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Abstract. We present a technique which generates from Abstract State
Machines specifications a set of test sequences capable to uncover specific
fault classes. The notion of test goal is introduced as a state predicate
denoting the detection condition for a particular fault. Tests are gener-
ated by forcing a model checker to produce counter examples which cover
the test goals. We introduce a technique for the evaluation of the fault
detection capability of a test set. We report some experimental results
which validate the method, compare the fault adequacy criteria with
some classical structural coverage criteria and show an empirical cross
coverage among faults.

1 Introduction

Specification-based testing aims to reduce the cost of testing and to increase
the reliability of safety critical systems. One benefit of a formal method is that
the high-quality specification it produces can play a valuable role in software
testing. For example, the specification may be used to automatically construct a
suite of test sequences. These test sequences can then be used to automatically
check the implementation software for faults. However, specification-based test-
ing is not widely adopted [34], while white box or program based testing is well
known and used in practice: many tools support it and software developers and
testers are familiar with it. In the wake of the success of program based testing,
specification-based testing criteria that mimic the coverage criteria for programs
have been proposed. They are generally called structural criteria because they
analyse the structure of the specification and require the coverage of particular
elements (like states, rules, conditions, and so on). Examples are the Modified
Condition Decision Coverage (MCDC), one of the most powerful criteria used in
practice, applied to Abstract State Machines [18] or the coverage of properties
and assertions for a program given by using the Assertion Definition Language
(ADL) as proposed by [10].

Since the aim of software testing is to demonstrate the existence of errors,
selecting tests that can reveal faults is of paramount importance. The fault de-
tection capability of structural criteria is not definitely assessed though. Recent
works hypothesize some classes of faults and analyze the fault detection capabil-
ity of most used criteria with respect to these classes of faults. The analysis can



be formal [28,30,31,33] and/or empirical [38]. The main result is that many cov-
erage criteria cannot assure the detection of several fault classes. For instance,
MCDC is unable to detect faults due to missing brackets in boolean expressions.
Stronger coverage criteria have been introduced (as in [28]) with the aim to de-
tect more faults, but still the relationship between coverage criteria and faults
is not well established and it is infeasible to evaluate the effectiveness of a test
criterion in general [22]. For example, it can be shown “that the fact that crite-
rion Cy subsumes criterion Cy does not guarantee that C; is better at detecting
faults [16]”.

Other papers define testing criteria focusing on certain classes of faults, which
model commonly committed mistakes. For instance, Weyuker et al. [38] introduce
the meaningful impact strategies for boolean expressions to target specifically
the variable negation fault that occurs when a boolean variable is erroneously
substituted by its negation. Chen and Lau develop three more powerful testing
strategies capable to detect several fault classes [11]. These criteria specify also
the algorithms (with some possible non determinism) which can be used for test
generation. Within this framework, assessing the fault detection capability of a
criterion with respect to other criteria is important, since one should choose one
criterion and generate the tests from it in accordance with the expected faults,
although experimental data show that resulting tests are generally effective for
detecting faults in other classes. The introduction of a new fault class would
require the definition of new criteria capable to detect it or the investigation
(formal or empirical) of the capability of existing criteria to detect it.

In this paper we introduce a novel approach which specifically aims at de-
tecting faults in an implementation given its specification. Specifications are
Abstract State Machines which are explained briefly in Section 2. We assume
(as [14]) that implementations contain only relatively simple faults (competent
programmer hypothesis) of the kinds introduced in Section 3 and that a test set
which detects all simple faults will detect more complex faults (fault coupling
effect). Our approach could appear similar to the mutation analysis [8], but it
does not require any mutation at all. Instead, we introduce in Section 4 the
detection condition for a fault and define adequacy criteria in terms of these
detection conditions. In Section 5 we present a method which uses the detec-
tion conditions to generate and to evaluate fault detecting tests. This method is
based on the counter example generation of the model checker SPIN [23]. Our
approach makes the introduction of a new fault class, the generation of tests de-
tecting these faults, and the evaluation of other tests easy to realize. In Section
6 we discuss experimental results, some of which were unexpected. Related work
is presented in Section 7.

2 Preliminaries

2.1 Abstract State Machines

Even if the Abstract State Machines (ASM) method comes with a rigorous sci-
entific foundation [9], the practitioner needs no special training to use the ASM



method since Abstract State Machines are a simple extension of Finite State
Machines, obtained by replacing unstructured “internal” control states by states
comprising arbitrarily complex data, and can be understood correctly as pseudo-
code or Virtual Machines working over abstract data structures. A complete in-
troduction on the ASM method can be found in [9], together with a presentation
of the great variety of its successful application in different fields as: definition
of industrial standards for programming and modelling languages, design and
re-engineering of industrial control systems, modelling e-commerce and web ser-
vices, design and analysis of protocols, architectural design, language design,
verification of compilation schemes and compiler back-ends, etc. ASM theory is
the basis of several languages and tools including the Abstract State Machine
Language by Microsoft [6] and the AsmGofer [36].

An ASM state models a machine state, i.e. the collection of elements and
objects the machine “knows”; and the functions and predicates it uses to manip-
ulate them. Mathematically, a state is defined as an algebraic structure, where
data come as abstract objects, i.e. as elements of sets (also called domains or uni-
verses, one for each category of data) which are equipped with basic operations
(partial functions) and predicates (attributes or relations).

In this paper we consider only single agent basic ASMs, whose behavior is
specified by a finite sets of so-called transition rules of the form

R = if ¢ then updates (1)
which model the actions performed by the machine to manipulate elements of
its domains and which result in a new state. The guard ¢ under which a rule
is applied is an arbitrary predicate logic formula without free variables, whose
interpretation evaluates to true or false. updates is a finite set of assignments of
the form f(t1,to,...,t,) :=t, whose execution is to be understood as changing
(or defining, if there was none) in parallel the value of the occurring functions
f at the indicated arguments t1,to,...,t, to the indicated value ¢t. A update is
not trivial if the value of f(t1,ts,...,t,) had a value different from the value of
t before the update.

A more general schema is the conditional rule of the form:
if ¢ then par R1,..,Rn endpar else par @Q1,..,Qn endpar endif (2)

The meaning is: if ¢ is true then execute R1,..., Rn in parallel, otherwise execute
Q1..., Qn. If Q1,..., Qn are omitted (since they are optional), from a semantic
view it is assumed that the else part is equal to skip, which is the empty rule
whose meaning is: do nothing

2.2 Test Sequence

Adapting to ASMs some definitions common in literature for state transition
systems [3,32], we define a test sequence or test as follows.

Definition 1. A test sequence or test for an ASM M is a finite sequence
of states (i) whose first element belongs to a set of initial states, (ii) each state
follows the previous one by applying the transition rules of M.



A test sequence ends with a state, which might be not final, where the test goal
is achieved. Informally, a test sequence is a partial ASM run and represents an
expected system behavior.

Definition 1 assumes the use of ASM specification as test oracle, since states
supply expected values of outputs. The importance of test oracles is well known,
since the generation of the sole inputs (often called test data) does rise the
problem of how to evaluate the correctness of the observed system behavior.

We define a collection of test sequences as follows.

Definition 2. A test set or test suite is a finite set of test sequences.

Given a predicate P over an ASM state we say that a test sequence t covers P,
if ¢ contains a state such that P is true in that state.

2.3 Structural Coverage Criteria for ASMs

We summarize the following coverage criteria, originally presented in [18]. They
are compared in Section 3 with the new fault based coverage criteria.

Basic rule (BR) coverage requires that for every guard (decision) there exists
a test which covers the case when the decision is taken (the guard is evaluated
true at least in one state belonging to a test sequence) and when the decision
is not taken (the guard is evaluated false).

MCDC requires the classical modified condition decision coverage in the mask-
ing form [12] to every guard in the ASM.

Complete rule (CR) coverage requires that for every rule, its guard is evalu-
ated true at least once and at least one update in the rules is not trivial.
Update coverage (UC) requires that for every update (in every rule) there exist

a test sequence in which the update is applied and is not trivial.

BR and MCDC can be classified as (model-based) control oriented coverage
criteria [39] as they consider only the control flow of the model, while CR and
UC can be classified as data flow coverage criteria, since they consider the value
of variable before its assignment to a possibly new value (this kind of an update
can be considered a new definition). Note that MCDC implies BR and UC
implies CR.

3 Fault Classes

While test coverage criteria like the CR and UC, presented in Section 2.3, aim
to detect faults in updates, in this paper we focus only on faults which may
occur in the guards of the ASM specification under test. Note that a fault in
a implementation is a cause that results in a failure [26], which is an erroneous
evaluation of a guard in the implementation in our approach. We consider only
faults originated by typical programmer mistakes like use of incorrect control
predicates, missing conditions, and the incorrect use or order of boolean and



relational operators in rule guards. These types of mistakes result in faults that
regard the conditions and their operators, where with condition we intend atomic
boolean expressions which cannot be further decomposed in simpler boolean ex-
pressions. A condition can be a boolean variable, like overridden, or a relational
expression like pressure > TooLow. We exclude faults inside conditions except
the incorrect use of relational operators (for instance the use of > instead of
<). We follow the notation proposed in [31]: a literal ! is an occurrence of a
condition inside a guard (note that a condition or a boolean variable may occur
several times in the same guard). While many papers [30,37,31] assume that the
boolean expressions are given in disjunctive normal form (DNF), we remove such
restriction (as in [33]). We study the following fault classes:

— Operand faults (i.e. regarding the literals or sub expressions):

LNF Literal negation fault. An occurrence of a condition (i.e. one literals) is
replaced by its negation. For example, from a A b A (a V b) we obtain the
following four faulty expressions: —aAbA(aVd), aA—bA(aVbh), aAbA(—-a VD),
and a AbA (aV —b)

ENF Ezpression negation fault. It consists of replacing a sub expression (but not
a condition or literal) with its negation. For example, from a AbA (aVb) 2 we
obtain the following three faulty expressions: ~(aAbA(a Vb)), =(aAb)A(aVd),
and a AbA —(a VD)

MLF Missing literal fault. It causes the absence of one literal or condition in
the formula. If the same condition occurs several times in the formula, we
introduce several faults and not just one. For example, from a Ab A (a V b),
we obtain the following four faulty expressions: bA (aVb), aA(aVb), a ADAD,
and a Ab A a.

STO0/1 Stuck at 0/at 1 fault. This is a classical hardware fault, which consists
in replacing an input with 0 or with 1. In our case, it causes a replacement
of a literal by false (STO0) or true (ST1). For example, from a AbA (aVb), we
obtain for the STO the following four faulty expressions: false Ab A (a V b),
a A false A (aVb), a NbA (false V), and a AbA (aV false). STOUL denotes
the union of STO and ST1, i.e. the replacement of a literal by false and true.

— Boolean Operator faults:

ASF Associative Shift fault. This fault is due to the misunderstanding about
operator evaluation priorities and missing brackets. For example from a A
b A (aVb) we would obtain by deleting the brackets (a AbAa) V b.

ORF Operator Reference fault. '\ is replaced by 'V’ and vice-versa. aAbA (aVb)
would be implemented as a AbV (aVb), (aVb)A(aVb),and a AbA (aAD).

L A literal is sometimes called clause as in [33], a condition is often called variable
especially in papers dealing with boolean specifications [31,30,37].

2 We assume that logical binary operators are left associative, hence a A b A (a V b)
must be read as (a Ab) A (a V b)
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Fig. 1. boolean fault hierarchy

Furthermore we add the following fault class, which introduces faults in relational
expressions with pattern F op F', where E and F' are either arithmetic expressions
or expressions of enumerative type and op is one of <, <, =, >, >, and #.

ROF Relational Operator Fault. Replace a relational operator by any other
relational operator (note that replacing an operator with its opposite is equal
to LNF). If the expression is an enumeration, then replace only = with #
and vice-versa (we allow only “equals” and “differs” comparison between two
enumerative values). For example, from z < ¢ one would obtain the following
faulty expressions: x > ¢,z > ¢, x =c¢, x # ¢, and x < c.

We have chosen LNF, ENF, MLF, ASF, and ORF because they are the most
studied faults in the literature [30,37,31]. ST0/1 faults are commonly considered
a realistic model of manufacturing faults in hardware circuit testing. ROF is
introduced and studied in [33] (called Relational Operator Reference Fault) and
models a typical software fault.

The hierarchy among fault classes for boolean expressions have been inten-
sively studied. For instance, empirical work [38] showed that tests generated to
detect variable negation fault (our LNF) always detected expression negation
faults. Kuhn proposed a rigorous approach to formally prove the existence of
a hierarchy among faults in boolean specifications given in normal form [30].
The initial hierarchy proposed by Kuhn was first enriched by [37] and then by
[31]. Okun et alt. [33] developed a novel analytic technique to find the hierar-
chy among faults of arbitrary boolean expressions, not just those in disjunctive
normal form. According to the results presented in the literature, the hierar-
chy among the fault classes used in this paper is presented in Figure 1, where
C1 — C5 means that every test suite able to detect C; detects Cy as well. In
this case, we say that C; is stronger than Cj.

Note that a pair of fault classes C; and C5 is proved to be independent in
the hierarchy when there exists a test suite which guarantees to detect faults of
C1 but not those of Cy and vice-versa. In our case, ORF, ROF, and ASF are
independent of each other and with all the other fault classes, and MLF, STO,
and ST1 are independent of each other. This fact has practical consequences:
since a test set 77 which detects a fault C; does not guarantee to detect Cj
and vice-versa, one should generate a test suite for C; and a test suite for Cs.
Therefore, one should generate a test suite for every independent fault class.
However, T7 may detect Co as well for the particular specification under test
and the generation for Co may be skipped. To assess the actual fault detection



capability of a test suite, we introduce in Section 5.1 a method to evaluate tests
with respect to possible faults in the specification under test and regardless of
the way such tests have been generated.

4 Discovering Faults

The erroneous implementation of a boolean expression ¢ as ¢’ can be discovered
only when the expression ¢ @ ¢’, called detection condition, evaluates to true,
where @ denotes the logical exclusive or operator. Indeed, ¢ ® ¢’ is true only
if ¢’ evaluates to a different value than the correct predicate ¢. The detection
condition is also called boolean difference or derivative [1].

Consider a simple rule R of an ASM specification M:

R = if ¢ then updates
Let M’ be the faulty implementation of M. Assume that the guard ¢ of R in
M is erroneously implemented as ¢’ in M’ due to the fault F, and that rule
updates are not all trivial. F' can be detected during testing only if there exists
a test sequence t containing a state s in which ¢ @ ¢’ is evaluated to true, i.e.
¢ and ¢’ have different values in s for M and M’. In this case, when we apply
t, the rule R fires in M and performs its updates but it does not fire in M’ or
vice-versa. The predicate ¢ & ¢’ is the detection condition of F' and it is called
test predicate or test goal. For example, if the guard = < c in the specification is
implemented as = < ¢, then the test goal is z < ¢ ® x < ¢ which is equivalent to
x = c¢. Only a test sequence containing a state s in which = ¢ can uncover the
fault.

Let ¢ be a guard and C be a fault class. We denote with F(yp) the set of
all the possible faulty implementations of ¢ according to the fault class C' (as
explained in Section 3). The test predicates to discover the fault C' in ¢ are the
expressions ¢ & ¢’ with ¢’ in Fo(¢). For example, if the guard is a Ab and C' is
the MLF, then Frr(a Ab) = {a,b} and the test predicates are the following
two expressions: (a Ab) @ a (which is a A —=b ) and (a Ab) b (which is ~a A b ).

In case of a nested rule of kind (2), test predicates must include the guards of
outer rules. Let ¢ be the guard of an inner rule R and g1, . . ., g, be the guards of
the outer rules or their negation (in case of else) such that if g1 A ... A g,, holds,
then R is executed (and its updates fired if ¢ is true). We call ¢1, ..., g, outer
guards of R. The test predicates to discover the fault C in ¢ are the expressions
AN AgnA(e® @) with ¢ in Fo(p).

Definition 3. Test Predicates. Let R be a rule in an ASM M, ¢ be its guard,
91,---,9n be the outer guards of R, and C be a fault class. The set I'c(R) of test
predicates is given by the expressions g1 A ... A gn A (p ® @) with ¢ in Fo(p).

A test suite is adequate to test the guard ¢ of a rule R with respect to a fault
class C' if it covers every test predicate generated for R and C:

Definition 4. Fault Detecting Adequacy Criteria. A test suite T is ade-
quate with respect to the fault class C' and the ASM M, if for every rule R of M



and for every test predicate tp in I'c(R) there exists a state s in a test sequence
of T such that the test predicate tp evaluates to true in s.

5 Generation of Tests

To automatically generate the test sequences which cover a set of test predicates,
we exploit the capability of the model checker Spin [23] to produce counter
examples. Model checkers have been successfully applied to formal verification
of properties, normally given in temporal logic, for systems modeled by means
of automata. They automatically perform the proof of a desired property p by
analyzing every possible system behavior, checking that p is true, and producing
a counter example in case the property p does not hold in the model. The counter
example is a possible system behavior that shows a case where the property p is
falsified.

_ Specification

Run Model Checker | reduce test suite

UL rTests ‘ Name: ASF_r_cruise_45_T
SREIRUGn | :|| Condition: (((cruiseControl == Cruise) && ignited) && engRur) && (LooFast) & (rake
-3 COVERAGES || staws:  Queued
o [ Structural Coverage Test it!

9 [C3 Fault based coverage

¢ [ Assocative Shift Fault

@ ASFr_cruise 23T

o ASF_r_cruise_45.T

@ ASFr_override 24T
o= [ Expression Magation Fault
o= (9 Literal Megation Fault
o= 9 Missing Literal Fault :
o[ Operator Reference Fault No coverages
o= 9 Stuck at false :
o= Stuck at true
o= [ Relational Operator Fault

Covered by

Fig. 2. An ATGT screen-shot.

The method presented in this section has been implemented in a prototype
tool ATGT? - a screen-shot is reported in Fig. 2 - and consists in the following
steps as illustrated in Figure 3.

— First, denoted by (), a Test Predicate Generator computes the test predicate
set I'c = {tp;} for the desired fault classes C' introduced in Section 3 and for

% available at http://cs.unibg.it/gargantini/project/atgt/
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Fig. 3. Steps in the proposed generation method.

all the rule guards in the ASM specification under test given in the syntax
of the AsmGofer [36].

— Second @), the Test Suite Generator selects a test predicate tp;, either ran-
domly or according to the user request, and computes the trap property
stating that ¢p; is never true, i.e. p = never(¢p;) which is translated in
PROMELA, the language of Spin, as the statement assert(!tp_i). The
trap property p is not a desired property of the system; on the contrary, we
look for a system behavior which falsifies p, i.e. where tp; becomes true. This
method has been introduced in [17,19].

— Third @), the model checker is used to find the test sequence, by encoding
the ASM specification in PROMELA, following the algorithms described in
[19] and trying to prove the trap property p. If the model checker finds that
p is false, i.e. a state where the tp; is true, it stops and prints as counter
example the state sequence leading to that state (plus the updates generated
by the last update). This sequence represents the test that covers tp;.

— Fourth @, the Coverage Evaluator reads the counter example to produce
the actual test sequence and to evaluate its coverage as explained in the
following section against all the test predicates generated in the first step
and provides the coverage information back to the Test Suite Generator.

— The process is iterated starting from the second step for each test predicate
that has not been already covered. In the end, ¢, a complete test suite is
generated, except for the cases where the model checker fails to find a counter
example as explained in Section 5.2.

5.1 Evaluating the Fault Coverage

A test sequence that is generated to cover a particular test predicate likely
covers also many other test predicates, i.e. it contains a state where other test
predicates are true and it can, therefore, discover other faults as well. Finding
which predicates are covered can reduce the time and the resources to obtain a
complete test suite - because we can decide to skip the generation of tests for
test predicates already covered - and it can reduce the size of the test suite -



because we could decide to discard a test if the test predicates that it covers are
covered also by other tests -.

To evaluate the coverage for a test, we give an unique identification (ID) to
each test predicate and we add in the PROMELA file an instruction which prints
a particular message if the test predicate is covered. For example, we introduce
for the test predicate (aAb)®a with identification tc_ID the following statement:

printf ("_Covered: tc_ID %d \n",((a || D) ~ a));

This instruction will print the ID for the test predicate followed by 1 or 0
whether the test predicate has been covered or not. The printf instruction is
actually computed only during the last phase (@) and it does not complicate
the model nor introduces new state variables since it is ignored during phase 3.

The proposed method for test evaluation can be used to evaluate any test
sequence, regardless the way it has been generated. As we show in Section 6, we
use this technique to get valuable insights over the fault detection capability of
the structural coverage criteria presented in Section 2.3.

5.2 Undetectable Faults

When the model checker terminates, one of the following three situations occurs.
The best case occurs when the model checker stops finding that the trap property
is false, and, therefore, the counter example that covers the test predicate is
generated.

The second case happens when the model checker checks every possible be-
havior without finding any state where the trap property is false, and, there-
fore, it actually proves the trap property never(tp;). A test predicate, in our
case, has always the pattern A A ¢ © ¢’ (where A is a conjunction of outer
guards), and never(A A ¢ & ¢’) is equivalent to always(A — —(p & ¢')), i.e.
always(A — (p < ¢')). Therefore, SPIN proves that when A holds, ¢ is always
equivalent to its mutation ¢’ and that the fault does not introduce an actual
change in the behavior of the system. In this case we say that such a fault is
undetectable and we can safely ignore tp; and simply warn the user that its
model is insensitive in that rule guard to that fault.

In the third case, the model checker terminates because it finishes the max-
imum time or memory allocated for the search (set by the user or decided by
model checker itself) but without completing the state space search and with-
out finding a violation of the trap property, and, therefore, without producing
any counter example (generally because of the state explosion problem). In this
case, we do not know if either the trap property is true (i.e., the fault cannot be
discovered) but too difficult to prove, or it is false but a counter example is too
hard to find (i.e. the fault could be discovered if an appropriate test sequence
could be found). When this case happens, our method simply warns the tester
that the test predicate has not been covered, but it might be feasible.

10



Model Checking Limits. Model checking applies only to finite models. Therefore,
our method works for ASM specifications having variables and functions with
finite domains. The problem of abstracting models with finite domains from
models with infinite domains such that some behaviors are preserved, is under
investigation. Moreover, since model checkers perform an exhaustive state space
(possibly symbolic) exploration, they fail when the state space becomes too big
and intractable. This problem is known as state explosion problem and represents
the major limitation in using model checkers. Note, however, that we use the
model checker not as a prover of properties we expect to be true, but to find
counter examples for trap properties we expect to be false. Therefore, our method
does generally require a limited search in the state space and not an exhaustive
state exploration. However, undetectable faults require a complete state search.

Model Checking Benefits. Besides its limits, model checking offers several bene-
fits. For instance, SPIN adopts sophisticated techniques to compute and explore
the state space, and to find property violations. It represents a state and the
state space in a very efficient way using state enumeration, hashing techniques,
and state compression methods. Moreover, SPIN explores the state space using
practical heuristics and other techniques like partial order reduction methods
and on-the-fly state exploration based on a nested depth first search. For these
reasons, we have preferred existing model checkers instead of developing our
own tools and algorithms for state space exploration. Moreover, the complete
automaticity of model checkers allows to compute test sequences from ASM
specifications without any human interaction.

6 Experiments

We report the result of applying our method to two case studies, the Cruise Con-
trol (CC) specification [31,5] and a simple model for a Safety Injection System
(SIS) of a nuclear plant [13,18,17]. The CC has one monitored (i.e. modified only
by the environment) enumerative variable, 4 monitored boolean variables and
one controlled (i.e. modified only by the system) variable. It has 9 rules with
rather complex boolean expressions as guards, which admit numerous boolean
operator faults. The SIS includes three monitored variables (one integer in the
interval [0,2000] and two switches), two internal variables (a boolean and an enu-
merative) and an output (boolean). It has 7 transition rules with guards which
contain several relational operators and hence admit numerous ROFs. The num-
ber of test predicates is shown in Table 1. Note that 20 test predicates in the
CC for the ROF were proved unfeasible by the model checker, which completed
the search without finding any violation of the trap property, therefore actu-
ally proving that the faults are undetectable as explained in the second case of
Section 5.2.

11



[ #tp |ENF[LNF|MLF[ASF]ORF[STO[ST1[ROF /unfeasible]

for SIS| 9 16 16 1 9 23 | 24 | 32 0
for CC| 24 | 33 | 33 3 24 | 54 | 54 | 33 20
Table 1. Test Predicates and Tests for SIS and CC

| strategy |#runs|time (sec) [#test]#states|
1 - BFS, weak to strong| 59 116 22 635

2 - BFS, strong to weak| 59 102 22 637

3 - DFS, strong to weak| 42 258 8 | 11760

Table 2. Runs for test generation

6.1 Generation of Tests

We have applied three strategies for test generation. In strategy 1 and 2 we use
the breath first search (BFS) algorithm of Spin, which normally requires more
time and memory than the default nested depth first search (nDFS) algorithm,
but it guarantees that the shortest counter example is found. In strategy 3 we use
the nDFS which is faster but finds long counter examples. Furthermore, in the
first strategy we start from weaker fault classes and then we increase the fault
detection capability of the tests by choosing stronger faults, while in the second
and third strategy we start from strong coverage classes. Results are shown in
Table 2, in which we report the number of runs, the total time required?*, the
number of tests (some tests are discarded because they cover only test predicates
covered by other test sequences in the test suite), and the total number of states
in the test sequences.

Although several papers [30,31,27] suggest that hierarchical information about
fault classes can be useful during test generation and that starting the test gen-
eration from the strongest coverage would require less time and fewer test cases
than starting from the weakest coverage, we found no evidence of this fact.
Indeed, strategy 2 (strong to weak) performed as well as strategy 1 (weak to
strong). This result can be explained by considering that our method is itera-
tive (it produces a test sequence at a time) and that we perform test evaluation
at the end of every cycle. If the criterion S is stronger than the criterion W,
any test set Ts adequate according to .S includes any set of test Ty adequate
according to W. The test generation starting from S produces a test suite T,
whose evaluation stops the test generation because Ts covers W as well. The
test generation starting from W initially produces Ty which still requires the
generation of T's — Ty and not of the complete Ts. In both cases the number of
test cases is the same (except for some non determinism in the generation and
in the optimization of the test suites). However, our examples are too small to
draw the definitive conclusion that hierarchical information about fault classes
are useless during test generation.

% We have used a PC with an AMD Athlon 3400+ and 1 GB of RAM
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| [ BR [MCDC[ CR [ UC | zlelsl=zl2lelzl’
ENF | 66 | 41 | 0 | 26 #pj = | S| A= |O|w|n] =
NFTor T 6 5063 BR [ 32[100] 9663 ] 0 |88]90 7958
STF o1 82 150 71| |Mcpc|98 [100(100(100] 75 [100|100]100] 65
Asr 50 T 50 o 111 CR |2 272020 0 [27]19 2437
o s T 52 T o o Uc |19 [700] 96 |67 | 25 [ 88 | 91 | 81| 58

STO | 100 76 100 | 84
ST1 | 94 73 50 | 68
STOU1| 100 84 100 | 84
ROF | 78 53 50 | 42
Table 3. Structural vs fault coverage (in %)

1(b) Fault detection capability of structural coverage

«—(a) Structural coverage of fault criteria

Another unexpected result was that the test generation with the DFS algo-
rithm performed worse than the others, although the DFS proved to be more
efficient per visited state than the others: it explored around 11760 states (18
times more then the others) but it took only about twice as much time. By ana-
lyzing the runs, we found that the sole model checker execution (step @) in Fig.
3) actually took less time than the same step in other strategies, but the other
steps which analyze the results to evaluate the coverage took much more time,
since the DFS produces very long counter examples. We believe that strategy 3
may perform better than the others for complex specifications, since in complex
cases the model checker execution is the most critical step in the proposed test
generation method. Moreover, strategy 3 is useful when one prefers very few test
cases (for example if resetting the system is expensive) and because long test
sequences may discover more faults (like extra states) [32,21].

6.2 Comparison with Structural Coverage Criteria

We have compared our new fault based adequacy criteria and the structural cri-
teria presented in Section 2.3. Tests for structural criteria are generated following
the technique introduced in [18,19]. Table 3 (a) reports the structural coverage
of tests generated to cover faults. The STOU1 has covered most structural parts
in our specification, but not all. No fault based test set has been able to achieve
the complete MCDC and Update Rule Coverage. Table 3 (b) reports the fault
detection capability of tests generated by using the structural criteria. MCDC
performed better then the others, but no structural coverage has been able to
achieve the ASF and ROF criteria. These data suggest that fault based criteria
and structural criteria are complementary to each other.

6.3 Cross Coverage Among Fault Classes

We have also analyzed the cross coverage among the fault based criteria and re-
sults are reported in Table 4, which must be read as follows. The tests generated
for a fault class in a row (cross) covers also the shown percentage of the test
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| |[ENF|LNF|MLF|ASF|ORF|STO0|ST1]|ROF| ROF - 100% = ENF
ENF | - [78[41 ] 0 [ 8 [53[63] 32

LNF [100| - [ 73 |25 [100| 79|94 | 63

MLF |100|100] - |75 [100]94 |95 | 63

ASF [ 82 [ 33 [ 31| - [ 67 [10]53] 34

ORF [100]90 [ 57 | 0 | - |65 ]72] 49 T

STO [100]100] 84 | 25 [100] - |87 | 62 ~ .95 ,

ST1 [100]100] 82 | 50 [100]82 ] - | 63 \ MLF " ASF
STOU1| 100 [ 100100 | 75 [ 100] - | - | 65 A

ROF [100] 96 | 59 | 25 | 97 [ 64 [ 81 | 20 STOU1

Table 4. Cross Coverage (%)

predicates for other fault classes displayed in the columns. Besides the confirma-
tion of the theory (continuous arrows in the figure of Table 4), we have found
some empirical relationships among fault classes (dotted arrows in the figure).
For instance, ROF covered all the ENFs, ORF covered all the ENFs, and LNF
covered all ORFs. MLF seems stronger than ST1 and STO individually, and ROF
seems stronger than LNF and ORF. Although this empirical extended hierar-
chy may not hold in general, we believe that for most boolean expressions these
relationships are likely to be true. This information may be useful in practice
if one has a test suite that targets a specific fault and want to approximately
judge the test suite’s fault detection capability. We found that ASF is really
complementary with respect all other criteria.

7 Related Work

Many papers tackle the problem of tests generation or selection. The subject of
using model checkers for test generation starting from models has been studied
for many years. For a (not so recent) survey see [2]. In [15] the authors used Spin
to generate test sequences for a protocol augmented by a test predicate, called
test purpose, written by the designer by hand. Classical control oriented tests
generation is presented for SCR in [17] and for ASMs in [18]. Several recent
papers apply the same concepts to UML state diagrams [29], to StateCharts
[25], and to Stateflow [20] specifications. [35] presents state coverage, decision
coverage and MCDC (not masked) for specifications written in RSML™¢. They
all share the same approach. They introduce some control oriented coverage,
derive the test predicate from decision points in the model and then use the
model checker to obtain the test sequences.

A first attempt to introduce data flow oriented coverage criteria can be found
in [18] where the rule update criterion (presented in Section 2.3) covers the
real update of a variable. A novel approach is presented in [24], which shows
how the classical data flow coverage criteria can be translated in terms of the
Computation Tree Logic (CTL).

14



The combined use of model checking and mutation testing is presented in
[3,8]. Their approach, that we could classify as fault oriented [39], is very similar
to ours, but the technique is completely different. Differently from us, they do
not use test predicates derived from the specifications by using the boolean dif-
ference. Instead, they directly apply mutation techniques to models. The original
specification, written for the model checker SMV, is initially augmented by many
temporal logic properties (constraints) that represent the correct behavior. In the
extraction of these properties (also called expounding) there are several “subtle
issues that require attention [4]” and may reduce the fault detection capability of
the tests. Afterwards, the specification or the constraints are repeatedly modified
applying mutation operators (more general than our fault classes), that introduce
faults in the models or in the constraints. Counter examples are automatically
generated by SMV either (approach 1) trying to prove the original properties in
faulty models to obtain wrong behaviors that implementations must not exhibit
or (approach 2) proving mutated properties for the correct model to obtain tests
sequences that discover particular faults (or kill mutants).

We can compare their approach 2 with ours as follows. In the extraction
of constraints, they build a set of safety properties which are always true in
the original model. Given a safety property always(P), they look for a counter
example by trying to prove always(P’) where P’ is a possible mutation of P. If
a counter example is found, they have found a state where the mutated property
is false, i.e. =P’. They actually find a state where P is true (safety property)
while P’ is false, i.e. P A —P’, which is a particular case of P & P’, the boolean
difference of P. Our approach does not require the extraction of safety properties,
since test conditions are defined as boolean differences over guards, which are
not always true.

Ammann et alt. tackle also the problem of evaluation of test sequences against
specification-based coverage criteria [4]. They show how the model checker SMV
can be used to evaluate a test sequence with respect to the capability to discover
(or kill) mutations of the original specification. The test sequence (regardless
the way it has been generated) is transformed in a SMV model to run together
with the mutated specification. This requires a run for every test and every
mutation, rising the problem how to reduce (winnow) the number of mutations
really necessary to evaluate the coverage of a test. Tests which kill a subset of
mutations of other tests, can be discarded. In our approach, we can evaluate
the capability of a test sequence to detect all faults in one run by using test
conditions. Furthermore we are able not only to discard duplicated test cases,
but also to avoid the generation of tests for test predicates already covered.

Model checkers can be used to generate tests in program based testing too:
the model checker BLAST is used in [7] to generate test suites and to detect
dead code in C programs.
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8 Conclusions and future work

Although we have shown how to generate tests to detect several fault classes,
we plan to introduce other fault classes, possibly involving not only boolean
expressions but also integers (like off-by 1 fault or at the boundaries faults).
Moreover, while this paper focuses on faults in the rule guards, we plan to define
other fault classes involving the rule updates. Our method has been applied to the
generation and evaluation of tests for several case studies, but more experiments
with real specifications are needed to assess its real applicability. Abstract State
Machines are chosen as formal method, but our approach can be easily adapted
to any formalism based on guarded state transitions. We have discovered that
the hierarchy among faults is useless in the prioritization during test generation,
but further experiments and theoretical research is needed to definitely prove
that.
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