
Repairing Timed Automata Clock Guards
through Abstraction and Testing?

Étienne André1,2,3[0000−0001−8473−9555], Paolo Arcaini3[0000−0002−6253−4062],
Angelo Gargantini4[0000−0002−4035−0131], and Marco

Radavelli4[0000−0002−1165−9981]

1 Université Paris 13, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France
2 JFLI, CNRS, Tokyo, Japan

3 National Institute of Informatics, Tokyo, Japan
4 University of Bergamo, Bergamo, Italy

Abstract. Timed automata (TAs) are a widely used formalism to spec-
ify systems having temporal requirements. However, exactly specifying
the system may be difficult, as the user may not know the exact clock
constraints triggering state transitions. In this work, we assume the user
already specified a TA, and (s)he wants to validate it against an ora-
cle that can be queried for acceptance. Under the assumption that the
user only wrote wrong guard transitions (i. e., the structure of the TA
is correct), the search space for the correct TA can be represented by a
Parametric Timed Automaton (PTA), i. e., a TA in which some constants
are parametrized. The paper presents a process that (i) abstracts the ini-
tial (faulty) TA tainit in a PTA pta; (ii) generates some test data (i. e.,
timed traces) from pta; (iii) assesses the correct evaluation of the traces
with the oracle; (iv) uses the IMITATOR tool for synthesizing some con-
straints ϕ on the parameters of pta; (v) instantiate from ϕ a TA tarep as
final repaired model. Experiments show that the approach is successfully
able to partially repair the initial design of the user.

1 Introduction

Timed automata (TA) [4] represent a widely used formalism for modeling and
verifying concurrent timed systems. A common usage is to develop a TA de-
scribing the running system and then apply analysis techniques to it (e. g., [15]).
However, exactly specifying the system under analysis may be difficult, as the
user may not know the exact clock constraints that trigger state transitions,
or may perform errors at design time. Therefore, validating the produced TA
against the real system is extremely important to be sure that we are analyzing
a faithful representation of the system. Different testing techniques have been
proposed for timed automata, based on different coverage criteria as, e. g., tran-
sition coverage [25] and fault-based coverage [2,3], and they can be used for TA

? This work is partially supported by ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603), JST and by the ANR national research program
PACS (ANR-14-CE28-0002).

validation. However, once some failing tests have been identified, it remains the
problem of detecting and removing (repair) the fault from the TA under valida-
tion. How to do this in an automatic way is challenging. One possible solution
could be to use mutation-based approaches [2,3] in which mutants are considered
as possible repaired versions of the original TA; however, due to the continuous
nature of timed automata, the number of possible mutants (i. e., repair actions)
is too big also for small TAs and, therefore, such approaches do not appear to
be feasible. We here propose to use a symbolic representation of the possible
repaired TAs and we reduce the problem of repairing to finding an assignment
of this symbolic representation.

Contribution In this work, we address the problem of testing/validating TAs
under the assumption that only clock guards may be wrong, that is, we assume
that the structure (states and transitions) is correct. Moreover, we assume to
have an oracle that we can query for acceptance of timed traces, but whose
internal structure is unknown: this oracle can be a Web-service, a medical device,
a protocol, etc. In order to symbolically represent the search space of possible
repaired TAs, we use the formalism of parametric timed automata (PTAs) [6] as
an abstraction to represent all possible behaviors under all possible clock guards.

We propose a framework for automatic repair of TAs that takes as input a
TA tainit to repair and an oracle. The process works as follows: i) starting from
tainit , we build a PTA pta where to look for the repaired TA; ii) we build a
symbolic representation of the language accepted by pta in terms of an extended
parametric zone graph EPZG; iii) we then generate some test data TD from
EPZG; iv) we assess the correct evaluation of TD by querying the oracle, so
building the test suite TS ; v) we feed the tests TS to the IMITATOR[10] tool
that finds some constraints ϕ that restrict pta only to those TAs that correctly
evaluate all the tests in TS ; vi) as the number of TAs that are correct repairs
may be infinite, we try to obtain, using a constraint solver based on local search,
the TA tarep closest to the initial TA tainit . Note that trying to modify as less
as possible the initial TA is reasonable if we assume the competent programmer
hypothesis [22].

To evaluate the feasibility of the approach, we performed some preliminary
experiments showing that the approach is able to (partially) repair a faulty TA.

Outline Section 2 explains the definitions we need in our approach. Then Sec-
tion 3 presents the process we propose that combines model abstraction, test
generation, constraint generation, and constraint solving. Section 4 describes
experiments we performed to evaluate our process. Finally, Section 5 reviews
some related work, and Section 6 concludes the paper.

2 Definitions

A timed word [4] over an alphabet of actions Σ is a possibly infinite sequence of
the form (a0, d0)(a1, d1) · · · such that, for all integer i ≥ 0, ai ∈ Σ and di ≤ di+1.
A timed language is a (possibly infinite) set of timed words.

`1 `2 `3

`4 `5

x ≤ 4

x ≤ 3

x ≤ 6

x ≤ 3

a

x = 3 ∧ y ≥ 4

b
x > 2

a
y := 0

y > 1 ∧ x > 4

c

(a) A TA to be repaired

`1 `2 `3

`4 `5

x ≤ 4

x ≤ p3

x ≤ 6

x ≤ p3
a

x = p3 ∧ y ≥ 4

b
x > p2

a
y := 0

y > 1 ∧ x > p4
c

(b) An abstract PTA

Fig. 1: Running example

We assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued variables that
evolve at the same rate. A clock valuation is µ : X → R≥0. We write ~0 for the
clock valuation assigning 0 to all clocks. Given d ∈ R≥0, µ+d is s.t. (µ+d)(x) =
µ(x) + d, for all x ∈ X. Given R ⊆ X, we define the reset of a valuation µ,
denoted by [µ]R, as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters. A parameter valuation v is
v : P→ Q+. We assume ./ ∈ {<,≤,=,≥, >}. A clock guard g is a constraint over
X∪P defined by a conjunction of inequalities of the form x ./

∑
1≤i≤M αipi +d,

with pi ∈ P, and αi, d ∈ Z. Given g, we write µ |= v(g) if the expression obtained
by replacing each x with µ(x) and each p with v(p) in g evaluates to true.

2.1 Parametric timed automata

Definition 1 (PTA). A PTA A is a tuple A = (Σ,L, `0, F,X,P, I, E), where:
i) Σ is a finite set of actions, ii) L is a finite set of locations, iii) `0 ∈ L is the
initial location, iv) F ⊆ L is the set of accepting locations, v) X is a finite set
of clocks, vi) P is a finite set of parameters, vii) I is the invariant, assigning to
every ` ∈ L a clock guard I(`), viii) E is a finite set of edges e = (`, g, a,R, `′)
where `, `′ ∈ L are the source and target locations, a ∈ Σ, R ⊆ X is a set of
clocks to be reset, and g is a clock guard.

Given e = (`, g, a,R, `′), we define Act(e) = a.

Example 1. Consider the PTA in Fig. 1b, containing two clocks x and y and
three parameters p2, p3 and p4. The initial location is `1.

Given v, we denote by v(A) the non-parametric structure where all occur-
rences of a parameter pi have been replaced by v(pi). We denote as a timed
automaton any such structure v(A).

The synchronous product (using strong broadcast, i. e., synchronization on a
given set of actions), or parallel composition, of several PTAs gives a PTA (see
[8] for a common formal definition).

Definition 2 (Concrete semantics of a TA). Given a PTA A = (Σ, L, `0,
F, X, P, I, E), and a parameter valuation v, the semantics of v(A) is given by
the timed transition system (TTS) (S, s0,→), with

– S = {(`, µ) ∈ L× RH
≥0 | µ |= v(I(`))}, s0 = (`0,~0),

– → consists of the discrete and (continuous) delay transition relations: i) dis-

crete transitions: (`, µ)
e7→ (`′, µ′), if (`, µ), (`′, µ′) ∈ S, and there exists

e = (`, g, a,R, `′) ∈ E, such that µ′ = [µ]R, and µ |= v(g). ii) delay transi-

tions: (`, µ)
d7→ (`, µ+ d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (`, µ+ d′) ∈ S.

Moreover we write (`, µ)
(e,d)−→ (`′, µ′) for a combination of a delay and discrete

transition if ∃µ′′ : (`, µ)
d7→ (`, µ′′)

e7→ (`′, µ′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states

of S as the concrete states of v(A). A run of v(A) is an alternating sequence of
concrete states of v(A) and pairs of edges and delays starting from the initial
state s0 of the form s0, (e0, d0), s1, · · · with i = 0, 1, . . . , ei ∈ E, di ∈ R≥0 and

si
(ei,di)−→ si+1. The associated timed word is (Act(e0), d0)(Act(e1),

∑
0≤i≤1 di) · · · .

A run is maximal if it is infinite or cannot be extended by any discrete action.
The (timed) language of a TA, denoted by L(v(A)), is the set of timed words
associated with maximal runs of v(A). Given s = (`, µ), we say that s is reachable
in v(A) if s appears in a run of v(A). By extension, we say that ` is reachable
in v(A); and by extension again, given a set T of locations, we say that T is
reachable if there exists ` ∈ T such that ` is reachable in v(A).

Example 2. Consider the TA A in Fig. 1a. Consider the following run ρ of A:(
`1,

(
x = 0
y = 0

))
(a,2.5)−→

(
`4,

(
x = 2.5
y = 0

))
(c,2)−→

(
`5,

(
x = 4.5
y = 2

))
We write “x = 2.5” instead of “µ such that µ(x) = 2.5”. The associated

timed word is (a, 2.5)(c, 4.5).

2.2 Symbolic semantics

Let us now recall the symbolic semantics of PTAs (see e. g., [18,9,19]).

Constraints We first need to define operations on constraints. A linear term over
X ∪ P is of the form

∑
1≤i≤H αixi +

∑
1≤j≤M βjpj + d, with xi ∈ X, pj ∈ P,

and αi, βj , d ∈ Z. A constraint C (i. e., a convex polyhedron) over X ∪ P is a
conjunction of inequalities of the form lt ./ 0, where lt is a linear term.

Given a parameter valuation v, v(C) denotes the constraint over X obtained
by replacing each parameter p in C with v(p). Likewise, given a clock valua-
tion µ, µ(v(C)) denotes the expression obtained by replacing each clock x in v(C)
with µ(x). We say that v satisfies C, denoted by v |= C, if the set of clock valu-
ations satisfying v(C) is nonempty. Given a parameter valuation v and a clock
valuation µ, we denote by µ|v the valuation over X ∪ P such that for all clocks
x, µ|v(x) = µ(x) and for all parameters p, µ|v(p) = v(p). We use the notation
µ|v |= C to indicate that µ(v(C)) evaluates to true. We say that C is satisfiable
if ∃µ, v s.t. µ|v |= C.

s1 s2 s3

s4 s5

e1 e2

e3
e4

s1 = (`1 , 0 ≤ x = y ≤ 4 ∧ p2 ≥ 0 ∧ p3 ≥ 0 ∧ p4 ≥ 0)
s2 = (`2 , 0 ≤ x = y ≤ p3 ∧ p2 ≥ 0 ∧ p3 ≥ 0 ∧ p4 ≥ 0)
s3 = (`3 , x = y ≥ p3 ∧ p2 ≥ 0 ∧ p3 ≥ 4 ∧ p4 ≥ 0)
s4 = (`4 , p2 < x ≤ 6 ∧ y ≥ 0 ∧ p2 < x− y ≤ 4 ∧ 4 > p2 ≥ 0 ∧ p3 ≥ 0 ∧ p4 ≥ 0)
s5 = (`5 , p2 < x ∧ p4 < x ∧ y > 1 ∧ p2 < x− y ≤ 4 ∧ 4 > p2 ≥ 0 ∧ p3 ≥ 0 ∧ 6 > p4 ≥ 0)

Fig. 2: Parametric zone graph of Fig. 1b

We define the time elapsing of C, denoted by C↗, as the constraint over X
and P obtained from C by delaying all clocks by an arbitrary amount of time.
That is, µ′|v |= C↗ iff ∃µ : X → R+,∃d ∈ R+ s.t. µ|v |= C ∧ µ′ = µ+ d. Given
R ⊆ X, we define the reset of C, denoted by [C]R, as the constraint obtained
from C by resetting the clocks in R, and keeping the other clocks unchanged.
We denote by C↓P the projection of C onto P, i. e., obtained by eliminating the
variables not in P (e. g., using Fourier-Motzkin [24]). ⊥ denotes the constraint
over P representing the empty set of parameter valuations.

Definition 3 (Symbolic semantics). Given a PTA A = (Σ,L, `0, F,X,P, I, E),
the symbolic semantics of A is the labeled transition system called parametric
zone graph PZG = (E,S, s0,⇒), with
– S = {(`, C) | C ⊆ I(`)}, s0 =

(
`0, (

∧
1≤i≤H xi = 0)↗ ∧ I(`0)

)
, and

–
(
(`, C), e, (`′, C ′)

)
∈ ⇒ if e = (`, g, a,R, `′) ∈ E and C ′ =

(
[(C ∧ g)]R ∧

I(`′)
)↗ ∧ I(`′) with C ′ satisfiable.

That is, in the parametric zone graph, nodes are symbolic states, and arcs are
labeled by edges of the original PTA. A symbolic state is a pair (`, C) where ` ∈ L
is a location, and C its associated constraint. In the successor state computation
in Definition 3, the constraint is intersected with the guard, clocks are reset, the
resulting constraint is intersected with the target invariant, then time elapsing is
applied, and finally intersected again with the target invariant. This graph is (in
general) infinite and, in contrast to the zone graph of timed automata, no finite
abstraction can be built for properties of interest; this can be put in perspective
with the fact that most problems are undecidable for PTAs [7].

Example 3. Consider again the PTA A in Fig. 1b. The parametric zone graph
of A is given in Fig. 2, where e1 is the edge from `1 to `2 in Fig. 1b, e2 is the
edge from `2 to `3, e3 is the edge from `1 to `4, and e4 is the edge from `4 to `5.
The inequalities of the form 0 ≤ x = y ≤ 4 come from the fact that clocks are
initially both equal to 0, evolve at the same rate, and are constrained by the
invariant.

2.3 Reachability synthesis

We will use reachability synthesis to solve the problem in Section 3. This pro-
cedure, called EFsynth, takes as input a PTA A and a set of target locations T ,
and attempts to synthesize all parameter valuations v for which T is reachable

in v(A). EFsynth(A, T) was formalized in e. g., [19] and is a procedure that tra-
verses the parametric zone graph of A; EFsynth may not terminate (because
of the infinite nature of the graph), but computes an exact result (sound and
complete) if it terminates.

Example 4. Consider again the PTA A in Fig. 1b. EFsynth(A, {`5}) returns 0 ≤
p2 < 4 ∧ 0 ≤ p4 ≤ 6 ∧ p3 ≥ 0. Intuitively, this corresponds to all parameter
constraints in the parametric zone graph in Fig. 2 associated to symbolic states
with location `5 (there is a single such state).

3 A repairing process using abstraction and testing

In this paper, we address the guard-repair problem of timed automata. Given a
reference TA tainit and an oracle O knowing an unknown timed language T L,
our goal is to modify (“repair”) the timing constants in the clock guards of A
such that the repaired automaton matches the timed language T L. The setting
assumes that the oracle O can be queried for acceptance of timed words by T L;
that is, O can decide whether a timed word belongs to T L, but the internal
structure of the object leading to T L (e. g., an unknown timed automaton) is
unknown. This setting makes practical sense when testing black-box systems.

guard-repair problem:
Input: an initial TA tainit , an unknown timed language T L
Problem: Repair the constants in the clock guards of tainit so as to obtain
a TA tarep such that L(tarep) = T L

While the ultimate goal is to solve this problem, in practice the best we can
hope for is to be as close as possible to the unknown oracle TA, notably due
to the undecidability of language equivalence of timed automata [4] (e. g., if T L
was generated by another TA).

3.1 Overview of the method

From now on, we describe the process we propose to automatically repair an
initial timed automaton tainit . Fig. 3 describes the approach:

Step À a PTA pta is generated starting from the initial TA tainit .
Step Á the extended parametric zone graph EPZG (an extension of PZG) is

built.
Step Â a test generation algorithm generates relevant test data TD from EPZG.
Step Ã TD is evaluated using the oracle, therefore building the test suite TS .
Step Ä some constraints ϕ are generated, restricting pta to the TAs that eval-

uate correctly the generated tests TS .
Step Å one possible TA satisfying the constraints ϕ is obtained.

Algorithm 1 formalizes steps À–Ä for which we can provide some theoret-
ical guarantees (i. e., the non-emptiness of the returned valuation set, and its

Fig. 3: Automatic repair process

Algorithm 1: Automatic repair process Repair(tainit ,O)

input : tainit : initial timed automaton to repair
input : O: an oracle assessing the correct evaluation of timed words
output : ϕ: set of valuations repairing tainit

1 pta ← AbstractInPta(tainit)
2 EPZG ← BuildEpzg(pta)
3 TD ← GenerateTestData(EPZG); /* Generate test data from EPZG */

4 TS ← LabelTests(TD ,O); /* A test is a pair (trace, assessment) */

5 return ϕ← GenConstraints(pta,TS)

Function GenConstraints(pta,TS)

1 MBA← {w | (w, true) ∈ TS}; /* Tests that must be accepted */

2 MBR ← {w | (w, false) ∈ TS}; /* Tests that must be rejected */

3 return
∧

w∈MBA ReplayTW(pta, w) ∧
∧

w∈MBR ¬ReplayTW(pta, w)

inclusion of T L). For step Å, instead, different approaches could be adopted: in
the paper, we discuss a possible one. We emphasize that, with the exception of
Step À, our process is entirely automated. We describe each phase in details in
the following sections.

3.2 Step À: Abstraction

Starting from the initial tainit , through abstraction, the user obtains a PTA pta
that generalizes tainit in all the parts that can be possibly changed in order to
repair tainit (line 1 in Algorithm 1). For instance, a clock guard with a constant
value can be parametrized. Therefore, pta represents the set of all the TAs that
can be obtained when repairing tainit . pta is built on the base of the domain
knowledge of the developer who has a guess of the guards that may be faulty.

Example 5. Consider again the TA in Fig. 1a. A possible abstraction of this TA is
the PTA in Fig. 1b, where we chose to abstract some of the timing constants with
parameters. Note that not all timing constants must necessarily be substituted

with parameters; also note that a same parameter can be used in different places
(this is the case of p3).

Assumption We define below an important assumption for our method; we will
discuss in Section 3.9 how to lift it.

Assumption 1 We here assume that pta is a correct abstraction, i. e., it con-
tains a TA that precisely models the oracle. That is, there exists vO such that
L(vO(pta)) = T L.

Note that this assumption is trivially valid if faults lay in the clock guards
(which is the setting of this work), and if all constants used in clock guards are
turned to parameters.

3.3 Step Á: construction of the extended parametric zone graph

Starting from pta, we build a useful representation of its computations in terms
of an extended parametric zone graph EPZG (line 2 in Algorithm 1). This original
data structure will be used for test generation. In the following, we describe how
we build EPZG from PZG. We extend the parametric zone graph PZG with
the two following pieces of information:

the parameter constraint characterizing each symbolic state: from a state
(`, C), the parameter constraint is C↓P and gives the exact set of parameter
valuations for which there exists an equivalent concrete run in the automa-
ton. That is, a state (`, C) is reachable in v(A) iff v |= C (see [19] for details).

the minimum and maximum arrival times: that is, we compute the mini-
mum (mi) and maximum (Mi) over all possible parameter valuations of the
possible absolute times reaching this symbolic state.

While the construction of the first information is standard, the second one is
original to our work and requires more explanation. We build for each state a
(possibly unbounded) interval that encodes the absolute minimum and maxi-
mum arrival time. This can be easily obtained from the parametric zone graph
by adding an extra clock never reset (that encodes the absolute time), and pro-
jecting the obtained constrained on this extra clock, thus giving minimum and
maximum times over all possible parameter valuations.

Example 6. Consider again the PTA A in Fig. 1b and its parametric zone graph
in Fig. 2. The parameter constraints associated to each of the symbolic states,
and the possible absolute reachable times, are given in Table 1.

Remark 1. If all locations of the original PTA contain an invariant with at least
one inequality of the form x/p or x/d, with / ∈ {<,≤}, and if the parameters are
bounded, then the maximum arrival time in each symbolic state will always be
finite. Note that this condition is not fulfilled in Example 6 because `2 features
an invariant x ≤ p3, with p3 unbounded, thus allowing to remain arbitrarily
long in `2 for an arbitrarily large value of p3. Therefore, the arrival time in `3 is
xabs ∈ [4,∞).

Table 1: Description of the states of the extended parametric zone graph
Symbolic states Parameter constraint Reachable times

s1 p2 ≥ 0 ∧ p3 ≥ 0 ∧ p4 ≥ 0 xabs = 0

s2 p2 ≥ 0 ∧ p3 ≥ 0 ∧ p4 ≥ 0 xabs ∈ [0, 4]

s3 p2 ≥ 0 ∧ p3 ≥ 4 ∧ p4 ≥ 0 xabs ∈ [4,∞)

s4 4 > p2 ≥ 0 ∧ p3 ≥ 0 ∧ p4 ≥ 0 xabs ∈ (0, 4]

s5 4 > p2 ≥ 0 ∧ p3 ≥ 0 ∧ 6 > p4 ≥ 0 xabs ∈ (1, 6]

3.4 Step Â: Test data generation

Starting from EPZG, we generate some test data (line 3 in Algorithm 1) in terms
of timed words.

Constructing timed words We use the minimal and maximum arrival times
in the abstract PTA to generate test data. That is, we will notably use the
boundary information, i. e., runs close to the fastest and slowest runs, to try to
discover the actual timing guards of the oracle.

The procedure to generate a timed word from the EPZG is as follows:
1. Pick a run s0e0s1 · · · . . . sn from EPZG.
2. Construct the timed word (a0, d0)(a1, d1) · · · (an−1, dn−1), where ai = Act(ei)

and di belongs to the interval of reachable times associated with symbolic
state si+1, for 0 ≤ i ≤ n−1. Note that, depending on the policy (see below),
we sometimes choose on purpose valuations outside of the reachable times.
Given an EPZG, we generate, for each finite path of the EPZG up to a given

depth K, one timed word. In order to chose a timed word from a (symbolic)
path of the EPZG, we identified different policies.

Policies For each k < K, we instantiate (a0, d0) (a1, d1) · · · (ak, dk) by selecting
particular values for each di using different policies:
– P±1: dj ∈ I±1, where I±1 = {mi − 1,mi ,mi + 1,Mi − 1,Mi ,Mi + 1} and mi

and Mi are the minimum and maximum arrival times of the symbolic state.
– PminMax2: dj ∈ IminMax2 with IminMax2 = I±1 ∪ {(mi + Mi)/2}.
– PminMax4: dj ∈ IminMax4 with IminMax4 = IminMax2 ∪{mi +(Mi−mi)/4,mi +

((Mi −mi)/4) ∗ 3}.
– Prnd: dj being a random value such that mi ≤ dj ≤ Mi .

Example 7. Consider again the PTA A in Fig. 1b and its parametric zone graph
in Fig. 2 together with reachable times in Table 1. Pick the run s1e3s4e4s5. First
note that Act(e3) = a and Act(e4) = c. According to Table 1, the reachable times
associated with s4 are (0, 4] while those associated with s5 are (1, 6]. Therefore,
a possible timed word generated with P±1 is (a, 1)(c, 5). Note that this timed
word does not belong to the TA to be repaired (Fig. 1a) because of the guard
x > 2; however, it does belong to an instance TA of Fig. 1b for a sufficiently
small value of p2 (namely v(p2) < 1). We will see later that such tests are tagged
as failing.

3.5 Step Ã: Test labeling

Then, every test sequence in TD is checked against the oracle in order to label
it as accepted or not (line 4 in Algorithm 1), therefore the test suite TS ; a test
case in TS is a pair (w, O(w)), being w a timed word, and O(w) the evaluation
of the oracle, i. e., O(w) is defined as a Boolean the value of which is w ∈ T L.5

A test case fails if tainit(w) 6= O(w), i. e., the initial TA and the oracle timed
language disagree. Note that, if is no test case fails, tainit is considered correct6

and the process terminates.
In different settings, different oracles can be used. In this work, we assume

that the oracle is the real system of which we want to build a faithful representa-
tion; the system is black-box, and it can only be queried for acceptance of timed
words. In another setting, the oracle could be the user who can easily assess
which words should be accepted, and wants to validate their initial design. Of
course, the type of oracle also determines how many test data we can provide
for assessment: while a real implementation can be queried a lot (modulo the
time budget and the execution time of a single query), a human oracle usually
can evaluate only few tests.

3.6 Step Ä: Generating constraints from timed words

Given the test suite TS , our approach generates constraints ϕ that restrict pta
to only those TAs that correctly evaluate the tests (line 5 in Algorithm 1).

In this section, we explain how to “replay a timed word”, i. e., given a PTA A,
how to synthesize the exact set of parameter valuations v for which a finite timed
word belongs to the timed language of v(A). Computing the set of parameter
valuations for which a given finite timed word belongs to the timed language can
be done easily by exploring a small part of the symbolic state space. Replaying
a timed word is also very close to the ReplayTrace procedure in [12] where we
synthesized valuations corresponding to a trace, i. e., a timed word without the
time information—which is decidable.

From timed words to timed automata First, we convert the timed word
into a (non-parametric) timed automaton. This straightforward procedure was
introduced in [11], and simply consists in converting a timed word of the form
(a1, d1), · · · , (an, dn) into a sequence of transitions labeled with ai and guarded
with xabs = di (where xabs measures the absolute time, i. e., is an extra clock
never reset). Let TW2PTA denote this procedure.7

5 To limit the number of tests, we only keep the maximal accepted traces (i. e., we
remove accepted traces included in longer accepted traces), and the minimal rejected
traces (i. e., we remove rejected traces having as prefix another rejected trace).

6 This does not necessarily mean that both TAs have the same language, but that the
tests did not exhibit any discrepancy.

7 This procedure transforms the word to a non-parametric TA; we nevertheless use
the name TW2PTA for consistency with [11].

Example 8. Consider again the timed
word w mentioned in Example 7:
(a, 0.5)(c, 5). The result of TW2PTA(w)
is given in Fig. 4.

`TW
0 `TW

1 `TW
2

xabs = 0.5

a

xabs = 5

c

Fig. 4: Translation of timed word
(a, 0.5)(c, 5)

Synchronized product and synthesis The second part of step Ä consists in
performing the synchronized product of TW2PTA(w) and A, and calling EFsynth
on the resulting PTA with the last location of the timed word as the target
of EFsynth. Let ReplayTW(pta, w) denote the entire procedure of synthesizing
the valuations associated that make a timed word possible.

Example 9. Consider again the PTAA in Fig. 1b and the timed word (a, 0.5)(c, 5)
translated to a (P)TA in Fig. 4. The result of EFsynth applied to the syn-
chronized product of these two PTAs with {`TW

2 } as target location set is
0 ≤ p4 < 5 ∧ 0 ≤ p2 <

1
2 ∧ p3 ≥ 0. This set indeed represents all possible valua-

tions for which (a, 0.5)(c, 5) is a run of the automaton. Note that the result can
be non-convex. If we now consider the simpler timed word (a, 3), then the result
of ReplayTW(A, w) becomes p3 ≥ 3∧p2 ≥ 0∧p4 ≥ 0 ∨ p2 < 3∧p3 ≥ 0∧p4 ≥ 0
This comes from the fact that the action a can correspond to either e1 (from `1
to `2) or e3 (from `1 to `4) in Fig. 1b.

Remark 2. Despite the non-guarantee of termination of the general EFsynth pro-
cedure, ReplayTW not only always terminates, but is also very efficient in prac-
tice: indeed, it only explores the part of the PTA corresponding to the sequence
of (timed) transitions imposed by the timed word. This comes from the fact that
we take the synchronized product of A with TW2PTA(w), the latter PTA being
linear and finite.

Lemma 1. Let pta be a PTA, and w be a timed word. Then ReplayTW(pta, w)
terminates.

3.7 Correctness

Recall that Assumption 1 assumes that there exists a valuation vO such that
L(vO(pta)) = T L. We show that, under Assumption 1, our resulting constraint
is always non-empty and contains the valuation vO.

Theorem 1. Let ϕ = Repair(tainit ,O). Then ϕ 6= ⊥ and vO |= ϕ.

Proof. Proofs of Lemma 1 and Theorem 1 can be found in [8].

3.8 Step Å: Instantiation of a repaired TA

Any assignment satisfying ϕ characterizes a correct TA w.r.t. the generated tests
in TS ; however, not all of them exactly capture the oracle behaviour. If the user
wants to select one TA, (s)he can select one assignment vrep of ϕ, and use it to
instantiate the final repaired TA tarep .

In order to select one possible assignment vrep , different strategies may be
employed, on the base of the assumptions of the process. In this work, we assume
the competent programmer hypothesis [22] that the developer produced an initial
TA tainit close to be correct; therefore, we want to generate a final TA tarep that
is not too different from tainit . In particular, we assume that the developer did
small mistakes on setting the values of the clock guards.

In order to find the closest values of the clock guards that respect the con-
straints, we exploit the local search capability of the constraint solver Choco [23]:

1. we start from the observation that tainit is an instantiation of pta. We there-
fore select the parameter evaluation vinit that generates tainit from pta, i. e.,
tainit = vinit(pta);

2. we initialize Choco with vinit ; Choco then performs a local search trying to
find the assignment closest (according to a notion of distance defined later
in Section 4) to vinit , and that satisfies ϕ.

3.9 Discussing Assumption 1

Assumption 1 assumes that the user provides a PTA pta that contains the oracle.
If this is not the case, the test generation phase (Section 3.6) may generate a
negative test (i. e., not accepted by any instance of pta) that is instead accepted
by the oracle or a positive test that is not accepted by the oracle; in this case,
the constraints generation phase would produce an unsatisfiable constraint ϕ. In
this case, the user should refine the abstraction by parameterizing some other
clock guards, or by relaxing the constraints on some existing parameters.

Moreover, it could be that the correct oracle has a different structure (addi-
tional states and transitions): as future work, we plan to apply other abstractions
as CoPtA models [21] that allow to parametrize states and transitions.

Note that, even if the provided abstraction is wrong, our approach could still
be able to refine it. In order to do this, we must avoid to use for constraint gen-
eration (step Ä) tests that produce unsatisfiable constraints. We use a greedy
incremental version of GenConstraints in which ReplayTW is called incremen-
tally: if the constraint generated for a test w is not compatible with the other
constraints generated previously, then it is discarded; otherwise it is conjuncted.

4 Experimental evaluation

In order to evaluate our approach, we selected some benchmarks from the liter-
ature to be used as initial TA tainit : the model of a coffee machine (CF) [3], of a
car alarm system (CAS) [3], and the running case study (RE). For each benchmark
model, Table 2 reports its number of locations and transitions.

The proposed approach requires that the developer, starting from tainit , pro-
vides an abstraction in terms of a PTA pta. For the experiments, as we do not
have any domain knowledge, we took the most general case and we built pta by
adding a parameter for each guard constant; the only optimization that we did

Table 2: Benchmarks: data

Benchmark size of tainit # params SD SC (%)
#locs. #trans.

RunningEx (RE) 5 4 5 2 98.33

Coffee (CF) 5 7 9 11 99.18

CarAlarmSystem (CAS) 16 25 10 12 84.24

RunningEx – different oracle (REdo) 5 4 5 - 98.72

is to use the same parameter when the same constant is used on entering and/or
exiting transitions of the same location (as in Fig. 1b).

In the approach, the oracle should be the real system that we can query for
acceptance; in the experiments, the oracle is another TA tao that we obtained
by slightly changing some constants on the guards. The oracle has been built in
a way that it is an instance of pta, following Assumption 1.

In order to measure how much a TA (either the initial one tainit or the final
one tarep) is different from the oracle, we introduce a syntactic and a semantic
measure, that provide different kinds of comparison with the oracle tao.

Given a model ta, the oracle tao, and a PTA pta having parameters p1, . . . , pn,
let v and vo be the corresponding evaluations, i. e., ta = v(pta) and tao = vo(pta).
We define the syntactic distance of ta to the oracle as follows:

SD(ta) =
∑n

i=1 |v(pi)− vo(pi)|
The syntactic distance roughly measures how much ta must be changed (under
the constraints imposed by pta) in order to obtain tao.

The semantic conformance, instead, tries to assess the distance between the
languages accepted by ta and the oracle tao. As the set of possible words is
infinite, we need to select a representative set of test data TDSC ; to this aim,
we generate, from tainit and tao, sampled test data in the two TAs; moreover,
we also add negative tests by extending the positive tests with one forbidden
transition at the end. The semantic conformance is defined as follows:

SC (ta) = |{t∈TDSC |(t∈L(ta)∧t∈L(tao))∨(t6∈L(ta)∧t6∈L(tao))}|
|TDSC |

Table 2 also reports SD and SC of each benchmark tainit .

Experiments have been executed on a Mac OS X 10.14, Intel Core i3, with
4 GiB of RAM. Code is implemented in Java, IMITATOR 2.11 “Butter Kouign-
amann” [10] is used for constraint generation, and Choco 4.10 for constraint
solving. The code and the benchmarks are available at https://github.com/

ERATOMMSD/repairTAsThroughAbstraction.

4.1 Results

Table 3 reports the experimental results. For each benchmark and each test gen-
eration policy (see Section 3.4), it reports the execution time (divided between

https://github.com/ERATOMMSD/repairTAsThroughAbstraction
https://github.com/ERATOMMSD/repairTAsThroughAbstraction

Table 3: Experimental results

Bench. Policy time (s) # failed tests/ tarep
total Steps Á-Â Step Ã Step Ä Step Å # tests SD SC (%)

RE P±1 1.070 0.010 0.008 1.030 0.019 1/ 38 0 100.00
RE PminMax2 1.148 0.007 0.006 1.130 0.005 1/ 41 0 100.00
RE PminMax4 1.191 0.004 0.004 1.177 0.004 1/ 41 0 100.00
RE Prnd 0.006 0.006 0.001 0.000 0.000 0/ 3 2 98.33
CF P±1 25.921 0.050 0.267 25.546 0.045 45/293 8 99.86
CF PminMax2 32.717 0.129 0.578 31.845 0.147 62/422 7 100.00
CF PminMax4 76.137 0.857 1.907 73.058 0.769 102/737 7 100.00
CF Prnd 0.134 0.098 0.035 0.000 0.000 1/ 11 8 99.96
CAS P±1 59.511 0.043 0.160 59.261 0.037 174/392 2 100.00
CAS PminMax2 61.791 0.040 0.159 61.544 0.036 199/416 2 100.00
CAS PminMax4 68.341 0.716 0.467 67.037 0.584 245/464 2 100.00
CAS Prnd 0.024 0.017 0.007 0.000 0.000 0/ 20 12 84.24

the different phases), the total number of generated tests, the number of tests
that fail on tainit , and SD and SC of the final TA tarep .

We now evaluate the approach answering the following research questions.

RQ1: Is the approach able to repair faulty TAs?

We evaluate whether the approach is actually able to (partially) repair tainit .
From the results, we observe that, in three cases out of four, the process can
completely repair RE since SD becomes 0, meaning that we obtain exactly the
oracle (therefore, also SC becomes 100%). For CF and CAS, it almost always
reduces the syntactical distance SD , but it never finds the exact oracle. On the
other hand, the semantic conformance SC is 100% in five cases. Note that SC
can be 100% with SD different from 0 for two reasons: either the test data TDSC

we are using for SC are not able to show the unconformity, or tarep is indeed
equivalent to the oracle, but with a different structure of the clock guards.

RQ2: Which is the best test generation strategy?

In Section 3.4, we proposed different test generation policies over EPZG.
We here assess the influence of the generation policy on the final results. P±1,
PminMax2, and PminMax4 obtain the same best results for two benchmarks (RE and
CAS), meaning that the most useful tests are those on the boundaries of the clock
guards: those are indeed able to expose the failure if the fault is not too large. On
the other hand, for CF, P±1 performs slightly worse than the other two, meaning
that also generating tests inside the intervals (as done by PminMax2 and PminMax4)
can be beneficial for repair. Prnd is able to improve (but not totally repair) only
CF; for the other two benchmarks, it is not able to improve neither SD nor SC .

RQ3: How long does the approach take?

The time taken by the process depends on the size of tainit and on the test
generation policy. The most expensive phase is the generation of the constraints,
as it requires to call IMITATOR for each test that must be accepted. As future

`1 `2 `3

`4

`5

x ≤ 4 x ≤ 5

x ≤ 6

x ≤ 3

a
x = 5

b

x ≥ 4
c

x ≥ 8

d

Fig. 5: Repairing TAs with different structures – Another oracle TA

Table 4: Experimental results – Different oracle

Bench. Policy time (s) # failed tests/ tarep
total Steps Á-Â Step Ã Step Ä Step Å # tests SC (%)

REdo P±1 2.083 0.007 0.005 2.055 0.013 10/ 44 98.72
REdo PminMax2 2.718 0.005 0.004 2.693 0.013 11/ 47 98.72
REdo PminMax4 2.686 0.004 0.003 2.658 0.012 11/ 47 98.72
REdo Prnd 0.763 0.007 0.001 0.676 0.075 1/ 3 99.5

work, we plan to optimize this phase by modifying IMITATOR to synthesize val-
uations guaranteeing the acceptance of multiple timed words in a single analysis.
In the experiments, we use as oracle another TA that we can visit for acceptance;
this visit is quite fast and so step Ã does not take too much time. However, in
the real setting, the oracle is the real system whose invocation time may be not
negligible; in that case, the invocation of the oracle could become a bottleneck
and we would need to limit the number of generated tests.

RQ4: Which is the process performance if pta does not include the oracle?

Assumption 1 assumes that the user provides a PTA that contains the or-
acle. In Section 3.9, we discussed about the possible consequences when this
assumption does not hold. We here evaluate whether the approach is still able
to partially repair tainit using an oracle having a different structure. We took
the TA shown in Fig. 5 as oracle of the running example, that is structurally
different from tainit and pta shown in Fig. 1 (we name this experiment as REdo);
the semantic conformance SC of tainit w.r.t. the new oracle is shown at the last
row of Table 38. We performed the experiments with the new oracle using the
greedy approach described in Assumption 1, and results are reported in Table 4.
We observe that policies P±1, PminMax2, and PminMax4, although they find some
failing tests, they are not able to improve SC . This is partially due to the fact
that SC is computed on some timed words TDSC that may be not enough to
judge the improvement. On the other hand, as the three policies try to achieve a
kind of coverage of pta (so implicitly assuming Assumption 1), it could be that
they are not able to find interesting failing tests (i. e., they cannot be repaired);
this seems to be confirmed by the fact that the random policy Prnd is instead
able to partially repair the initial TA using only three tests, out of which one

8 Note that it does not make sense to measure the syntactical distance, as the structure
of the oracle is different.

fails. We conclude that, if the assumption does not hold, trying to randomly
select tests could be more efficient.

5 Related Work

Testing timed automata Works related to ours are approaches for test case gen-
eration for timed automata. In [3,1], a fault-based approach is proposed. The
authors defined 8 mutation operators for TAs and a test generation technique
based on bounded-model checking; tests are then used for model-based testing
to check that System Under Test (SUT) is conformant with the specification.
Our approach is different, as we aim at building a faithful representation of the
SUT (i. e., the oracle). Their mutation operators could be used to repair our ini-
tial TA, as done in [14]; however, due to continuous nature of TAs, the possible
mutants could be too many. For this reason, our approach symbolically repre-
sents all the possible variations of the clock guards (similar to “change guard”
mutants in [3]). Other classical test generation approaches for timed automata
are presented in [25,17]; while they aim at coverage of a single TA, we aim at
coverage of a family of TAs described by pta.

Learning timed systems The (timed) language inclusion is undecidable for timed
automata [4], making learning impossible for this class. In [16,20], timed exten-
sions of the L∗ algorithm [13] were proposed for event-recording automata [5],
a subclass of timed automata for which language equivalence can be decided.
Learning is essentially different from our setting, as the system to be learned is
usually a white-box system, in which the equivalence query can be decided. In
our setting, the oracle does not necessarily know the structure of the unknown
system, and simply answers membership queries. In addition, we address in our
work the full class of timed automata, for which learning is not possible.

6 Conclusion and perspectives

This paper proposes an approach for automatically repairing timed automata,
notably in the case where clock guards shall be repaired. Our approach generates
an abstraction of the initial TA in terms of a PTA, generates some tests, and
then refines the abstraction by identifying only those TAs contained in the PTA
that correctly evaluate all the tests.

As future work, we plan to adopt also other formalisms to build the abstrac-
tion where to look for the repaired timed automata; The CoPtA model [21],
for example, extends timed automata with feature models and allows to specify
additional/alternative states and transitions. In addition, when the oracle acts
as a white-box, i. e., when the oracle is able to test language equivalence, we
could also make use of learning techniques for timed automata, using the often
terminating procedure for language inclusion in [26].

References

1. Aichernig, B.K., Hörmaier, K., Lorber, F.: Debugging with timed automata
mutations. In: Bondavalli, A., Giandomenico, F.D. (eds.) SAFECOMP. Lec-
ture Notes in Computer Science, vol. 8666, pp. 49–64. Springer (2014).
https://doi.org/10.1007/978-3-319-10506-2_4

2. Aichernig, B.K., Jöbstl, E., Tiran, S.: Model-based mutation testing via symbolic
refinement checking. Science of Computer Programming 97(P4), 383–404 (Jan
2015). https://doi.org/10.1016/j.scico.2014.05.004

3. Aichernig, B.K., Lorber, F., Nickovic, D.: Time for mutants – Model-based mu-
tation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TaP.
Lecture Notes in Computer Science, vol. 7942, pp. 20–38. Springer (2013).
https://doi.org/10.1007/978-3-642-38916-0_2

4. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (Apr 1994). https://doi.org/10.1016/0304-3975(94)90010-8

5. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science 211(1-2), 253–273 (1999).
https://doi.org/10.1016/S0304-3975(97)00173-4

6. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC. pp. 592–601. ACM,
New York, NY, USA (1993). https://doi.org/10.1145/167088.167242

7. André, É.: What’s decidable about parametric timed automata? International
Journal on Software Tools for Technology Transfer 21(2), 203–2019 (2019).
https://doi.org/10.1007/s10009-017-0467-0, to appear

8. André, É., Arcaini, P., Gargantini, A., Radavelli, M.: Repairing timed automata
clock guards through abstraction and testing. arXiv (2019), http://arxiv.org/
abs/1907.02133

9. André, É., Chatain, Th., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. International Journal of Foundations of Computer Science
20(5), 819–836 (Oct 2009). https://doi.org/10.1142/S0129054109006905

10. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: A tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM.
Lecture Notes in Computer Science, vol. 7436, pp. 33–36. Springer (Aug 2012).
https://doi.org/10.1007/978-3-642-32759-9_6

11. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncer-
tainty. In: Lin, A.W., Sun, J. (eds.) ICECCS. pp. 10–20. IEEE CPS (2018).
https://doi.org/10.1109/ICECCS2018.2018.00010

12. André, É., Lin, S.W.: Learning-based compositional parameter synthesis for
event-recording automata. In: Bouajjani, A., Alexandra, S. (eds.) FORTE.
Lecture Notes in Computer Science, vol. 10321, pp. 17–32. Springer (2017).
https://doi.org/10.1007/978-3-319-60225-7_2

13. Angluin, D.: Learning regular sets from queries and counterex-
amples. Information and Computation 75(2), 87–106 (1987).
https://doi.org/10.1016/0890-5401(87)90052-6

14. Arcaini, P., Gargantini, A., Radavelli, M.: Achieving change requirements of feature
models by an evolutionary approach. Journal of Systems and Software 150, 64–76
(2019). https://doi.org/10.1016/j.jss.2019.01.045

15. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets,
Advances in Petri Nets. Lecture Notes in Computer Science, vol. 3098, pp. 87–124.
Springer (2003). https://doi.org/10.1007/978-3-540-27755-2_3

https://doi.org/10.1007/978-3-319-10506-2_4
https://doi.org/10.1016/j.scico.2014.05.004
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/s10009-017-0467-0
http://arxiv.org/abs/1907.02133
http://arxiv.org/abs/1907.02133
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1007/978-3-319-60225-7_2
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.jss.2019.01.045
https://doi.org/10.1007/978-3-540-27755-2_3

16. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording
automata. Theoretical Computer Science 411(47), 4029–4054 (2010).
https://doi.org/10.1016/j.tcs.2010.07.008

17. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) Formal Methods and Testing, An Outcome of the FORTEST Network,
Revised Selected Papers, Lecture Notes in Computer Science, vol. 4949, pp. 77–117.
Springer (2008). https://doi.org/10.1007/978-3-540-78917-8_3

18. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. Journal of Logic and Algebraic Programming 52-53,
183–220 (2002). https://doi.org/10.1016/S1567-8326(02)00037-1

19. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Transactions on Software Engineering 41(5), 445–461 (2015).
https://doi.org/10.1109/TSE.2014.2357445

20. Lin, S.W., André, É., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for compo-
sitional verification of timed systems. Transactions on Software Engineering 40(2),
137–153 (mar 2014). https://doi.org/10.1109/TSE.2013.57

21. Luthmann, L., Gerecht, T., Stephan, A., Bürdek, J., Lochau, M.: Mini-
mum/maximum delay testing of product lines with unbounded parametric
real-time constraints. Journal of Systems and Software 149, 535–553 (2019).
https://doi.org/10.1016/j.jss.2018.12.028

22. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., Harman, M.: Mutation
testing advances: An analysis and survey. In: Advances in Computers. Advances in
Computers, Elsevier (2018). https://doi.org/10.1016/bs.adcom.2018.03.015

23. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017), http://www.choco-solver.org

24. Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series
in discrete mathematics and optimization, Wiley (1999)

25. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed au-
tomata. Theoretical Computer Science 254(1-2), 225–257 (Mar 2001).
https://doi.org/10.1016/S0304-3975(99)00134-6

26. Wang, T., Sun, J., Liu, Y., Wang, X., Li, S.: Are timed automata bad for a speci-
fication language? Language inclusion checking for timed automata. In: Ábrahám,
E., Havelund, K. (eds.) TACAS. Lecture Notes in Computer Science, vol. 8413,
pp. 310–325. Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_21

https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1109/TSE.2013.57
https://doi.org/10.1016/j.jss.2018.12.028
https://doi.org/10.1016/bs.adcom.2018.03.015
http://www.choco-solver.org
https://doi.org/10.1016/S0304-3975(99)00134-6
https://doi.org/10.1007/978-3-642-54862-8_21

	Repairing Timed Automata Clock Guardsthrough Abstraction and TestingThis is the version with comments. To disable comments, comment out line 3 in the LaTeX source.

