symbolically as now. The
basic temporal operator is called Dist: for a given formula
W, Dist(W, t) means that W is true at a time instant whose
distance is t time units from the current instant now, i.e.,
from the instant when the sentence is claimed. Many other
temporal operators can be derived from Dist, as shown in

Futr(F, d) d ≥ 0 ∧ Dist(F, d)
Past(F, d) d ≥ 0 ∧ Dist(F,−d)
Alw(F) ∀dDist(F, d)
AlwFi(F) ∀d(d ≥ 0 → Futr(F, d))
Lasts(F, d) ∀d′(0 < d′ < d → Futr(F, d′))
NowOn(F) ∃d(d > 0 ∧ Lasts(F, d))
Lasted(F, d) ∀d′(0 < d′ < d → Past(F, d′))
UpToNow(F) ∃d(d > 0 ∧ Lasted(F, d))
Until(F,G) ∃d(d > 0 ∧ Lasts(F, d) ∧ Dist(G, d))

Table 1. Trio Operators

Table 1.
Besides time dependent (TD) predicates, TRIO intro-

duces TD variables with domain X, as variables whose
value changes in X over time. TD variables are suitable
to model physical quantities. To refer to values of a vari-
able or term in the past or in the future, the operator dist (as
a generalization of Dist) is introduced: for a given term x,
dist(x,t) has the value that x had or will have at a time instant
whose distance is t from now.

In the following, unless otherwise specified, any TRIO
formula π representing a system property is intended to be
enclosed in an outermost Alw operator and hence to stand
for the formula Alw(π) asserting that property π holds at
every time instant. Next, to make the paper self contained,
we report some definitions taken from [16].

Non-Zenoness. The classical informal definition of the
non-Zeno requirement for a predicate A is that A changes
a finite number of times in any bounded temporal interval.
This is equivalent to requiring that there exists a time in-
terval, before and after every time instant, where A is con-
stantly true or it is constantly false.
Non-Zeno predicate: a TRIO predicate A is
non-Zeno iff (UpToNow(¬A) ∨ UpToNow(A)) ∧
(NowOn(¬A) ∨ NowOn(A))

Recall that the property stated in this definition is in-
tended as enclosed in an outermost Alw operator, hence it
implies the classical definition of non Zenoness: no time in-
stant can be an accumulation point of instants where prop-
erty A changes, neither from the left (because of the oper-
ator UpToNow) nor from the right (because of the operator
NowOn). This definition can be generalized for variables in
a countable domain as follows.
Non-Zeno variable x in a countable domain: x is non-
Zeno iff ∃a UpToNow(x = a) ∧ ∃b NowOn(x = b)

For such entities it is therefore meaningful to use locu-
tion such as “The value of A (or x) immediately before (or
after) the current time”. Variables on uncountable domains,
like for instance the reals or any interval of reals, are re-
quired to be piecewise analytic when considered as a func-
tion of time.



Non-Zeno variable: a variable x in an uncountable domain
D is non-Zeno iff

∃f∃g

( {f, g} ⊂ AFo ∧ ∃d∀t(0 < t < d →
dist(x, t) = f(t) ∧ dist(x,−t) = g(t))

)

where we denote as AFo the set of functions that are
analytic at 0. Indeed, if f and g are analytic (hence they
have derivatives of all orders at the origin), then x, required
to be equal to them, has a very regular behavior too. It could
have only jump discontinuities in isolated points.

As proved in [16], non Zeno predicates, formulas, and
variables combined with the usual operators (<, >, . . .) give
only non Zeno formulas. Furthermore, we assume that the
inputs to the system under specification are non Zeno and
that every formula of the TRIO system specification is writ-
ten in such a way that it does not introduce any Zeno behav-
ior (this is an easy condition to check, as there are very sim-
ple and general sufficient conditions ensuring it). In sum-
mary, we can therefore assume that, in our specifications,
each predicate, formula, time dependent variable x is non
Zeno, so that, there always exists a time interval preceding
and one following the current time, where the modeled sys-
tem is in a “stable state”.

Interval based Formulas and Variables. In our experi-
ence, we verified that continuous time systems can be best
modeled by partitioning the non-Zeno entities ranging over
a discrete domain into two broad categories: those that hold
for intervals, and therefore correspond to the intuitive no-
tion of a state, and those that hold in isolated points, hence
corresponding to the intuitive notion of an event.

For the sake of brevity we now present the formalization
of interval-based entities in terms of TRIO axioms that con-
sider only the case of predicates and formulas: it is a rela-
tively easy exercise to extend the definitions to any variable
ranging over a discrete domain.
Interval formula: a predicate or formula I is interval-
based iff (I → UpToNow(I) ∨ NowOn(I))∧(¬I →
UpToNow(¬I) ∨ NowOn(¬I))

Notice that this definition does not tell anything about the
values of I at the precise instant when it changes its value,
i.e., whether the intervals where I holds or does not hold are
closed at their left or right hand. Various choices are pos-
sible, as discussed at depth in [16], but to make the formal
modeling of systems and the derivation of their properties
more systematic, uniform, and amenable to automation, we
chose to adopt the convention that interval-based entities
are left-continuous, as illustrated in Fig. 2 and formalized
by the following definition.
Left-continuous interval formula: a predicate or formula
I is left-continuous interval-based iff (UpToNow(I) → I)
∧ (UpToNow(¬I) → ¬I)

time

false

true

false

Figure 2. A left continuous interval predicate

In summary, in the rest of the paper we will assume that
entities in the TRIO model of a continuous time system are
either variables ranging over continuous domains that are
piecewise analytic functions or variables ranging over dis-
crete domains or formulas that are left-continuous interval-
based.

3. The next Operator in the Continuous Time

Besides the usual TRIO operators, we introduce the next
operator in continuous time, which resembles the usual next
operator used in discrete time temporal logics like LTL, but
is defined over a dense time. For the sake of clarity we dis-
tinguish between time dependent predicates and formulas,
and time dependent variables.

Thanks to the non-Zeno property, for every TD predicate
or formula A and for every time instant, there exists a pos-
itive ε such that A is steady in the future for at least ε time
units. We introduce an operator next to represent the value
of A in the future.
Next for predicates: next(A) ≡ ∃ε(ε > 0 ∧ Lasts(A, ε))

The designer may use the next operator to model some-
thing that becomes true and remains true for a while. For
example, the immediate cause-effect relationship between
an event A and a state B, assuming that there is a delay be-
tween A and B but such delay is negligible, can be modeled
by A → next(B).

For TD variables, there still exists a next value, that may
be not a constant value, but a function over time. The formal
definition follows.
Next for variables: given a time dependent variable x
and an analytic function f ∈ AF0, next(x) = f ≡
∃ε∀α (0 < α < ε → dist(x, α) = f(α))

Example 1 If the time dependent variable x is now equal to
zero and linearly increases with derivative equal to 1, then
we write that next(x) = ramp0 where ramp0 denotes the
analytic function that has derivative equal to 1 and starts
from the origin. Since ramp0(y) = y, the exact meaning
of next(x) = ramp0 is ∃ε∀α(0 < α < ε → dist(x, α) =
α). �

The choice of the function f may (analytically) depend
on the current value of x or more in general on the state
of the system. For example if x linearly increases from its
current value, then we can write next(x) = x + ramp0,



whose exact meaning is ∃ε∀α(0 < α < ε → dist(x, α) =
x + α).

The behavior of any hybrid system is specified by a for-
mula, called Spec, consisting of the conjunction of several
sub-formulas A1...An, which describe, by means of the next
operator, how the state variables evolve.

Example 2 Thermostat Specification. The next value of
the state depends on the current value of the state and the
temperature T :
Astate1 : state = Heat ∧ T ≥ 9 →

next(state) = Heat ∨ next(state) = Cool
Astate2 : state = Heat ∧ T < 9 → next(state) = Heat
Astate3 : state = Cool ∧ T ≤ 6 →

next(state) = Heat ∨ next(state) = Cool
Astate4 : state = Cool ∧ T > 6 → next(state) = Cool

All the possible behaviors of the thermostat between now
and now + ε are depicted in Figure 3, which shows a possi-
ble change in the thermostat state in the current instant and
the continuous variation of the temperature T. At every time
instant, there exists an interval in the future in which we can
exclude a change of state and in which the temperature T
has a constant derivative, either 1 or -3, depending on the
value of state in the immediate future.

AT1 : next(state) = Heat → next(T ) = T + ramp0

AT2 : next(state) = Cool → next(T ) = T − 3 · ramp0

For the thermostat it is therefore Spec = Astate1 ∧ ... ∧
Astate4 ∧ AT1 ∧ AT2. Strictly speaking, the specification
should also include the state invariants, which however are
not expressed in terms of next; therefore they are not men-
tioned here and will be added to Spec in Section 5. �

Properties of the next operator. The next operator is
commutative w.r.t. the propositional connectives and arith-
metical operators, i.e. (next(x) ◦ next(y)) ↔ next(x ◦ y),
with ◦ equal to ∨, ∧, ¬, →, +,−, <, =, . . .

4. Property Verification

As shown in the previous section, the designers can use
the next operator in continuous time like they do in discrete
time. However analyzing specifications containing next in
continuous time is difficult and classical algorithms for dis-
crete time do not apply. In general, the deductive proof of
a desired property φ starting from the specification of the
system Spec, i.e. the proof of Spec → φ, may require time,
skill and ingenuity, as shown in [16]. The next value of a
variable may not be a numerical or symbolic constant, but
it may be an analytic function of time like ramp0, cos(t) or
e−kt. By expanding the definition of next one would obtain
many formulas containing quantifiers like ∃ε∀α . . . which
are difficult to analyze.

The specification Spec could be simplified if ε and α
could be fixed to a constant numerical value and functions
like ramp0 replaced by their values. However this is in gen-
eral not possible because, at certain times, the length of the
interval in which the system is stable could be smaller than
the constant we choose. On the other hand, the non Zeno
assumption ensures that for every time instant there exists
an ε (in general a different one for each instant) such that,
in a future interval of length ε, every variable and all its
derivatives are continuous and every discrete variable has a
constant value.

We take advantage of this fact by transforming the orig-
inal specification Spec as follows. First, we push out every
occurrence of the next operator. Applying theorems intro-
duced in Section 3, we can transform for example every
occurrence of next(a) ◦ next(b) into next(a ◦ b), where ◦
denotes the usual logical and arithmetic operators. Second,
we expand the definition of next. Note that a generic for-
mula a ◦ next(b) can be rewritten as ∃ε∀α(0 < α < ε →
(a ◦ dist(b, α)). The same transformation applies if next is
in the left side of the above expression. This way we can
move every occurrence of ”∃ε∀α(0 < α < ε → . . . ” to
the front of the specification formula, thus reducing it to the
form: ∃ε∀α(0 < α < ε → A1(α) ∧ A2(α)...).

Let Spec(α) denote the formula A1(α) ∧ A2(α)....
Spec(α) specifies the system state after α time instants, as-
suming that α is in the future interval (between 0 and ε) in
which the system has an analytic behavior. Spec(α) rep-
resents a snapshot of the system in α time units after now
much in the same way as the Maclaurin series expansion of
an analytic function f represents the value of f around 0.
Note that Spec(α) does not contain any next operator and
every analytic function is substituted by its value after α
time units.

One could derive Spec(α) from Spec simply by replac-
ing every occurrence of next(x) by dist(x, α) and every ana-
lytic function f by f(α) (assuming that α is a fresh variable
never used before); alternatively one could write Spec(α)
from scratch by considering the state of the system at the
time instant α time units from now assuming that the sys-
tem is stable until then.

Example 3 For the thermostat, Spec(α) is composed of the
following formulas (compare with those of Example 2):
Astate1(α) : state = Heat ∧ T ≥ 9 →

dist(state, α) = Heat ∨ dist(state, α) = Cool
...

AT1(α) : dist(state, α) = Heat → dist(T, α) = T + α
AT2(α) : dist(state, α) = Cool →dist(T, α) = T − 3 · α

Can we use Spec(α), a substantially simpler version of
the specification formula Spec, to analyze the system and
to prove its desired properties? Of course Spec(α) is not
a correct system specification, because the assumption that
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Figure 3. Possible behaviors of the thermostat

the system has an analytic behavior from the current time
now to now + α may be wrong for some now and some
α. However, the formula ∃ε∀α(0 < α < ε → Spec(α))
holds at every time instant, therefore there always exists an
ε′ such that Spec(α) is a correct specification of the system
for α between 0 and ε′.

Therefore the answer to the above question is positive
just like in mathematical analysis one could use the Maclau-
rin series expansion of a function f(x) to analyze the func-
tion f about 0. The following theorem introduces the use of
Spec(α) instead of Spec.

Theorem 1 Using Spec(α) to prove next(A):
∃ε∀α (0 < α < ε → (Spec(α) → Dist(A, α))) �

Spec → next(A)

Notice that the schema Γ � ∆ of this theorem means
that proving Γ is sufficient to prove ∆. Thanks to this the-
orem, if designers want to prove that next(A) is implied
by the system specification Spec, then they can instead use
Spec(α) (which is significantly simpler than Spec) to prove
Dist(A, α).

Example 4 As a simplest example, assume that a system
has one state variable x and Spec is x = 0 → next(x) =
3 ·ramp0. Spec(α) is then x = 0 → dist(x, α) = 3 ·α. Let
x = 0 → next(x < 1) be the desired property. Instead of
proving Spec → x = 0 → next(x < 1), one can prove that
Spec(α) → x = 0 → Dist(x < 1, α) for an α between
0 and a suitable ε. By substituting Spec(α) by its actual
expression, the proof is reduced to (x = 0 → dist(x, α) =
3 · α) → x = 0 → Dist(x < 1, α), which trivially holds
for every α < 1/3. �

4.1. Induction

So far we have considered only the system in a generic
current time instant and we have specified by Spec and
Spec(α) the next system state. We have assumed that our
specification Spec holds forever and we have left an Alw
implicit. From now on no outermost Alw operator will be
assumed. As explained in Section 2 we assume that the

properties of interest are interval-based and left continuous.
We introduce now the following form of induction: if A is
true now and A → next(A) holds in the future (now in-
cluded), then A holds always in the future.

Theorem 2 A ∧ AlwFi(A → next(A)) � AlwFi(A)

One can use Theorem 2 to prove that a formula A is an
invariant of the system by proving that Spec implies A and
AlwFi(A → next(A)). However, as already noted in Sec-
tion 4, the direct analysis of Spec may be very difficult. One
could analyze Spec(α) instead and apply the following the-
orem which combines Theorem 1 and Theorem 2 and intro-
duces the use of induction over Spec(α).

Theorem 3 A ∧ ∃ε∀α(0 < α < ε → (Spec(α) → (A →
Dist(A, α))))� AlwFi(Spec) → AlwFi(A)

This theorem constitutes the theoretical foundation of
our deductive approach encoded in SAL as explained in the
following section.

5. Encoding Our Approach In SAL

Although the theorems presented in the previous section
can be used to prove system properties by hand, the frame-
work was devised to be automated. In this section we show
how our approach can be embedded into SAL, a tool for
the automatic analysis of state machines [13]. SAL adopts
a discrete time model and SAL specifications describe the
evolution of state variables as a consequence of the transi-
tion from one state to the next one. SAL includes explicit-
state model, symbolic and bounded model checkers. In par-
ticular the bounded model checker can analyze infinite state
space using various ground decision procedures.

We encode the original specification Spec in SAL as fol-
lows. We add α as a new variable of type REAL ranging
between 0 and a numeric constant ε. Every monitored or
controlled variable of the system is translated into a state
variable. The behavior of the system is given in terms of
Spec(α), translating every dist(x, α) in x′ (which represents



thermostat: CONTEXT = BEGIN

State: TYPE = {Heat, Cool};

alpha:{x : REAL | x > 0 AND x < 10};

main: MODULE = BEGIN

OUTPUT temp : REAL

OUTPUT state : State

INITIALIZATION state = Heat; temp = 6

TRANSITION

state’ IN

IF state = Heat THEN

IF temp >= 9 THEN {Cool, Heat}

ELSE {Heat} ENDIF

ELSE IF temp <= 6 THEN {Cool,Heat}

ELSE {Cool} ENDIF ENDIF;

temp’ =

IF state’ = Heat THEN temp + alpha

ELSE temp - 3 * alpha ENDIF END;

Figure 4. SAL specification of the thermostat

in SAL the value of x in the next state) and every function
f with its value in α .

The infinite bounded model checker (BMC) of SAL is
based on induction and decision procedures over �. In or-
der to prove AlwFi(A) we ask BMC to derive G(A) where
G is SAL’s operator corresponding to AlwFi in the discrete
time. To prove G(A), BMC proves both A and A → A ′.
Since the SAL specification contains the free variable α
declared as a real value ranging between 0 and a numer-
ical constant ε, BMC proves in fact that ∀α(0 < α <
ε → (A → A′)). In our translation in SAL A′ is equiv-
alent to Dist(A, α), and ε is a constant, hence BMC proves
that ∃ε∀α (0 < α < ε → (A → Dist(A, α))), which con-
stitutes the fundamental part of the premise of Theorem
3. Therefore, thanks to Theorem 3, the proof of G(A) in
SAL by induction on a discrete set of states, ensures that
AlwFi(Spec) → AlwFi(A) holds in continuous time.

Proving Properties. We encoded the linear thermostat in
SAL. The first version of the SAL specification is shown in
Figure 4.

In the SAL encoding, next(state) becomes state’ and
next(T ) becomes temp’. The non determinism in the
change of state is specified by {Cool, Heat}, that de-
notes any value in {Cool, Heat}. We started assuming
that alpha is a real number greater than 0 and less than
10. Notice that this assumption may not suffice for some
properties, as it will be discussed next.

This initial specification does not contain the invariants
yet. To formalize the state invariants we introduced the fol-
lowing formula:
stateInv: OBLIGATION main |-
G((state = Heat => temp <=10) AND (state =

Cool => temp >= 5));

We had to introduce the invariants in this way, because
unfortunately SAL does not allow the introduction of sys-
tem invariants as axioms in the specification.

The first property we tried to prove states that in Heat
the temperature is always less then 20.
th1: THEOREM main |-

G( state = Heat => temp <=20);
To prove this property we ran the command: sal-inf-bmc

-i –lemma=stateInv thermostat.sal th1, where the option -i
forces SAL to use induction, and –lemma=stateInv includes
the lemma stateInv as axiom in the proof. SAL is not able
to prove this theorem and provides a counterexample: alpha
+ alpha + alpha + alpha + alpha + alpha + alpha + alpha +
alpha + alpha + 6 > 20. Analyzing the counterexample we
understand that if alpha can be great enough, then the tem-
perature in one or more steps could overcome the value of
20. This counterexample can no longer be found if we in-
troduce an upper-bound for alpha that is small enough. We
modified the SAL specification and in particular the defini-
tion of alpha, as follows:
alpha: { x: REAL | x > 0 AND x < 1/10 };

With this bound, proving the same property th1 was im-
mediate. SAL also proved other theorems and the main sys-
tem invariant stating that the temperature is always between
5 and 10:
th5: THEOREM main |-

G((temp >=5) and (temp <=10));

6. Related work

We can classify our approach as deductive and symbolic
because we mainly use decision procedures to prove that a
desired property holds starting from a set of requirements
given as specification. The most used technique for the ver-
ification of timed systems is the algorithmic analysis of hy-
brid timed automata [1]. For a survey and an assessment of
the state of the art in this field see [22]. An unifying the-
ory of this approach that shows how a hybrid system with
infinite state space can be abstracted to a purely discrete sys-
tem preserving all the properties of interest is presented in
[3]. This technique has been implemented in several tools
and successfully applied to timed automata [2], i.e. hybrid
automata where all continuous variables are clocks that ad-
vance with derivative 1 and guards are of type x ≤ c where
c are numerical constants. For such automata there exist
a very compact representation of the state space which al-
lows efficient algorithmic analysis by means of automatic
tools. For instance, Uppaal is an integrated tool environ-
ment for modeling, validation and verification of real-time
systems modeled as networks of timed automata, extended
with data types (bounded integers, arrays, etc.) [9]. Note
that for timed automata the reachability problem is decid-



able, tough it is PSPACE-complete [2, 20]. The algorith-
mic approach has been extended to linear hybrid automata
[1] and to hybrid automata with linear differential equa-
tions [4], also called linear hybrid systems. Although for
these systems the reachability problem becomes in general
undecidable, there exist many classes of automata for which
the reachability problem is still decidable. Some strong
constraints about the linear equations are necessary to com-
pute exactly and efficiently the state space. For example,
for multirate automata and for rectangular automata, where
all analog variables follow trajectories within piecewise-
linear envelopes and are reinitialized whenever the envelope
changes, there exists an algorithm that can solve the reacha-
bility problem [20]. Another approach is to approximate the
set of reachable states by polyhedrons or ellipsoids. This
approach is for instance implemented in the tool d/dt [6]
or in the tool HyTech [19]. Although approximation algo-
rithms may not terminate or may not solve the verification
problem, they have been successfully applied to the verifi-
cation of real hybrid systems.

The clocked transition systems (CTS) [10] are another
interesting extension of timed automata. CTS allow a fi-
nite number of discrete transitions which do not modify the
values of clocks (i.e. time does not progress). In addition
to algorithmic verification of finite-state systems, the CTS
model supports also deductive verification and it can be ex-
tended to hybrid systems. In this case, the verification is
mainly done by means of a rule similar to our induction
theorem and it is supported by an experimental tool STeP.
In CTS, time is replaced by a general (master) clock which
is incremented by a specific action (tick) to be fired when
the designer wants to advance the time. Since in general
this allows time not to progress, Zeno behaviors are possi-
ble; they can however be excluded by proving that eventu-
ally tick must fire after a finite number of actions. In our
approach we assume non-Zeno behavior, Zeno sequences
are excluded by construction and there is no need to prove
non-Zenoness. Moreover in our approach, there exists an
unique system state at every time instant, leading to a more
intuitive notion of current and next state of the system.

On the other hand, discrete time remains the most ap-
pealing temporal domain, since it allows enumerative and
symbolic techniques (like BDDs), which however are not
applicable to a dense time. Many authors have tried to
represent continuous change with discrete time and to re-
duce verification problems for hybrid automata to verifica-
tion problems for discrete systems which are decidable [7].
In [8] the authors show how the discretization can introduce
a small error, which can be taken into account when reason-
ing and how the time can be discretized not in a fixed way
but based on different granularities to avoid errors. In [11]
the authors show how the verification of continuous sys-
tems can be performed better by using a discrete time and

discrete timed automata (whenever possible) than by using
the classical algorithmic analysis of hybrid systems in dense
time.

There exist several deductive and symbolic approaches
for timed system verification, generally based on tempo-
ral logics or other temporal formalisms. [16] introduces a
framework for the verification of real time systems based
on TRIO and the theorem prover PVS. Another temporal
logic widely used for specification and verification is the
Duration Calculus (DC) [12]. DC is an interval temporal
logic based on Moszkowski’s (discrete time) interval logic.
DC was the first to introduce the concept of an integrat-
ing (duration) operator, which is convenient for reasoning
about intermittent system behavior. Time is dense and vari-
ables keep their value in temporal intervals. The paper [23]
presents the DC encoding in the theorem prover PVS, called
PC/DC. Particular strategies are implemented to apply in a
user friendly way the rules as defined in PVS. Some ap-
proaches prefer to embed directly the timed systems in the
deductive tool. These approaches require skill and inge-
nuity in specifying and particularly in proving system cor-
rectness. The approach presented in this paper is similar
but strives to simplify the framework, and hence the proofs,
to favor their automation by means of theorem provers or
model checkers.

This paper was partially inspired by the work done in
SAL by Dutertre and Sorea [14]. In their approach a
timed automaton encoded in SAL can alternatively per-
form two types of transactions either a discrete transaction
(regular) which changes the system state without time
progress or a time-progress transaction (elapse) which in-
creases the time by δ by adding δ to each clock of the sys-
tem. The value of δ to be added in a elapse transaction is
constrained in a finite range to avoid that invariants become
false. In our approach we prefer to permit time progress and
discrete transaction simultaneously, leading to a more uni-
fied treatment of the system transactions and actions. Our
approach could be described as "merging" together elapse
and regular transactions. The approach of [14] is similar to
the one taken by the I/O automata and Lynch-Vaandrager
timed automata. For the verification of properties of these
types of automata, there exists a powerful deductive prov-
ing system called TAME embedded in the theorem prover
PVS [5]. The main goal of TAME is not automatic proving
but helping the designer to perform proofs by means of in-
tuitive powerful commands (assisted by the tool) similar to
the classical steps normally found in proofs done by hand.

7. Conclusions and Future Work

We have presented a framework to demonstrate proper-
ties for hybrid systems in a continuous time by using tech-
niques typically used for discrete time systems like the tem-



poral induction. This technique relies on the fact that the
system is non-Zeno, that all specification items have a reg-
ular behavior, and that they are modeled in terms of a few
predefined simple but very general entities (e.g. left contin-
uous interval variables, ...).

We plan to realize a small tool that translates hybrid sys-
tems directly to ICS bypassing SAL, and providing a library
of facts that ICS is not able to prove and are generally neces-
sary to complete the proofs. Then we intend to apply our ap-
proach to further and more complex examples (like those in
[1]) and compare our results with the algorithmic approach.
We intend to consider alternatives to ICS for decision pro-
cedures, especially for non linear equations.

We also plan to select a meaningful set of examples of
hybrid systems, for instance the benchmark of [15], and
compare the expressive power and the tool support of the
approach presented in this paper and the approaches and
techniques presented in Section 6.

Our framework could be applied to prove the correct-
ness of a discrete controller, provided that it works at a rate
which is greater than 1/ε , where ε is the numerical constant
for which we have proved the correctness of the continuous
system.

We finally point out that, by using decision procedures,
we allow parametric specification and verification. Such
parametric analysis is very useful (the HyTech feature of
parametric verification is quite often used in practice) and
our symbolic approach may be better suited to it than the
algorithmic approach.
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