An Evaluation of Specification Based
Test Generation Techniques using Model Checkers

Gordon Fraser *
Institute for Software Technology
Graz University of Technology
Inffeldgasse 16b/2
A-8010 Graz, Austria
fraser @ist.tugraz.at

Abstract

Test case generation can be represented as a model
checking problem, such that model checking tools automat-
ically generate test cases. This has previously been applied
to testing techniques such as coverage criteria, combinato-
rial testing, mutation testing, or requirements testing, and
further criteria can be used similarly. However, little com-
parison between the existing techniques has been done to
date, making it difficult to choose a technique. In this paper
we define existing and new criteria in a common framework,
and evaluate and compare them on a set of realistic spec-
ifications. Part of our findings is that because testing with
model checkers represents the test case generation problem
in a very flexible way best results can be achieved by com-
bining several techniques from different categories. A best
effort approach where test cases are only created for uncov-
ered test requirements can create relatively small test suites
that cover many or all different test techniques.

1. Introduction

Software testing is an important but difficult task. Be-
cause of its complexity, automation is desirable to reduce
the effort and increase software quality. Among the many
techniques that have been proposed for test case generation,
the use of model checkers is a promising approach which
can fully automatically derive test cases from a model un-
der certain restrictions using a variety of different criteria.

Model checkers are automatic verification tools that are

*The research herein is partially conducted within the competence net-
work Softnet Austria (www.soft-net.at) and funded by the Austrian Fed-
eral Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsforderungsgesellschaft mbH. (SFG), and the city of Vienna in
terms of the center for innovation and technology (ZIT).

TSupported by the PRIN Italian MIUR project D-ASAP: Architetture
Software Adattabili e Affidabili per Sistemi Pervasivi

Angelo Gargantini '

Dip. di Ing. dell’Informazione e Metodi Mat.

University of Bergamo
Viale Marconi 5
24044 Dalmine, Italia
angelo.gargantini @unibg.it

able to provide counterexample sequences to properties vi-
olated by a model. The idea of testing with model checkers
is to represent the test case generation problem as a model
checking problem such that the counterexamples provided
by a model checker can be used as test cases.

For many testing techniques the representation as a
model checking problem is straightforward. Therefore, sev-
eral techniques have been proposed in the past, e.g., cover-
age criteria, mutation testing, combinatorial testing, or re-
quirements based testing. This leaves a test engineer with
the problem of which of all these techniques to choose.

In this paper we show for 17 different test criteria how
to define them as a model checking problem. The major-
ity of criteria is based on the hierarchy of criteria given in
[2] for logical predicates. Some of these criteria have been
used previously in different frameworks, while for others
the mapping to a model checking problem is new. The cri-
teria are then evaluated and compared on a set of example
specifications. Interestingly, even very simple techniques
can achieve high coverage of more complex techniques.
Furthermore, there is no clear winner in terms of a single
best technique, but instead of focusing on a single technique
the flexibility of the model checking approach allows one to
combine several different techniques. This makes it possi-
ble to apply a best effort strategy, where infeasible test re-
quirements of a strict criterion are automatically replaced
by weaker ones. By creating test cases only for uncovered
test requirements the number of test cases stays reasonably
small even when combining many techniques.

2. Test Case Generation with Model Checkers

This section summarizes how test cases can be generated
systematically with a model checker, and defines a range of
testing techniques together with their description as a model
checking problem.

A model checker is an automatic verification tool that

takes as input an automaton based model and a temporal
logic property. The state space of the automaton is explored
in order to determine whether the property holds. If a prop-
erty violation is found, then a counterexample is generated,
which is an execution sequence that leads to the property
violation. Some model checkers also support witness gen-
eration to show how a property holds. Under certain con-
straints (e.g., determinism and observability) counterexam-
ples and witnesses can be interpreted as test cases which
provide test data as well as the expected result (test oracle).

2.1. Transition system specifications

We assume that the model from which the test cases
shall be derived is given as a formal specification suitable
for the transition system framework introduced by Heim-
dahl et al. [15]. Examples of such specification languages
used previously for test case generation with model check-
ers are SCR [12], RSML ¢ [15], or ASM [13], and most
state based specifications can be mapped to this framework.

The system state is uniquely determined by the values
of n variables {x1, 3, ..., z,}. Each variable z; has a do-
main D;, and consequently the reachable state space of a
system is a subset of D = D X Dy X ... X D,,. The set of
initial values for the variables is defined by a logical expres-
sion p. The valid transitions between states are described by
the transition relation, which is a subset of D x D. The tran-
sition relation is defined separately for each variable using
logical conditions. For variable x;, the condition «; ; de-
fines the possible pre-states of the j-th transition, and the
condition (3; ; represents the j-th post-states. The j-th sim-
ple transition d; ; for a variable z; is a conjunction of «; ;,
B:,; and the guard condition y; j: d; j = & ; A Bij A Vi j-

The disjunction of all simple transitions for a variable z;
is a complete transition d;. The transition relation A is the
conjunction of the complete transitions of all the variables
{z1,...,z,}, resulting in a basic transition system:

Definition 1 (Basic Transition System) [/5] A transition
system M over variables {x1,...,x,} is a tuple M =
(D, A, p), withD = Dy x Dy X ... x Dy, A = NI 6;,
and the initial state expression p. For each variable x; there
is a transition relation 6;, which is given by the disjunction
of all the simple transition conditions 6; ; defined for w;,
where 6; ; = oy j N Bij N\ j. The conditions o j, B,
and y; ; are pre-state, post-state, and guard of the j-th sim-
ple transition of variable x;, respectively.

Definition 2 (Test Case) A test case t = (sg,...S;) for
transition system M = (D, A, p) is a finite sequence such
thatV 0 <i<l:A [(s, 8+1) and so € D.

2.2, Test case generation as a model checking problem

Automated test case generation requires formalization of
the test objective (e.g., satisfaction of a coverage criterion),

which can be seen as a set of test requirements (e.g., one test
requirement for each coverable item). Each test requirement
can be formalized as a temporal logical test predicate.

In this paper we use the temporal logic CTL [9] (Compu-
tation Tree Logic). CTL formulas consist of atomic propo-
sitions, logical operators, and temporal operators preceded
by path quantifiers (A, E). ‘X’ (next) expresses that a con-
dition has to be true in the next state. ‘G’ (always) requires
that a condition holds at all states of a path, and ‘F’ (eventu-
ally) requires a condition to eventually hold at some time in
the future. ‘U’ is the until operator, where ‘a U b’ means
that a has to hold from the current state up to a state where
b is true. The path quantifiers ‘A’ (“all”) and ‘E’ (“some”)
require formulas to hold on all or some paths, respectively.

Definition 3 (Test predicate) A test predicate ¢ is a tem-
poral logical predicate that is satisfied by a test case t =
(80, - ..81) if there is 0 < i < [such that t* |= ¢.

Here, t* denotes the subpath of ¢ starting at state s;, and
t = ¢ denotes satisfaction of test predicate ¢ by test case ¢.
A test predicate is infeasible if it cannot be satisfied by any
possible test case.

Definition 4 (Coverage Criterion) A coverage criterion
C' is a rule for generating test predicates on a transition sys-
tem M. C(M) denotes the set of test predicates obtained
by applying C to M.

Definition 5 (Coverage Satisfaction) A fest suite T satis-
fies a coverage criterion C' on transition system M if and
only if for each feasible test predicate ¢ € C(M), there
exists a testt € T such that t = ¢.

Definitions 4 and 5 satisfy the basic testing adequacy crite-
ria axioms presented in [23]. In addition to coverage satis-
faction we use the percentage of satisfied feasible test pred-
icates as coverage value to quantify the degree of coverage.

Model checking allows generation of finite paths for log-
ical predicates, either showing satisfaction (witness) or vio-
lation (counterexample). To do so, the test predicates have
to be formalized as temporal logic formulas. In most cases
counterexample generation is exploited because it is sup-
ported by all model checking techniques. In order to force
the model checker to generate a counterexample the test
predicates are formalized in a negated fashion, such that the
counterexample satisfies the original test predicate. Such
properties are known as trap properties:

Definition 6 (Trap property) A trap property T for test
predicate ¢ is a temporal logic property, such that any coun-
terexample t to T, i.e., t [T is a test case that satisfies .

In the simplest case, a trap property for test predicate ¢ can
be derived by stating that ¢ is never satisfied:

AG —¢ M

A counter example of (1) contains a state in which ¢ is sat-
isfied. However, if the test predicate ¢ refers only to a tran-
sition guard, then the test obtained from the counter exam-
ple does not execute the transition in the case the transition
guard is true just in the last state of the counter example.
Execution of the transition might be necessary in order to al-
low observation of whether the transition guard evaluated to
the correct value and it brought the system to the right next
state. For this reason, we propose to use as trap property the
following formula, which leads to an additional transition at
the end of the counterexample:

AG (¢ — AX False) (2)

The implication on False in the next state serves as a trick to
force the counterexample generation: A counter example of
(2) contains a state in which the left side of the implication
¢ is true, and the transition is executed, i.e. (2) is still a valid
trap property and guarantees the transition observability.

A test criterion may generate infeasible test predicates.
While in the general case feasibility is not decidable, a
model checker for finite state systems can decide whether
a test predicate is infeasible: Trap properties for infeasible
test predicates do not result in counterexamples.

2.3. Logic expression coverage criteria

In this section we describe coverage criteria for logical
expressions, using the nomenclature for logical expressions
(i.e., a logical predicate consists of atomic clauses con-
nected by logical operators) and coverage criteria given in
[2]. The logical coverage criteria are applied to the guard
conditions of simple transitions.

Predicate Coverage (PC) Predicate coverage for a simple

transition «, 3, -y requires -y to evaluate to true and false, and
is described by the following two test predicates:

$1=aAlNy (3)
G2 = a Ny 4)

Clause Coverage (CC) Clause coverage for a simple tran-
sition «, 3,y requires two test predicates for each clause C'
in the guard -y, such that C evaluates to both true and false:

pr=anC 5)
o2 =a N-C (6)

Complete Clause Coverage (CoC) Complete clause cover-
age requires that all possible valuations for the clauses of a
logical predicate are covered. For a simple transition «, 3, v
complete clause coverage requires a test predicate for every
possible combination of truth values for the clauses C; in
the guard ~, where v; can be either True or False:

¢=an \Ci=uv) 7

General Active Clause Coverage (GACC) General active
clause coverage requires that for each clause in a logical
predicate there exists a state such that the clause determines
the value of the predicate, and the clause has to evaluate to
true and false. As shown in [2], a clause C' determines a
predicate P if the following xor-expression is true, where
Pc ; denotes P with C replaced with z:

PC, True D PC,False

Consequently, GACC for a simple transition «, (3, is
achieved by two test predicates for each clause in v:

¢1 =aA (’YC,False @ e, T7'ue) ANC (8)
¢2 =aAl ('YC,False 2] VC,True) N=C (9)

Correlated Active Clause Coverage (CACC) As a stricter
variant of GACC, CACC adds the requirement that not only
the clause but also the predicate itself has to evaluate to true
and false. Here we hit a small problem of the temporal logic
encoding: We do not know whether C' will cause the pred-
icate to evaluate to true or to false, consequently we need
test predicates that refer to the values in the corresponding
other test predicate; this is not directly possible with CTL.

A solution is to add a Boolean helper variable 1 to the
specification (alternatively we could use four instead of
two test predicates, one for each combination of truth val-
ues for C' and the guard). The initial value of ¢ is non-
deterministically chosen (e.g., by the model checker), but
cannot change during the execution.

¢1 =aAN ('YC,False S FYC,TT‘TL@) ANC A Y= 1;0 (10)
¢2 =aA (VC,False EB’YC,TTUE) /_‘C/\7 #w (11)

As ¢1 and ¢4 are correlated, both test predicates need to be
contained in a single trap property. In the simplest case this
is achieved by a disjunction of the two corresponding trap
properties, but in practice an implication is usually prefer-
able because of specifics of some counterexample genera-
tion algorithms (e.g., AG (¢1 — AX AG —¢3)).

A drawback of this solution is that a test case for a given
clause is only generated if both ¢; and ¢, are feasible.
However, this drawback can be compensated by combining
test predicates for several criteria in a best effort approach,
as described below.

Restricted Active Clause Coverage (RACC) As a further
requirement to CACC, RACC requires that for every con-
sidered clause (major clause) the remaining clauses (minor
clauses) have to have the identical truth values in both cases.
As shown in [19], we need additional helper variables 1/; to
express the corresponding test predicates:

$r=an \(Cj=p)ACi=vpiAy=1, (12)
J#i

dr=an \(Cj =) ANCi# i Ay # 1y (13)
J#i

As for CACC these two test predicates are not independent,
and therefore result in a single trap property. The number of
necessary helper variables equals the maximum number of
clauses in the transition guards of the specification. As these
are Boolean variables and the number of clauses in a pred-
icate is usually not very big, this does not affect scalability
in general. GACC, CACC, and RACC are three different
flavors of the important MCDC [7] criterion.

General Inactive Clause Coverage (GICC) In contrast to
GACC, GICC requires a clause to not determine the out-
come of the predicate. This simply means that we have to
consider the negation of the expression that describes de-
termination. In addition, we can now distinguish between
four different cases: The clause can evaluate to true and
false, and in both cases the predicate can evaluate to true
and false. Consequently, there are four test predicates for
each clause C' in the guard y of a simple transition «, 3, 7:

$1 = a N (Yo, Faise B YO, True) NC Ny (14)
2 = a N\ =(Ye, Faise B YO, True) A C Ay (15)
o3 = oA\ (Ye, Faise ® YO, True) N C A =y (16)
1 = a N (Yo, Faise B Yo, rue) NC A=y (17)

-
-

Restricted Inactive Clause Coverage (RICC) The re-
stricted variant of GICC again adds the requirement that the
values for the minor clauses have to be identical for the case
where the predicate evaluates to true and for the case where
the predicate evaluates to false:

¢1=an \(Cj=1;)ACi =1 Ay = True (18)
J#i
¢y =a N \(Cj =) ACi # i Ay = True (19)
J#i
¢3 = a A /\(Cj =) AN C;y = ; Ay = False (20)
J#i
Ps =N /\(Cj =) ANCy # ; Ay = False (21)
J#i
Similar to RACC and CACC the pairs of test predicates
are not independent, and therefore each pair (¢, ¢2) and

(3, ¢4) results in a single trap property. GICC and RICC
are two flavors of the RCDC [21] extension to MCDC.

Mutation (M) In general, mutation describes the system-
atic application of small changes to programs or specifica-
tions in order to evaluate test sets or generate test cases.
Mutation can be used to derive test cases with model check-
ers (e.g., [3, 11]).

Let Mutants(P) be the set of mutant expressions de-
rived from expression P with a given set of mutation op-
erators. As shown in [11], a mutant M and the original
expression P evaluate to different values if M & P. Con-
sequently, for a simple transition («, 3,7) we get one test

predicate for each mutant M in Mutants(vy):
p=an(Moy) (22)
2.4. Transition system coverage

The criteria described so far applied logical coverage cri-
teria to the guard conditions of simple transitions. Now we
turn to criteria that view pairs of transitions.

Transition Pair Coverage (TP) Transition pair coverage
requires that all sub-paths of length 2 are covered. To ex-
press this as test predicates we need to use temporal oper-
ators. For each pair of simple transitions (a1, 51,71) and
(g, B2, 72) there is a test predicate:

d) = (Ql A ’}/1) A EX (O[Q A ’Yg) (23)

All Definitions (AllDef) Data-flow testing with model
checkers has been introduced by Hong et al. [16] in the con-
text of control flow graphs. Recently this has been trans-
ferred to abstract state machines by Cavarra [6], and can
therefore be used for any specification that fits the transi-
tion system definition given earlier: A variable is defined
in a simple transition («, 3,) if it occurs in the next state
expression (3, and it is used if it occurs in the guard condi-
tion . A definition clear path from a variable definition to
a variable use is a path where no guard for a simple expres-
sion of the variable evaluates to true.

AllDef requires for each variable definition that a
definition-clear path to any use is covered. Let def(x) =
ag A7yq be a definition of x at simple transition («g, 84, Va)s
use(xr) = oy A 7y, be a use of x at simple transition
(vus Bus Yu)s defs(z) = \,; (o A ;) the disjunction of all
definitions of x, and uses(xz) = \/;(a; A ;) the disjunc-
tion of all uses of x. AllDef coverage for variable x and
definition def (x) is covered by the following test predicate:

¢ = def (z) — EX E[~defs(z) U uses(x)] (24)

All Definition-Use Pairs (AIIDU) The All-Definitions cov-
erage criterion requires for each variable z and for each
definition def(z) that a definition-clear path to every use
use(x) is covered:

¢ = def (z) — EX E[~defs(z) U use(z)] (25)
2.5. Combinatorial coverage

As the number of possible combinations for input vari-
ables is usually very large, combinatorial testing aims to
provide high coverage with few test cases by requiring only
all pairs or n-tuples of input values to be covered. In the
case of transition system specifications, we can extend this
type of coverage to all system variables. Combinatorial test-
ing with model checkers has been considered in [5, 18].

State Coverage (SC) For each variable V" and value v:

¢=(V=uv) (26)

Pairwise Coverage (PWC) For each variable /; and value
vy and V5 with value vs:

p=Vi=uv1AVa=12) 27)

3-Way Coverage (3WC) For each variable V; and value v,
and V5 with value vy and V3 with value vs:

(ZS:(Vl:/Ul/\‘/Q:UQ/\‘/T‘j:U,‘j) (28)

We have presented the basic case here, which can result
in a large number of test predicates. The number of test
predicates can be reduced; for more details we refer to [5].

2.6. Requirements coverage

The traditional use of model checkers is to verify prop-
erties on specifications. In many cases such properties also
exist for the specifications that are used to generate test
cases. As these properties often represent user requirements
it makes sense to use them for test case generation.

Property Coverage (VC) ! Tan et al. [20] derived a prop-
erty coverage criterion based on vacuity. A property is vac-
uously satisfied, if the model checker reports that the prop-
erty is satisfied regardless of whether the model really ful-
fills what the specifier originally had in mind or not. For
example, the property AG (x — AX y) is vacuously sat-
isfied by any model where x is never true. A non-vacuous
pass is a useful test case as it illustrates property satisfaction
in an ‘interesting’ way.

A clause C of a property 6 is vacuously satisfied if it can
be replaced by any other sub-formula without changing the
truth value of the formula on any model. Tan et al. [20]
make use of the fact that to show vacuity it is sufficient to
replace a sub-formula with True or False, depending on its
polarity. The polarity of a C' is positive, if it is nested in an
even number of negations in 6, otherwise it is negative. Let
pol(C) be a function such that pol (C') = False if C has
positive polarity in 6 and pol (C') = True otherwise.

Property coverage requires for every clause C' of a prop-
erty 0 that there is a test case that non-vacuously satisfies
C, i.e., there has to be a state where 90, pol (C) evaluates to
false. This results in the following test predicate:

¢= ﬁ(‘gc, pol (c)) (29)
Unique First Cause Coverage (UFC) Whalen et al. [22]
extend the idea of GACC to temporal logic properties.
A clause c is the unique first cause of a formula A, if
in the first state along a path where A is satisfied, it
is satisfied because of c. For example, in a sequence
((—a, —b), (a,b), (—a,b)), the property AF (a V b) is true
because a is true in the second state and b is true in the third
state, but a is its unique first cause. Test predicates can be
derived by applying a set of rules [22] which we cannot re-
produce here because of space limitations.

Denoted as vacuity coverage (VC) to distinguish it from predicate cov-
erage (PC).

3. Experimental Evaluation

Given the choice of criteria presented in the previous sec-
tion it is not an easy task to choose a suitable criterion for a
given task. This choice will be influenced by several factors:
How many test cases does it take to satisfy the criterion?
How many test predicates are infeasible, thus consuming
time during test case generation without actually contribut-
ing to a test suite? How good are the test cases generated
for a given criterion expected to be at detecting faults, based
on coverage and mutation score measurement? In order to
offer some guidance for the choice we have performed a set
of experiments on four different example specifications.

Specifications: The Safety Injection System[4] (SIS) spec-
ification models the control of coolant injection in a nuclear
power plant. SIS is an example of a classical reactive sys-
tems which monitors some integer inputs and controls few
critical outputs: in order to adequately test them, one should
choose the right values of the inputs in possible big inter-
vals. The Cruise Control (CCS) specification models a sim-
ple automotive cruise control based on [17]. LC is a logic
controller specification [14]. CCS and LC do not have in-
teger inputs and the internal logic of the controller is the
most critical part to be tested. Finally, Windscreen Wiper
(WIPER) is a windscreen wiper controller model provided
by Magna Steyr, which has four Boolean and one 16 bit
integer input variables, three Boolean and one 8 bit inte-
ger output variables, and one Boolean, two enumerated and
one § bit integer internal variables. The system controls
the windscreen heating, speed of the windscreen wiper and
provides water for cleaning upon user request. 23 informal
requirements have been formalized in temporal logics; as
these are the only realistic requirement properties available
to us the criteria VC and UFC are only evaluated here.

Tools: For each of the four specifications we generated test
suites for all of the criteria described in the previous sec-
tion using the symbolic model checker NuSMV [8]. The
specifications are given in NuSMV syntax, and trap prop-
erties were automatically derived from NuSMV specifica-
tions using a set of Python scripts. Test suites were gener-
ated calling NuSMYV on each trap property using NuSMV’s
command line interface.

Experiments: The first step of our experiments consisted
of generating a test suite for each test criterion for each
specification, which also reveals infeasible test predicates.
Then the resulting test suites were minimized using a sim-
ple heuristic, and for all test suites we then calculated the
coverage with regard to all other criteria.

A test suite is minimal with regard to an objective if re-
moving any test case from the test suite will lead to the ob-
jective no longer being satisfied. The motivation for us-
ing minimized test suites for analysis is to reduce the bias
caused by the underlying test case generation technique;

Table 1. Number of trap properties, infeasible trap properties, and minimal nhumber of test cases.

Criterion CCS SIS LC WIPER % Infeasible

>, Inf. Tests > Inf. Tests Y Inf. Tests X Inf. Tests Avg./Spec

PC 24 0 7| 26 1 4 39 1 1 164 0 15 1.6%

CC 88 0 21 60 3 92 0 2| 472 1 11 0.9%

CoC 264 141 221 72 19 6 | 148 67 5|1 752 103 56 34.7%

GACC 88 13 16 | 60 6 6 92 11 3| 472 22 36 10.3%

CACC 44 13 10 | 30 6 4 46 11 2| 236 22 26 20.7%

RACC 44 13 10 | 30 8 5 46 11 2| 236 22 26 22.4%

GICC 176 88 31120 69 41 184 107 2| 944 457 17 53.5%

RICC 88 44 41 60 38 2 92 61 21 472 239 10 57.6%

M 476 125 151295 111 51 764 127 513128 716 37 25.9%

TP 132 98 21 | 156 54 18 | 380 235 14 | 6642 4977 133 61.4%

AllDef 13 0 8 13 0 5 28 2 1 46 40 4 23.5%

AlIDU 156 110 321 81 45 7| 186 0 0] 2196 1961 50 53.8%

SC 24 3 2| 13 0 2 26 8 2 34 0 6 10.8%

PWC 654 78 12 | 140 2 3| 538 294 31 99 56 64 18.4%

3wC 1396 580 24 1 192 4 8 | 3080 2840 314080 860 267 39.2%

vC 0 0 0 0 0 0 0 0 0] 113 18 10 15.9%

UFC 0 0 0 0 0 0 0 0 0| 113 27 16 23.9%
e.g., generating one test case for each test predicate using *
depth-first search is likely to result in a test suite consist- 0
ing of long test cases, which will intuitively achieve higher 25
cross coverage than a test suite generated with breadth first 5
search. The symbolic model checker NuSMV generates It
short, but not necessarily the shortest possible test cases. 0l J}

The problem of finding the optimal (minimal) subset is s 4 & & Jg J} _
NP-hard, which can be shown by a reduction to the mini- 0 e L
mum set covering problem. In this experiment, we used a £8 g § § %’ § gz E7E B é é >k
simple greedy heuristic to the minimum set covering prob-
lem for test suite minimization: The heuristic selects the Figure 1. Test case length, Wiper example.
test case that satisfies the most test predicates and remove
all test predicates satisfied by that test case. This is repeated
until all test predicates are satisfied. 4. Results

A single test case will usually cover more than one test
requirement, and so it is not strictly necessary to generate
test cases for all test predicates. By monitoring the test pred-
icates during test case generation it is possible to generate
test cases only for those test predicates that are not already
covered; this can greatly reduce the test suite size. Mini-
mization requires existing, full test suites while monitoring
checks test predicates on the fly during test case genera-
tion. On the other hand, monitoring does not guarantee min-
imal test suites. While the monitored test suites do not add
much to a discussion using full and minimized test suites
as they simply lie somewhere in between, we are interested
in this approach when combining several techniques or us-
ing a best effort approach. To get an intuition of how many
calls to a model checker are necessary to satisfy the differ-
ent techniques we also created test suites using monitoring
and different combinations of test criteria.

Table 1 lists statistics about the specifications and criteria
used in the evaluation. For each specification and criterion
the table shows how many trap properties were generated in
total (3), how many of them were infeasible (Inf.), and the
minimal number of test cases out of those generated for a
criterion necessary to satisfy the criterion. The total num-
ber of test cases generated for a criterion (i.e., without min-
imization) equals the total number of trap properties minus
the number of infeasible trap properties, as each feasible
trap property results in a test case. The number of trap prop-
erties for GACC is twice the number for CACC and RACC
because for the latter criteria one trap property combines
two test predicates. However, the number of infeasible trap
properties is not twice as high because a trap property for
CACC and RACC is already infeasible if one of the com-
bined test predicates is infeasible (same for GICC/RICC).

Table 2. Cross coverage for minimized test suites (in percent %).

PC CC CoC GACC CACC RACC GICC RICC M | TP AllDef AIIDU | SC PWC 3WC | VC UFC
PC - 98 7 88 80 80 89 93 90 | 41 86 48 98 85 66 17 14
CcC 8 - 69 68 52 51 97 83 67|21 62 29 99 78 58 17 13
CoC 100 100 - 100 100 100 100 100 98 | 48 92 52 100 96 82 21 18
GACC | 100 100 92 - 100 100 100 98 98 | 42 92 50 100 92 77 20 17
CACC | 100 100 89 98 - 100 100 98 97| 46 94 55 100 92 77 20 17
RACC | 100 100 90 98 100 - 100 98 97| 48 94 56 100 92 79 20 17
GICC 85 100 72 72 59 58 - 91 7025 73 34 100 83 63 18 13
RICC 91 100 80 80 70 70 99 - 803 77 41 100 90 73 17 14
M 100 100 91 98 100 100 99 100 - | 48 92 53 100 93 78 20 18
TP 100 100 85 94 90 90 97 9 95| - 98 76 9 96 86 18 15
AllDef | 92 95 65 76 67 66 88 87 78 | 39 - 40 9% 80 66 12 08
AlIDU | 75 75 60 69 66 66 73 73 71|56 75 - 74 69 54 24 18
SC 80 95 60 60 47 47 85 76 59 | 19 58 26 - 77 56 14 11
PWC 92 100 85 82 73 73 98 97 81|35 78 39 100 - 88 18 15
3WC 93 100 90 84 79 79 99 100 83 | 41 79 43 100 100 - 20 17
VC 93 97 71 79 65 64 93 96 84 | 32 100 59 97 8 52 - 79
UFC 9% 99 78 86 80 80 96 99 89| 35 100 61 100 91 61 100 -

Some criteria are particularly susceptible to infeasible test
predicates, e.g., CoC, M, TP, AlIDU, 3WC. The criteria
AllDef and AIIDU can result in very long test predicates,
therefore some of the infeasible test predicates result from a
limitation in the length of properties that NuSMV accepts.

Figure 1 illustrates the test case length (minimum, 1st
quartile, median, 3rd quartile, and maximum) for the Wiper
example. Some outliers for maximum length are truncated
to improve readability. The results for the other specifica-
tions are similar and omitted for space reasons.

To save space we present the cross coverage only for the
minimized test suites averaged for all four specifications
in Table 2. Each row represents the test suites created for
the criterion specified in the first column, and the remain-
ing columns list the average coverage values of these test
suites for the other criteria. Besides offering a direct com-
parison of the criteria this table also illustrates subsump-
tion relations between different criteria. A criterion = sub-
sumes another criterion y, if any test suite that satisfies x
also satisfies y. For example, PWC subsumes SC, and 3WC
subsumes PWC and SC, or GACC subsumes PC and CC,
and CoC subsumes PC, CC, and all ACC and ICC vari-
ants. Subsumption is sensitive to infeasible test predicates;
e.g., CACC does not achieve 100% GACC in the table be-
cause there exist clauses that can be covered with GACC
but not with CACC. Interestingly, GACC achieves 100%
coverage for CACC and RACC in our experiments, which
supports the view that GACC is the preferred ACC variant.
For more details about the subsumption relations between
the presented criteria we refer to [2, p.113].

Table 3 shows the numbers of test cases for several dif-
ferent combinations of criteria, and the overall coverage

Table 3. Test cases and total coverage for
combined criteria.

Combination Number of test cases Cov.
CCS SIS LC WIPER

PC+CC 83 47 33 21.7 81.2%
ICC 10.1 5.6 23 223 85.0%
ACC 13.7 6.7 4.0 29.0 87.2%
ACC+ICC 177 70 52 41.7 87.3%
SC+PWC+3WC 347 12.0 5.3 315.0 89.7%
AllDef+D/CC+PWC 17.0 11.0 5.0 77.7 90.2%
TP+AllDef/DU 33.6 27.8 21.0 174.7 93.7%
AIIDU+A/ICC+PWC 40.0 146 7.3 111.6 94.5%
M+AIIDU+TP+PWC 45.0 30.7 20.0 2153 97.9%
___+ACC 44.3 31.0 21.0 219.0 98.1%
All criteria 62.7 33.0 21.0 413.0 100%

considering all criteria (except VC and UFC). The combina-
tions shown in the table were chosen out of the large number
of possible combinations because they represent typical or
useful combinations. Monitoring was applied during test
case generation, and therefore the experiment was repeated
10 times with different random orderings of the test predi-
cates within a criterion, and the results are averaged. ACC
denotes the combination of RACC, CACC, GACC, CC, and
PC, and ICC combines the ICC variants.

5. Discussion

Based on the data collected in our experiments this sec-
tion contains general conclusions. In particular, we try to

highlight advantages and disadvantages of the various crite-
ria, and discuss how the criteria can be used in conjunction.

5.1. Which criterion is preferable?

There is no definite answer to the question which crite-
rion is preferable, as this question is influenced by many
different factors: For example, the testing process might be
regulated by a standard posing requirements on the test cri-
teria, and the resources available for test case generation or
execution might be limited. Consequently, we analyze the
different criteria in terms of how complex they are and how
well they fare in satisfying other criteria.

First of all, the number of test predicates a criterion rep-
resents gives an indication of how difficult it is to satisfy
the criterion, and how many test cases result from the crite-
rion. Table 1 shows that criteria that are intuitively simpler
to satisfy result in fewer test cases and also in fewer infea-
sible test predicates. PC, SC, and AllDef result in the least
number of test predicates, and many of the other criteria
result in significantly more test predicates. For combinato-
rial coverage the number of test predicates quickly increases
with the size of combinations considered, therefore it does
not come as a surprise that 3WC results in the largest num-
ber of test predicates, only sometimes topped by M. This is
also because we applied combinatorial testing to all system
variables, not only input variables as is often done. CC and
the various ACC and ICC flavors are all in a similar range,
GICC being an exception because there are four test predi-
cates for every condition. CoC, TP, M, and AlIDU coverage
usually result in the largest number of test predicates, to-
gether with t-way coverage.

The number of infeasible test predicates is important for
several reasons: Even when using monitoring or just ex-
tending existing test suites, for each infeasible test predi-
cate it has to be attempted to generate a test case in or-
der to detect whether it is infeasible. In addition, only
exhaustive verification can determine infeasibility. A test
criterion producing a large number of infeasible test predi-
cates could therefore become inapplicable to large specifi-
cations if the number of inconclusive model checker runs
is too high. In contrast, if non-exhaustive techniques are
used (e.g., bounded model checking or explicit state model
checking with limited memory) infeasibility cannot always
be proven. TP and AIIDU result in the largest number and
percentage of infeasible test predicates (61,4% and 71,8%
on average, respectively), while the simplest criteria (PC,
CC, AllDef, SC) result in few infeasible test predicates
(1,6%, 0,9%, 23,7%, 10,5% on average). The ICC criteria
result in more infeasible test predicates than the correspond-
ing ACC criteria. For 3WC the large number of infeasible
test predicates is in large part because we considered all sys-
tem variables, while traditionally combinatorial testing only
considers input variables and results in only few infeasible

test predicates. While it is commonly agreed that CoC re-
sults in too many test cases to be useful this is not the case
in our experiments; however, the number of infeasible test
predicates is rather high (34.7% on average).

Considering the length of the test cases, Figure 1 shows
that CACC, RACC, and RICC have significantly longer test
cases; this is because of the combined test predicates. The
very long test cases of VC and UFC are influenced by the
underlying requirement properties. The shortest test cases
result for AllDef, SC, and CC. In general, the length of test
cases for combinatorial coverage is lowest, and the logical
criteria PC, CC, CoC, GACC, and GICC all have compa-
rable length. The time to generate a test case (not shown
here) mostly reflects the length; interestingly it takes sig-
nificantly longer to generate test cases for AllDef, AlIDU,
VC, and UFC than for all other criteria, which is due to the
complexity of these test predicates.

Finally, considering the cross coverage Table 2 reveals
that the simple criterion PC can achieve quite good cover-
age with regard to most other criteria, even though it results
in very few test cases. This supports the view that typically
coverage criteria consist of many ‘easy’ test requirements
and only few ‘difficult’ ones. Other simple criteria (CC, SC)
do not fare quite so well, and are also covered by most other
criteria. VC and UFC are very difficult to cover for non-
requirements based criteria, while VC and UFC have quite
good coverage of all other criteria, but this depends on the
underlying properties. TP is also very difficult to cover by
other criteria, while it achieves high coverage of all criteria
except VC and UFC. Mutation achieves very high coverage
on all criteria that consider single transition guards, but cov-
erage of criteria considering several transitions or require-
ments is not so good. Some criteria show a higher coverage
of RICC than GICC, this is because RICC has more infea-
sible test predicates. PWC and 3WC are also not very easy
to cover, but their own coverage on other criteria is worse
than that of most criteria based on transition guards. Fi-
nally, AllDef and AlIDU are difficult to cover for transition
guard based criteria, but their own coverage is often even
worse than that of combinatorial criteria. Consequently, we
recommend to use a mix of criteria from all groups.

Simply looking at the coverage values would result in a
preference for criteria that simply result in larger test suites.
In practice, resources for testing are usually limited, and so
test cases should preferably maximize coverage while be-
ing as short as possible. To this extent we consider the ra-
tio of the mutation score to the total test suite length (but
only summarize the results here due to space restrictions).
In most cases, AllDef has the highest ratio of mutants to
total length. In addition, this criterion results in a reason-
able number of test predicates out of which only few are
infeasible. Therefore, this criterion is a very useful criterion
and a good starting point; its only drawback is the com-

plexity of the test predicates. PC, CC, and SC also have
very high ratios of killed mutants to total length but have
the advantage of much simpler test predicates. The ICC cri-
teria have a higher ratio than the ACC criteria, with GACC
and GICC being the best criteria out of these groups. M
and GACC have similar ratios. In this comparison 3WC
performs worst; considering the large number of feasible
and infeasible test predicates this criterion seems only rec-
ommendable as an addition if there are sufficient resources.
TP also has a low ratio because of the large number of test
cases, but it seems that TP is a stricter criterion than muta-
tion so in this case the comparison is probably not fair.

5.2. Combining techniques

One of the main advantages of using model checkers for
test case generation is that it is very simple to combine dif-
ferent techniques — it is just a matter of deriving new test
predicates, but the framework is identical for all criteria.

When combining different techniques it will often make
sense to just add new test cases for uncovered test predi-
cates. An example application would be a best effort ap-
proach as described in [2]: Many coverage criteria are re-
lated through subsumption relations. If a test predicate turns
out to be infeasible, the best effort approach is to turn to the
next weaker variant of test predicate. This can be applied
with model checkers by starting with a complex criterion,
and then moving on to the next weaker version, only gener-
ating test cases for uncovered test predicates.

Table 3 shows several useful combinations of criteria.
The number of test cases resulting from the combination
is reasonable in all cases: In fact, generating test cases for
all criteria results in test suites that are smaller than the full
test suites created for most criteria (cf. Table 1). PC+CC
is a combination often used in practice, and the coverage is
clearly inferior to ACC or ICC criteria. Of all categories the
combination of TP, AllDef, and AlIDU achieves the high-
est coverage. Combinations from the different categories
achieve the best results: M+AIIDU+TP+PWC achieves
97.9% coverage, and adding the ACC criteria brings the
coverage up to 99%.

An interesting observation when combining several cri-
teria concerns the order in which test predicates are consid-
ered: The numbers in Table 3 are based on test case gener-
ation starting with the most complex criterion of a combi-
nation. When starting with the simplest criterion the num-
ber of unique test cases in the resulting test suite is slightly
larger without a significant increase in coverage.

5.3. Threats to validity

Different model checking techniques can result in differ-
ent counterexamples, which might also influence our find-
ings. We only used the symbolic model checker NuSMV
for our experiments. However, as NuSMV creates short test
cases we expect the results for bounded model checking and

explicit model checking with breadth first search to be sim-
ilar. Depth first search results in very long test cases, which
typically means that less test cases are necessary to satisfy
all test predicates of a criterion. While changing some of
the experimental results this should have no influence on
our general conclusions. A further limitation of our experi-
ments is that the specifications used are realistic but still on
the small side; however, we expect that our results in terms
of infeasible test predicates, cross coverage, etc. generalize
also to larger specifications. Finally, our conclusions make
the common assumption that high coverage on a specifica-
tion is likely to increase fault detection ability, but we did
not measure the effects on actual faults.

5.4. Related work

We considered state based specifications in this paper,
but model checkers are also useful in other contexts. For
example, Hong et al. [16] use model checkers to derive test
cases for control flow graphs. Furthermore, we only con-
sidered techniques where the test objectives are represented
as temporal logic properties but the specification is not al-
tered. Some of the criteria in this paper have been used
previously: Heimdahl et al. [15] proposed coverage criteria
similar to PC, CoC, and RACC in their transition system
framework, while for example the other ACC and ICC fla-
vors are new. Mutation has been previously used (e.g., [3]),
and the test predicates we used in this paper are based on
[11]. The criteria in this paper are all based on logical ex-
pressions in the transition system framework, but it is also
possible to define further criteria on the specifics of the ac-
tual specification language (e.g., [12, 13]). For a detailed
overview of testing with model checkers we refer to [10].

An evaluation of the specification coverage criteria TP,
M, and Full Predicate coverage (similar to GACC) was per-
formed by Abdurazik et al. [1]. Many of the weaker log-
ical coverage criteria are subsumed by these three criteria,
therefore a combination of these criteria is likely to result in
thorough test suites. This result is in line with our findings.

6. Conclusions

In this paper we have represented 17 different testing
techniques that can be represented in temporal logic in a
common framework, allowing us to unite criteria presented
in different frameworks and scenarios and some other crite-
ria not previously used in conjunction with model checker
based test case generation. The large number of techniques
suitable for such an approach make it difficult to pick a suit-
able set for a concrete application, therefore we performed
a set of experiments to compare the criteria.

The evaluation shows that there is no single superior cri-
terion. We have categorized the criteria into different cate-
gories, and it is useful to combine criteria from all of these
categories. Such a combination does not necessarily result
in large test suites if only test cases for uncovered test pred-

icates are added. In addition to combining techniques from
different categories it is also useful to combine related tech-
niques from the same category, as this allows a best effort
approach to cope with infeasible test predicates.

As some criteria are complex and result in many feasi-
ble and infeasible test predicate, the choice of criteria will
often be guided by the available resources. If resources are
limited it is reasonable to start with simple criteria that have
few test predicates (e.g., AllDef, PC, CC, SC), and usually
only few of them are infeasible. This gives high coverage
at small costs, and the remaining resources can be used to
cover more difficult test objectives. For example, GACC
and GICC result in reasonably small test suites, have only
few infeasible test predicates, and are generally preferable
to their stricter variants. The strictest criteria such as M, TP,
AIIDU, 3WC all result in many infeasible test predicates,
but many of the feasible test predicates are difficult to cover
by other criteria, therefore intuitively resulting in ‘good’ test
cases. Even using all criteria in combination is feasible for
test case generation, as monitoring can ensure that the test
suite size stays reasonably small.

Acknowledgements Many thanks to Paul Ammann for comments
on an earlier version of this paper.

References

[1] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt. Evalua-
tion of Three Specification-Based Coverage Testing Criteria.
In Proceedings of the 6th IEEE Int. Conf. on Engineering
of Complex Computer Systems (ICECCS 2000), pages 179—
187. IEEE Computer Society, September 2000.

[2] P. Ammann and J. Offutt. Introduction to Software Testing.
Cambridge University Press, New York, NY, USA, 2008.

[3] P. E. Ammann, P. E. Black, and W. Majurski. Using Model
Checking to Generate Tests from Specifications. In Pro-
ceedings of the Second IEEE International Conference on
Formal Engineering Methods (ICFEM’9S), pages 46-54.
IEEE Computer Society, 1998.

[4] R. Bharadwaj and C. L. Heitmeyer. Model Checking Com-
plete Requirements Specifications Using Abstraction. Auto-
mated Software Engineering, 6(1):37-68, 1999.

[5] A.Calvagnaand A. Gargantini. A Logic-Based Approach to
Combinatorial Testing with Constraints. In Tests and Proofs,
volume 4966 of LNCS, pages 66—83. Springer, 2008.

[6] A. Cavarra. Data flow analysis and testing of abstract state
machines. In E. Borger, M. Butler, J. P. Bowen, and P. Boca,
editors, Proceedings of First International Conference Ab-
stract State Machines, B and Z (ABZ 2008), volume 5238 of
LNCS, pages 85-97. Springer, 2008.

[7] J. Chilenski and L. A. Richey. Definition for a masking form
of modified condition decision coverage (MCDC). Techni-
cal report, Boeing, 1997.

[8] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
NUSMV: A New Symbolic Model Verifier. In CAV ’99:
Proceedings of the 11th Int. Conference on Computer Aided
Verification, pages 495-499. Springer, 1999.

(9]

(10]

(1]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

E. M. Clarke and E. A. Emerson. Design and Synthesis of
Synchronization Skeletons Using Branching-Time Tempo-
ral Logic. In Logic of Programs, Workshop, pages 52-71,

London, UK, 1982. Springer.
G. Fraser, F. Wotawa, and P. E. Ammann. Testing with

model checkers: a survey. Software Testing, Verification and

Reliability, 2009. To appear.

A. Gargantini. Using Model Checking to Generate Fault
Detecting Tests. In Proceedings of the International Con-
ference on Tests And Proofs (TAP), volume 4454 of LNCS,
pages 189-206, 2007.

A. Gargantini and C. Heitmeyer. Using Model Checking
to Generate Tests From Requirements Specifications. In
ESEC/FSE’99: 7th European Software Engineering Conf.
and Foundations of Software Engineering Symposium, vol-
ume 1687 of LNCS, pages 146-162. Springer, 1999.

A. Gargantini and E. Riccobene. ASM-Based Testing: Cov-
erage Criteria and Automatic Test Sequence. Journal of Uni-

versal Computer Science, 7(11):1050-1067, 2001.
I. Grobelna. Formal verification of logic controller speci-

fication using NuSMV model checker. In X International

PhD Workshop OWD’2008, 2008.
M. P. E. Heimdahl, S. Rayadurgam, and W. Visser. Specifi-

cation Centered Testing. In Proceedings of the Second Inter-
national Workshop on Automated Program Analysis, Testing
and Verification (ICSE 2001), 2001.

H. S. Hong, 1. Lee, O. Sokolsky, and H. Ural. A tempo-
ral logic based theory of test coverage and generation. In
Proceedings of the 8th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2002),
volume 2280 of LNCS, pages 151-161. Springer, 2002.

J. Kirby. Example NRL/SCR Software Requirements for an
Automobile Cruise Control and Monitoring System. Techni-

cal Report TR-87-07, Wang Inst. of Graduate Studies, 1987.
D. R. Kuhn and V. Okun. Pseudo-Exhaustive Testing for

Software. In 30th Annual IEEE / NASA Software Engineer-
ing Workshop (SEW-30 2006), 25-28 April 2006, Loyola
College Graduate Center, Columbia, MD, USA, pages 153—
158. IEEE Computer Society, 2006.

S. Rayadurgam and M. P. Heimdahl. Generating MC/DC
Adequate Test Sequences Through Model Checking. In Pro-
ceedings of the 28th Annual NASA Goddard Software Engi-
neering Workshop, pages 91-96, 2003.

L. Tan, O. Sokolsky, and I. Lee. Specification-Based Testing
with Linear Temporal Logic. In Proceedings of IEEE Inter-
national Conference on Information Reuse and Integration

(IRI’04), pages 493498, 2004.
S. A. Vilkomir and J. P. Bowen. Reinforced Condi-

tion/Decision Coverage (RC/DC): A New Criterion for Soft-
ware Testing. In Proceedings of the 2nd Int. Conf. on Formal
Specification and Development in Z and B (ZB 02), pages

291-308, London, UK, 2002. Springer.
M. W. Whalen, A. Rajan, M. P. Heimdahl, and S. P. Miller.

Coverage Metrics for Requirements-Based Testing. In IS-
STA’06: Proceedings of the 2006 International Symposium
on Software Testing and Analysis, pages 25-36, New York,
NY, USA, 2006. ACM Press.

H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test

coverage and adequacy. ACM Comput. Surv., 29(4):366—
427, 1997.

