
Test Generation for Sequential Nets
of Abstract State Machines?

Paolo Arcaini1, Francesco Bolis2, and Angelo Gargantini2

1 Dip. di Tecnologie dell’Informazione, Università degli Studi di Milano, Italy
paolo.arcaini@unimi.it

2 Dip. di Ing. dell’Informazione e Metodi Matematici, Università di Bergamo, Italy
{francesco.bolis,angelo.gargantini}@unibg.it

Abstract. Test generation techniques based on model checking suffer
from the state space explosion problem. However, for a family of systems
that can be easily decomposed in sub-systems, we devise a technique to
cope with this problem. To model such systems, we introduce the notion
of sequential net of Abstract State Machines (ASMs), which represents a
system constituted by a set of ASMs such that only one ASM is active at
every time. Given a net of ASMs, we first generate a test suite for every
ASM in the net, then we combine the tests in order to obtain a test
suite for the entire system. We prove that, under some assumptions, the
technique preserves coverage of the entire system. We test our approach
on a benchmark and we report a web application example for which we
are able to generate complete test suites.

1 Introduction

Model-based testing (MBT) aims to (re)use models and specifications for soft-
ware testing. One of the main applications of MBT consists in test generation
where tests are automatically generated from possibly partial and abstract mod-
els of the system under test. We here assume that MBT is performed in a typical
black-box way: test suites are derived from models and not from source code.

Although MBT and test generation from models are rather mature topics in
software testing and several approaches and tools exist [15], MBT for complex
software systems is still an evolving field and its scalability is still questionable.

In a recent and still ongoing MBT project, we have tried to model web appli-
cations with Abstract State Machines (ASMs) and use a tool for test generation.
Since the used technique is based on model checking [9], one of the main obsta-
cles has been the scalability of the approach and soon we encountered the well
known state space explosion problem. Indeed, the problem of the model check-
ing method is that the computational complexity increases in an exponential
mode together with the size of the model. Several techniques exist to overcome
this limitation, like symbolic representation of states, compact storing of states,

? The second author has been supported by the project Ricerca Applicata per il Ter-
ritorio - Berg. II - Regione Lombardia and Alcatel-Lucent Spa

and efficient state space exploration. However, these techniques may still fail or
weaken the coverage of the state space.

On the other hand, the system under test may have some peculiarities that
can be exploited to limit the state explosion. We focus on systems that are
composed of independent sub-systems that pass the control to each other such
that only one sub-system is active at any time. In a web application, for instance,
only one page is active at any time.

Such systems can be modeled as sequential nets of ASMs, defined in Sect.
3, that are sets of ASMs having some features including that only one ASM is
active at every time.

In Sect. 4 we present a technique that is able to generate tests for a net of
ASMs, reducing the state explosion. A test suite that covers every single machine
is generated. These test suites are combined in order to obtain a test suite for
the whole system. Under some assumptions, this technique preserves coverage
of the entire system and reduces considerably the effort required to generate the
whole test suite, as reported in the experiments using a benchmark example (in
Sect. 5) and a simple web application (in Sect. 6).

2 Background

Software testing is a costly and time-consuming activity; specification-based (or
model-based) testing [10] permits to considerably reduce the testing costs. In
specification based testing, a specification describes the expected behavior of
the system, and can be used as a test oracle to assess the correctness of the
implementation. Moreover, specifications are also usually used to define test
adequacy criteria, that determine if a test suite is adequate to test a software;
various techniques exist to generate test sequences from formal specifications.

We assume that the reader is familiar with the ASMs [3]. In the following we
give some basic definitions about test generation from ASMs.

Definition 1. A test sequence (or test) is a finite sequence of states s1, . . . , sn
whose first element s1 is an initial state, and each state si (with i 6= 1) follows
the previous one si−1 by applying the transition rules. The final state sn is the
state where the test goal is achieved.

Definition 2. A test suite (or test set) is a finite set of test sequences.

Definition 3. A test predicate is a formula over the state and determines if a
particular testing goal is reached. A coverage criterion C is a function that, given
a formal specification, produces a set of test predicates. A test suite TS satisfies
a coverage criterion C if each test predicate generated with C is satisfied in at
least one state of a test sequence.

Several coverage criteria have been defined in [9] for ASMs. One of the basic
criteria for ASMs is the rule coverage. A test suite satisfies the rule coverage
criterion if, for every rule ri, there exists at least one state in a test sequence in
which ri fires and there exists at least a state in a test sequence in which ri does
not fire.

2.1 Test generation for ASMs by Model Checking

In order to build test suites satisfying some coverage criteria, several approaches
have been defined. In this paper we use a technique based on the capability of the
model checkers to produce counterexamples [7]. The method consists of steps:

1. The test predicates set {tpi} is derived from the specification according
to the desired coverage criteria;

2. The specification is translated into the language of the model checker;

3. For each test predicate tpi the trap property �¬tpi is proved, where �
means always. If the model checker finds a state s where tpi is true, it stops and
returns as counterexample a state sequence leading to s: such sequence is the
test covering tpi. If the model checker explores the whole state space without
finding any state where the trap property is false, then the test predicate is
said infeasible and it is ignored. In the worst case, the model checker terminates
without exploring the whole state space and without finding a violation of the
trap property (i.e., without producing any counterexample), usually because of
the state explosion problem. In this case, the user does not know if either the
trap property is true (i.e., the test is infeasible), or it is false (i.e., there exists a
sequence that reaches the goal).

In this paper we use the Asmeta framework3 and its ATGT tool [8], based
on the model checker SPIN [11].

3 Sequential Nets of Abstract State Machines

We focus our attention on those systems that are composed of independent sub-
systems that pass the control to each other, so that only one sub-system is active
at any time. Usually, in order to describe such kind of systems, a model of each
sub-system is developed. A model of coordination is needed for representing the
execution of the entire system, i.e., the activation/deactivation of sub-system
models according to their local decisions.

A typical example is that of web applications. In a web application just one
web page is active at any time, and the active page decides which is the next
page to be displayed. The coordination is performed by the web browser and the
web server that are responsible of closing the current page and visualizing the
next one (passing the control among pages).

3.1 Description of the web application case study

We describe a web application case study taken from [12] we used in our exper-
iments. There are six php pages in the web application under test and each of
them, as well as their corresponding ASM, is described below.

– index.php – It serves as the login interface for the website. A user is
required to enter a username and a password in order to access the other three
pages of the site. The Reset button clears all text entries, while the Submit
button opens up main.php, as long as the identification credentials are correct.
If any information is missing, an error message page is displayed.

3 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/

– error b.php – It is activated from index.php if any information is missing,
or username or password are wrong.

– main.php – It permits users to execute different actions. Specifically, users
can click on a link (at top left corner of page), upload a file by clicking on
the Browse button, enter text into a textbox, select a checkbox, and click on a
Submit button which loads random.php.

– error a.php – It is displayed if any information is missing in main.php.
– random.php – It permits users to execute actions not available in main.php.

Two links bring the user back to index.php and main.php. There are also drop-
down lists, radio buttons, and a Submit button which loads end.php.

– end.php – It serves as the end of the web application. The user has the
option of closing the web browser, or clicking on a link to return to index.php.

3.2 Definition of sequential net of ASMs

We assume that each component of the system is modeled with an ASM and we
introduce the notion of sequential net of ASMs as follows.

Definition 4. A sequential net of machines is a set of Abstract State Machines
M1, . . . ,Mn such that:

1. each machine has only one initial state,
2. the machine M1 is the initial machine,
3. only one machine is active at any time,
4. the active machine decides when and to which machine the control is passed,
5. the net is connected, i.e., each machine is reachable from the initial machine.

A sequential net of ASMs allows one to model a set of machines that do not
run in parallel, pass the control to each other, and do not share information,
although they share the same environment. We call the net sequential because
only one machine is running at any time, so the machines are not concurrent;
however, there may not be an unique sequence among the machines, since every
machine can decide the next machine depending on local decisions. A sequential
net is a graph, where each node is a machine and an arc is a transfer of control
between two machines.

A possible way to model every single machine Mi of the net, so that it can
signal the transfer of control, is the following:

1. add a domain AsmDomain = {M1, . . . ,Mn} to its signature;
2. add a 0-ary function currAsm of typeAsmDomain to its signature; currAsm,

in the initial state, must assume the value Mi;
3. write the main rule as follows: if currAsm = Mi then r mi[] endif where

r mi[] is a macro rule that contains the actions of the machine.

Every machine Mi can be independently executed. It executes some use-
ful actions until it changes the value of currAsm; after that any other step of
execution does not produce any change in the controlled part of the machine.

Example 1. Consider, for instance, the three ASMs shown in Codes 1, 2 and 3.
They constitute a sequential net of ASMs (see Fig. 1). For the sake of brevity,
we do not specify the internal actions of the machines.

asm M1
signature:

enum domain
AsmDomain = {M1, M2, M3}

monitored a: Integer
controlled currAsm: AsmDomain

definitions:
rule r m1 =

if a = 2 then
currAsm := M2

else if a = 5 then
currAsm := M3

else // do machine M1 actions
endif endif

main rule r main1 =
if currAsm = M1 then r m1[]
endif

default init s0:
function currAsm = M1

Code 1. Machine M1.

asm M2
signature:

enum domain
AsmDomain = {M1, M2, M3}

monitored b: Integer
controlled currAsm: AsmDomain

definitions:
rule r m2 =

if b = 2 or b = 30 then
currAsm := M1

else if b = 5 or b = 100 then
currAsm := M3

else // do machine M2 actions
endif endif

main rule r main2 =
if currAsm = M2 then r m2[]
endif

default init s0:
function currAsm = M2

Code 2. Machine M2.

asm M3
signature:

enum domain
AsmDomain = {M1, M2, M3}

monitored c: Integer
controlled currAsm: AsmDomain

definitions:
rule r m3 =

if c = 2 then
currAsm := M2

else if c = 5 then
currAsm := M1

else // do machine M3 actions
endif endif

main rule r main3 =
if currAsm = M3 then r m3[]
endif

default init s0:
function currAsm = M3

Code 3. Machine M3.

// M1

a=2
,,

a=5

((
M2

b=2∨b=30

ll
b=5∨b=100

,, M3
c=2

ll

c=5

hh

Fig. 1. Three ASMs constituting a sequential net.

3.3 Product machine

Several validation and verification activities can be performed directly on the
single machines. However, if we want to do a more general evaluation of the
system (e.g., simulation of the transitions among machines, or test generation
for the whole system), we must also provide a model of the coordination.

One possible simple way is to merge all the machines in an unique product
ASM as follows:

– the signatures of the machines are merged in a single signature; there is just
one copy of the AsmDomain domain and of the currAsm function in the
product machine;

– all macro rules (except the main rules) of the single machines are included;
– in the main rule r main, rules r mi[] are individually called according to the

value of the function currAsm;
– the initial states are merged; the function currAsm is initialized to the value

M1 (the first sub-system is active in the initial state).

Given the sequential net shown in Fig. 1, the product machine is the one
shown in Code 4.

4 Test Generation for Sequential Nets of ASMs

In order to efficiently test a system modeled as a sequential net of ASMs, it
is not enough to test the single sub-systems, since also the interaction among

asm ProductM
signature:

enum domain AsmDomain = {M1, M2, M3}
monitored a: Integer
monitored b: Integer
monitored c: Integer
controlled currAsm: AsmDomain

definitions:
rule r m1 = if a = 2 then currAsm := M2

else if a = 5 then currAsm := M3 else // do machine M1 actions
endif endif

rule r m2 = ...
rule r m3 = ...
main rule r main = if currAsm = M1 then r m1[]

else if currAsm = M2 then r m2[] else r m3[] endif endif
default init s0:

function currAsm = M1

Code 4. Product machine of the sequential net in Fig. 1.

them must be tested. So, we must generate test sequences that cover the whole
application and not just the single sub-systems.

The first idea is to derive the test sequences directly from the product ma-
chine that already contains all the interactions among sub-systems. However,
since test generation algorithms based on model checking may need to visit the
whole state space of the model, the generation of test sequences from the product
machine may suffer from the state explosion problem. It would be desirable to
have a method in which the model checking must be executed just on the single
machines and not on the product machine; indeed, it is computationally easier to
execute the model checker several times over small models, rather than execut-
ing it one time over a big model. The method should also provide a mechanism
for combining the test suites produced for the single machines in an unique test
suite to use for testing the whole system: the time taken by the combination of
the test suites should be negligible.

4.1 Generating the test suites for every machine

We use model checking as in [9] to generate a test suite for every ASM. Given the
test sequences of a machine Mi, we define inner those sequences that terminate
in a state in which currAsm is Mi, and exiting those sequences that terminate
in a state in which currAsm is Mj (with j 6= i). Inner test sequences keep the
control of the net in the current machine, whereas exiting sequences pass the
control to another machine.

4.2 Building the test sequence graph

The generated test sequences constitute a graph, called test sequence graph,
where every node is a machine and every arc is a test sequence. Test sequences
that do not change the current machine are self loops of a node; test sequences
that change the current machine, instead, are arcs between different nodes.

4.3 Combining the tests by visiting the test sequence graph

The algorithm used to visit the graph and build the combined test sequences is
shown in Alg. 1.

Algorithm 1 Visiting the test sequence graph. Procedure visitGraph.

Require: the node n to visit
Require: a test sequence prefix that permits to reach the node
1: visitedNodes← visitedNodes ∪ n
2: testSet← testSet ∪ prefix
3: for arc ∈ outArcs(n) do
4: prefixToFn← prefix + testSeq(arc)
5: if finalNode(arc) 6∈ visitedNodes then
6: visitGraph(finalNode(arc), prefixToFn)
7: else
8: testSet← testSet ∪ prefixToFn
9: end if

10: end for

The procedure executes a depth-first search of the graph. It takes as argument
a node n to visit and a test sequence prefix that permits to reach n; n is marked
as visited (line 1) in order to not be visited again and prefix is added to the test
suite testSet we are building (line 2). Then, for each exiting arc of n

– the new prefix prefixToFn is built concatenating the current prefix with the
test sequence that brings to the final node fn of the arc (line 4);

– if fn has not already been visited, fn is visited using as prefix prefixToFn
(line 6); otherwise, prefixToFn is added to the test suite (line 8).

The procedure visitGraph is invoked using as argument the initial machine
M1 of the net and the empty test sequence ε.

Note that the visit of the test sequence graph has linear complexity with
the number of arcs and nodes and it requires a negligible amount of time with
respect to the generation of the test suites.

It is straightforward to prove that the test sequences obtained with the pre-
sented algorithm are valid sequences for the product machine.

4.4 Coverage

We are interested in investigating the relationship between the coverage provided
by a test suite obtained from the single machines and the coverage provided by
using the product machine instead.

Definition 5. A coverage criterion C is preservable if any test suite TS, ob-
tained by the combination of tests suites TS1, . . . , TSn that satisfy C over the
single machines M1, . . . , Mn, satisfies C over the product machine.

If a criterion is preservable, we can satisfy it on the product machine deriving
the test sequences from the single machines and combining them later. The rule
coverage criterion, for example, is preservable because of the following reasons:

1. by definition of sequential net, every machine is reachable starting from the
initial machine; in each single machine Mi, every transition from Mi to
another machine is specified with the update of the currAsm function;

2. if the rule coverage criterion is satisfied in every machine, it means that every
rule is executed, including all the updates of the function currAsm. So, for
each transition, there is a test sequence that contains it;

3. by construction, the visitGraph algorithm assures that, if a node of the test
sequence graph is reachable, a test sequence that reaches that node is built;

4. in the main rule, the product machine describes the sequential net without
adding or removing any transition: at each step it simply executes the rule
of the machine specified by currAsm.

4.5 Limits of the approach

The major limit of the proposed approach is that not all criteria are preservable.
A criterion, in order to be preservable, must satisfy a necessary (but not suffi-
cient) condition: it must require that, for each machine Mi (with i 6= 1), there
exists a test sequence of another machine that reaches Mi. The rule coverage
criterion satisfies such condition, since it covers all the transitions to other ma-
chines. Let’s see a criterion that, since it does not satisfy such condition, is not
preservable:

Cnp: A test suite satisfies the criterion Cnp if every macro rule ri is fired
in at least one test sequence.

Let’s see the test generation process using Cnp. Let Ma and Mb be two
ASMs, shown, respectively, in Code 5 and 6, that constitute a net. The product
machine is shown in Code 7.
asm Ma
signature:

enum domain AsmDomain = {Ma, Mb}
monitored gA: Integer
controlled currAsm: AsmDomain

definitions:
rule r mA = if gA > 0 then

currAsm := Mb endif
main rule r mainA =

if currAsm = Ma then r mA[] endif
default init s0:

function currAsm = Ma

Code 5. Machine Ma.

asm Mb
signature:

enum domain AsmDomain = {Ma, Mb}
monitored gB: Integer
controlled currAsm: AsmDomain

definitions:
rule r mB = if gB = 0 then

currAsm := Ma endif
main rule r mainB =

if currAsm = Mb then r mB[] endif
default init s0:

function currAsm = Mb

Code 6. Machine Mb.

��
Ma

gA>0

Mb

gB=0

JJ

asm ProductMaMb
signature:

enum domain AsmDomain = {Ma, Mb}
monitored gA: Integer
monitored gB: Integer
controlled currAsm: AsmDomain

definitions:
rule r mA = if gA > 0 then currAsm := Mb endif
rule r mB = if gB = 0 then currAsm := Ma endif
main rule r main = if currAsm = Ma then r mA[] else r mB[] endif

default init s0:
function currAsm = Ma

Code 7. Product machine of the machines Ma and Mb.

In the machine Ma, the criterion Cnp is satisfied if there exists a test sequence
in which the macro rule r mA fires; Cnp is satisfied, for example, by the test suite

TSA = {tsA} = {[(gA = 0, currAsm = Ma), (gA = 0, currAsm = Ma)]}. In
the machine Mb, Cnp can be satisfied if there exists a test sequence in which
the macro rule r mB fires; it is satisfied, for example, by the test suite TSB =
{tsB} = {[(gB = 0, currAsm = Mb), (gB = 1, currAsm = Ma)]}4. The test
sequence graph obtained from test suites TSA and TSB is shown in Fig. 2.

Fig. 2. Test sequence graph obtained with the criterion Cnp over Ma and Mb.

The test suite obtained from the visit of the test sequence graph is TSAB =
{tsA} = {[(gA = 0, gB = 345, currAsm = Ma), (gA = 0, gB = 7, currAsm =
Ma)]}, where the values of gB are randomly chosen. In the product machine
ProductMaMb, shown in Code 7, Cnp is not satisfied using the test suite TSAB ,
since macro rule r mB never fires.

Nevertheless, it is possible to build a test suite that satisfies the criterion Cnp

in ProductMaMb, such as TSP = {[(gA = 1, gB = 235, currAsm = Ma), (gA =
456, gB = 1, currAsm = Mb), (gA = 73, gB = 3, currAsm = Mb)]}.

Another limit of our approach is that the model checker may fail to find
any test sequence that reaches one machine, although such sequence would be
required by the (preservable) criterion. This may happen, for instance, because
of the state explosion problem in a single machine. Of course, if this case occurs,
it would be even more likely that the model checker would fail on the product
machine as well.

The assumption that the machines do not share information limits the ap-
plicability of our technique. It can be applied only if the different sub-systems
modeled by different ASMs either do not share any information or share infor-
mation that does not influence the behavior of the machines. For instance, in
the case study application of Sect. 3.1, all the pages share the username (which
is shown in the web pages) and the session information, which, however, do not
appear in the ASMs since they do not influence the behavior. If the web pages
shared behavioral information, then our approach would not be applicable. We
plan in the future to introduce in sequential nets of ASMs also a way for the
machines to share information.

5 Initial Experiment

In order to evaluate our approach, we have experimented it with a small system.
It resembles the combination lock finite state machine [13], for which generating
a transition covering test suite becomes exponentially expensive. The problem
is that of discovering the key of an electronic combination lock made of n digits

4 Any not empty test suite (with any value for monitored functions gA and gB)
satisfies the criterion over machines Ma and Mb because the execution of macro
rules r mA and r mB does not depend on the evaluation of any guard.

M1
a1=1 // M2

a2=1 //

a2>x/2

��
M3

a3=1//

a3>x/2

?? · · ·Mi · · ·
an−1=1 //

ai>x/2

��
Mn

an>x/2

??

Fig. 3. The sequential net of ASMs for the combination lock problem.

having values from 1 to x. We have modeled the system as a sequential net of
ASMs (see Fig. 3). The net is composed of n machines; every machine Mi has
a monitored function ai in the range [1, x]. If ai (with i = 1, . . . , n − 1) takes
the specific value 1 then the next machine Mi+1 becomes active; if aj (with
j = 2, . . . , n) becomes greater than x/2 then the system goes back to machine
M1, otherwise the machine Mj remains active.

We have evaluated our method depending on the number of digits (machines)
n and/or the base x (the cardinality of the codomain of functions ai).

For each combination of n and x we have built n single machines, where each
machine has nx states since the signature of each machine Mi is composed of
two 0-ary functions, ai and currAsm, whose codomain sizes are, respectively,
x and n. Then we have built the unique product machine that has nxn states,
since there are n 0-ary functions whose codomain size is x, and a 0-ary function
whose codomain size is n.

Then we have generated the test sequences both for the product machine
and for the sequential net of machines by the method introduced in this paper.
As expected, we discovered that it is easier to execute n times the model checker
over the single machines rather than executing the model checker one time over
the product machine. The results of the experiment are shown in Fig. 4; the
dependence between the execution time and the number of single machines n is
reported. If the single machines are used, the execution time grows linearly with
the number of machines; if the product machine is used, instead, the execution
time grows exponentially with the number of machines. We made several exper-
iments with different values for x (the cardinality of the codomain of functions

Fig. 4. Model checker executions times (sec.).

ai); as expected, in the product machine the value of x influences the execution
time (even for small changes of x), whereas in the single machines it is irrelevant.
We report the experiments made with the product machine with x equal to 10,
20 and 50, and the experiment made with the single machines with x equal to 50.
We set a time limit of 1 hour for each experiment setting. All the experiments
were executed on a Linux PC with 8 Intel(R) Xeon(R) CPUs E5430 @ 2.66GHz
and 8 GB of RAM.

Test suite sizes In Table 1 we report the sizes of the test suites obtained
using the sequential net method and the product machine method. We report
the sizes obtained with different number of machines; we do not report the value
of x because it does not influence the test suite size.

ASMs 1 2 3 4 5 6

Sequential net 3 5 7 9 11 13

Product machine 3 7 11 15 19 n/a
Table 1. Test suite size.

From our experiments it seems that the test suites derived from the test se-
quence graph are smaller than those obtained directly from the product machine.
However, we must notice that this can not be taken as a general law; we plan
to do additional experiments to define more clearly the relationship between the
sizes of the test suites obtained with the two methods.

Code coverage As sanity check, we measured also the code coverage obtained
by using the two methods. We implemented the system, previously specified in
ASM, into Java and translated the test suites in JUnit. We obtained the same
code (statement and branch) coverage by using both the test sequences generated
from the product ASM and from the sequential net.

6 Model-based Testing of Web-based Applications

We have studied the test generation for sequential nets of ASMs in the context of
MBT of web-based applications [6]. In this context, every machine represents a
single page of the application. The main purpose is to automatically generate test
cases for web applications using a model-based approach. This is accomplished by
first creating an ASM for each web page of the web application; in this scenario
the AsmDomain can be interpreted as the set of web pages and the currAsm
function as the current active page. The methodology introduced in Sect. 4 is
applied to obtain a test suite for the whole web application; finally, each test
sequence can be mapped to a SAHI script [1] to exercise the tests directly on
the web application. In the following we report the experiment made with the
case study described in Sect. 3.1.

Modeling every page with an ASM The first idea was modeling the com-
plete web application with a single ASM. The model construction was feasible
but the model checking was not able to complete the test generation. So, we
modeled the web application using a sequential net of ASMs where every page

is represented by an ASM and the domain AsmDomain is composed by the web
pages. The obtained sequential net is shown in Fig. 5.

error b
,,
indexoo ++

mainoo &&,,
randomoojj // end

ww
error akk

Fig. 5. Web-based application case study - Sequential net.

For translating a web page behavior into an ASM, we have put on a table
the inputs of the web page (e.g., the values of the text fields) and identified,
for every combination of inputs, a transition to another page or a set of state
updates. In this way we have built an ASM for each web page.

Test generation For the test generation we have used, as described in Sect.
4.1, the ATGT tool over each ASM, using as coverage criteria all those described
in [9].

Test sequence graph construction Then we have built the test sequence
graph (see Fig. 6) as described in Sect. 4.2. Each transition of the sequential net
has been covered in the test sequence graph.

Table 2 reports, for each ASM, the number of test sequences, divided between
inner and exiting.

index error b main error a random end

tests 24 3 36 3 45 2

inner - # exiting 18 - 6 1 - 2 26 - 10 1 - 2 32 -13 1 - 1
Table 2. Test sequences number.

Test sequence combination Then, we have applied the technique presented in
Sect. 4.3 in order to obtain a single test suite for the whole web application. The
obtained test suite contains 212 test sequences and it satisfies all the coverage
criteria used to generate the test suites over the single machines.

Fig. 6. Web-based application case study - Test sequence graph.

navigateTo(”index.php”);
setValue(textbox(”username”),”admin”);
setValue(textbox(”password”),”pwd”);
click(submit(”submit”));
click(checkbox(”agree”));
setValue(textarea(”text”),”someText”);

Code 8. SAHI script example.

Test of the web application Finally,
each test sequence of the test suite has
been automatically mapped to a SAHI
script; the execution of all the scripts
has permitted us to test all the aspects
of the web application. Code 8 shows
one of the produced SAHI scripts.

7 Related Work

Our approach tries to mitigate the state space explosion problem during model
checking for test generation. Traditionally several techniques attempt to solve
the same problem for the verification of properties. They share the concept of
building an abstract version of the original system that preserves properties.

The cone of influence (coi) technique [5] reduces the size of the transition
graph by removing from the model the variables that do not influence the vari-
ables in the property one wants to check. In [14] the cone of influence technique is
used to reduce the state space of fFSM models, a variant of Harel’s Statecharts;
models that could not be verified before, have been verified successfully after its
application. The data abstraction technique [5], instead, consists of creating a
mapping between the data values and a small set of abstract data values; the
mapping, extended to states and transitions, usually reduces the state space,
but it may not preserve properties. In [4] a technique to iteratively refine an
abstract model is presented. The technique assures that, if a property is true in
the abstract model, so it is in the initial model; if it is false in the abstract model,
instead, the spurious counterexample may be the result of some behavior in the
abstract model not present in the original model. The counterexample itself is
used to refine the abstraction so that the wrong behavior is eliminated.

For test generation, these techniques may need to be modified, since they do
not have to preserve properties but counterexamples to be used as tests. The coi
technique can be used as it is also for test generation, but it may not simplify
our models, since the currentAsm function, which is used in the test goals, may
be influenced by all the functions.

In [2] a web application is modeled by means of FSMs. They also face the state
explosion problem; they try to overcome it by partitioning a web application into
clusters that can contain web pages and other clusters. For each cluster an FSM
is built; an Application FSM represents the entire application. Test sequences
are derived from single FSMs. They share with us the need of decomposing the
model into smaller models in order to keep the state space size tractable. As
we do, they provide a technique for combining test sequences obtained from the
single FSMs into a test suite to be used for testing the whole web application. The
technique they propose also permits to propagate inputs among FSMs, while, in
our approach, we currently do not allow the ASMs to exchange any information.

8 Future work and Conclusion

We have tried to address the state explosion problem in test generation by model
checking. For sequential nets of ASMs, our approach makes the test generation

more scalable, without reducing the coverage obtained by the tests. Initial ex-
periments show that our approach provides excellent benefits. We plan to extend
the model of ASM nets by considering cases in which a single machine has sev-
eral initial states and the machines share some locations. In such case, we believe
that the test generation can not be done in advance for all the machines, but
the construction and the visit of the graph must be done together.

We assume that the designer keeps the models separated from the beginning;
as future work, we plan to study a methodology able, if possible, to split an
existing complex ASM in a sequential net of ASMs.

Although our method shows its great usefulness when used in combination
with (explicit state) model checking for test generation, we believe that any test
generation technique can benefit from dividing the model in sub-models, even
those techniques which do not suffer so much from the size of the model under
test.

References

1. Sahi website. http://sahi.co.in/.
2. A. A. Andrews, J. Offutt, and R. T. Alexander. Testing Web applications by

modeling with FSMs. Software and Systems Modeling, 4:326–345, 2005.
3. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer Verlag, 2003.
4. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement for symbolic model checking. J. ACM, 50:752–794, 2003.
5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
6. G. A. Di Lucca and A. R. Fasolino. Testing Web-based applications: The state of

the art and future trends. Inf. Softw. Technol., 48:1172–1186, 2006.
7. G. Fraser and A. Gargantini. An evaluation of model checkers for specification

based test case generation. In ICST 2009, 1-4 April 2009, Denver, Colorado,
USA, pages 41–50. IEEE Computer Society, 2009.

8. A. Gargantini and E. Riccobene. ASM-Based Testing: Coverage Criteria and Au-
tomatic Test Sequence Generation. J.UCS, 7:262–265, 2001.

9. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to Generate Tests from
ASM Specifications. In ASM 2003 - Taormina, Italy, March 2003. Proceedings,
LNCS 2589, 2003.

10. R. Hierons and J. Derrick. Editorial: special issue on specification-based testing.
Software Testing, Verification and Reliability, 10(4):201–202, 2000.

11. G. Holzmann. Spin model checker, the: primer and reference manual. Addison-
Wesley Professional, first edition, 2003.

12. A. M. Memon and O. Akinmade. Automated Model-Based Testing of Web Appli-
cations. In Google Test Automation Conference 2008, 2008.

13. E. F. Moore. Gedanken experiments on sequential machines. In Automata Studies,
pages 129–153, Princeton, 1956.

14. S. Park and G. Kwon. Avoidance of State Explosion Using Dependency Analysis
in Model Checking Control Flow Model. In ICCSA 2006, volume 3984 of LNCS,
pages 905–911. Springer Berlin / Heidelberg, 2006.

15. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan-Kaufmann, 2006.

http://sahi.co.in/

	Test Generation for Sequential Nets of Abstract State Machines

