
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2009; 00:1–7 (DOI: 10.1002/000)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/000

T-wise combinatorial interaction
test suites construction based on
coverage inheritance

Andrea Calvagna1,∗, Angelo Gargantini2

1 Dipartimento di ingegneria informatica e delle telecomunicazioni,
University of Catania, Italy
2 Dipartimento di ingegneria dell’informazione e metodi matematici,
University of Bergamo, Italy

SUMMARY

Combinatorial interaction testing (CIT) is a testing technique which requires covering all t-sized tuples of
values out of n parameters attributes or properties, modeled after the input parameters or the configuration
domain of a system under test. CIT test suites have shown to be very effective in software testing already
at pairwise (t = 2) level, and that effectiveness of CIT grows with the tuple width t. Unfortunately, also
does the number of tuples to be tested. In order to reduce the testing effort, researchers addressed the issue
of computing minimal-sized CIT test suites with effective and scalable algorithms. However, still very few
generally applicable t-wise covering construction algorithms (and tools) do exist in literature. This paper
presents an original greedy algorithm to compute t-wise covering mixed covering arrays with constant space
complexity, irrespective of the number of involved parameters and strength of interaction. The proposed
algorithm has been implemented in a prototype tool, featuring also support for user constraints over the
inputs. Assessment of the tool performance on a set of large, real-world test systems is reported, with results
encouraging its adoption in industrial production environments.

Copyright © 2009 John Wiley & Sons, Ltd.

Received day month year; Revised day month year

KEY WORDS: combinatorial interaction testing; mixed covering arrays; parameter based constructions;
forbidden tuples.

∗Correspondence to: Andrea Calvagna, DIIT - Cittadella Universitaria, Viale A.Doria 6 - 95127, Catania (Italy)
E-mail: andrea.calvagna@unict.it

Copyright © 2009 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2007/09/24 v1.00]

2 A. CALVAGNA ET AL.

1. INTRODUCTION

Systematic testing of highly-configurable software systems, e.g. systems with many optional features,
can be challenging and expensive due the exponential growth of the number of configurations to
be tested with respect to the number of features. As an example, consider the burden of testing
the correctness of the GNU GCC compiler output, for a given source file, against every possible
configuration of the tool’s almost two hundreds distinct command-line parameters. The usage of
Combinatorial Interaction Testing (CIT) technique can improve the effectiveness of the testing activity
for these kind of systems, at the only cost of modeling the system’s configurations space. In fact, CIT
consist in systematically testing all possible partial configurations (that is, involving up to a fixed
number of parameters only) of the system under test. Moreover, it has been shown that most of the
faults in a software system are already triggered by unintended interaction between a relatively low
number of input parameters, typically up to six [30]. Thus, modeling the input parameters as a set of
features ranging over their most representative or relevant values, and then systematically testing for
t-wise coverage, where t relatively low, can be very effective in revealing software defects [28]. The
most commonly applied combinatorial testing technique is pairwise testing, which consists in applying
the smallest possible test suite covering all the pairs of input values (each pair in at least one test case).

It has been experimentally shown that a test suite covering just all pairs of input values can already
detect a large part (typically 50% to 75%) of the faults in a program [40, 18]. Moreover, incorrect
behaviors or failures due to unintended feature interaction, detected by CIT, may not be detectable by
other more traditional approaches to systematic testing [30, 42]. Dunietz et al. [19] compared t-wise
CIT coverage to random input testing with respect to the percentage of structural (block) coverage
achieved, showing that the former achieves better results if compared to random test suites of the
same size. Burr and Young [5] reported 93% code coverage from applying pairwise testing of a large
commercial software system.

Tools for building t-wise CIT test suites aim also at effectively combining all the t-tuples of
parameter assignments in the smallest possible number of complete test cases, that is, tests assigning
all parameters. In fact, although t-wise coverage of a system featuring n parameters, each ranging in
r values, would require testing of rt

(
n
t

)
configurations, which is still impractical, in a combinatorial

test suite they can be effectively combined together in a much lower number of test cases. This allows
significant testing time and cost savings to be achieved, while still having a testing process driven by
an effective coverage metric [30, 10]. As an example, for a system with a hundred boolean parameters
(2100 possible test cases) pairwise coverage would require 22

(
100
2

)
= 19800 pairs of input values to

be tested, which a combinatorial test suite can fit into only ten complete (100 values each) test cases.
Similarly, pairwise coverage of a system with twenty ten-valued options (1020 exhaustive tests) requires
coverage of only 19000 pairs, which in turn a combinatorial test suite can cover in only 200 tests cases.
Table I reports the input domain model of a simple telephone switch billing system, the Basic Billing
System (BBS) [34], which processes telephone call data with four call properties, each of which has
three possible values: the access parameter tells how the calling party’s phone is connected to the
switch, the billing parameter says who pays for the call, the calltype parameter tells the type
of call, and the last parameter, status tells whether or not the call was successful or failed either
because the calling party’s phone was busy or the call was blocked in the phone network. While testing
of all the possible configurations for BBS would require 34 = 81 tests, pairwise coverage requires
only 54 pairs, which can be covered in only nine tests cases by the minimal sized test suite, reported

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

3

Table I. Input domain of a basic billing system for phone calls

billing calltype status access
CALLER LOCALCALL SUCCESS LOOP
COLLECT LONGDISTANCE BUSY ISDN
EIGHT HUNDRED INTERNATIONAL BLOCKED PBX

Table II. Example pairwise test suite for BBS

billing calltype status access
1 CALLER LOCALCALL BLOCKED ISDN
2 CALLER LONGDISTANCE SUCCESS PBX
3 CALLER INTERNATIONAL BUSY LOOP
4 COLLECT LOCALCALL BUSY PBX
5 COLLECT INTERNATIONAL SUCCESS ISDN
6 COLLECT LONGDISTANCE BLOCKED LOOP
7 EIGHT HUNDRED LOCALCALL SUCCESS LOOP
8 EIGHT HUNDRED LONGDISTANCE BUSY ISDN
9 EIGHT HUNDRED INTERNATIONAL BLOCKED PBX

in Table II. In this paper, which extends on our previous conference paper [9], a new parameter-based
algorithm for the construction of t-wise CIT test suites is presented, falling in the category of parameter
based approaches, since it computes the test suite incrementally, starting from the first t parameters and
then extending it by one column for each additional parameter. Although many different approaches
to build CIT test suites one test case at the time already exist in the literature, only a single parameter-
based technique is available, by Y. Lei and K.C. Tai [33]. However, note that the proposed algorithm
only shares with it the choice to proceed by adding one column at the time. Instead, it introduces the
original ideas of coverage inheritance and of a recursive routine encoding the sole general principle of
coverage preservation. In fact, the basic steps proposed to compute a column for a new parameter are:
first, initialize the column in such a way that a nicely known set of tuples gets covered by inheritance;
then, for every missing tuple left, a new column assignment is computed recursively, that covers it
while preserving existing coverage.

The coverage inheritance principle allows reducing the overhead for computing and storing the list
of tuples to be covered, that unfortunately grows exponentially with the size of the considered task,
and which is required in order to decide termination of the construction processes based on greedy
heuristics, like this. The proposed technique has been also extended to support constraints of the type of
forbidden tuples, that is combinations that are not allowed to appear in the test suite. The technique has
also been implemented on a prototype tool, and an assessment of its performance is presented, based
on a set of test cases modeled after real world, large-sized software systems, with results comparable
to existing state of the art tools.

The paper is structured as follows: Section 2 gives the reader insights on the backgrounds of this
work and its related context; Section 3 exposes the main ideas behind the proposed construction

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

4 A. CALVAGNA ET AL.

technique; Section 4 presents the pseudocode of an algorithm implementing the proposed construction;
Section 5 thoroughly discusses the points of originality and the peculiarities of the proposed approach,
also presenting a detailed computational complexity analysis; Section 6 presents an original solution
to extend the approach in order to support tasks with constraints; Section 7 presents an implementation
of the algorithm and discusses the results of a comparative evaluation with existing similar tools.
Eventually, section 8 draws our conclusive statements and directions for future work.

2. BACKGROUND

From a mathematical point of view, the problem of generating a minimal set of test cases covering all t-
wise tuples of input assignments is equivalent to computing a covering array (CA) of strength t over the
alphabet of all the input symbols [24]. Covering arrays are combinatorial structures which extend the
notion of orthogonal arrays [2], which in turn are generalizations of latin squares. For a given system
under test exposing n input parameters (or features), all ranging in r distinct symbols, a t-strength,
n-degree, r-order covering array CAλ(N ; t, n, r) is an N × n array where every N × t subarray shall
contain each t-wise combination of the r symbols at least λ times. However, when applied to testing
only the case when λ = 1 is of interest, that is, where every t-tuple is covered at least once. Note that
this the fact that at least one instance of each tuple is in the final suite does not require that each tuples is
covered strictly the same number of times. Moreover, for testing of real systems one is really interested
in mixed covering arrays MCAλ(N ; t, n, ~r), with ~r = (r1, r2, ...rn) a vector of positive integers, in
which each system input parameter may range on a different number ri of symbols. Each of the N
rows will be a complete test case specification, assigning values to all inputs, while each column of the
CA will list all values chosen for each input.

Devising a general algorithm to compute a minimal sized set of test cases that satisfies t-wise
coverage is a non trivial problem, since computing a minimal CA is NP-hard [41, 37]. Many tools and
techniques for building t-wise CIT test suites have already been developed and are currently applied
in practice [10, 40, 3, 39, 29, 17, 30]. Grindal et al. counts more than 40 papers and 10 strategies in
their survey [23]. There is also a web site [36] devoted to this subject and several automatic tools are
commercially or freely available. For this reason, and for the inner complexity of the task, even small
improvements over currently available best performances seem hard to accomplish.

Solutions exist in the literature to compute covering arrays algebraically [27], but these techniques
are applicable to tasks with an homogeneous alphabet of symbols only, and/or that restrictions apply
on the task geometry (t, n, r). As a consequence, researchers have addressed the issue of designing
general solutions to compute minimal sized CIT test suites based on greedy heuristics searches [4].
Heuristic-based approaches have the great advantage of being generally applicable to the construction
of MCAs without any limitation, but the efficiency of specific algorithm itself, at the cost of possibly
near-optimal performance in terms of the resulting CIT test suite size. In fact, typically only an upper
bound on the size of constructed suite may be guaranteed. Less traditional meta-heuristics algorithms
have also been proposed [11, 35], based on bio-inspired techniques, such as genetic algorithms, or the
simulated annealing process used by the mAETG algorithm [22], in order to converge to a near-optimal
solution after an acceptable number of iterations. In addition, recursive construction techniques do exist
[15, 38], computing a near-optimal test suite by composing together instances of sub-arrays which are
already minimal. However, most of the already existing algorithms and tools fall in the greedy category.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

5

These algorithms build up the test suite incrementally by adding either one test case, that is a row, at
the time or one parameter, that is a column, at a time to the test suite, until coverage is complete.

Although this latter strategy (known as parameter-based construction) has proven to outperform
many of the existing strategies of the former type (known-as AETG-like after its most influential
algorithm [10]), many variants of the AETG-like strategy have been already proposed in literature,
in contrast only one parameter-based approach exist, which is IPO by Y.Lei and K.C.Tai [40], which
makes this point worth investigating. Moreover, very few of the actual tools have the key features
which would enable their useful integration into industrial development/testing environments, that
is, support for higher interaction degrees, support for constraints, general applicability to any MCAs
and not only CAs, and an efficient usage of the available computational resources. A more recent
paper by Y. Lei et al. [31] poses attention on improving the usability of these tools into real testing
environments, addressing the issue of scalability, with respect to increasing task sizes and interaction
degrees. The authors propose a new technique which reduce the computation times with respect to their
original technique, but at the costly trade-off of significantly increased size of the built test suites. It is
interesting to note that only three non commercial tools, out of a far larger number of existing tools,
were found eligible for comparison, as featuring support for t-wise MCA construction, among which
only two of them where really fairly comparable in terms of performance: FireEye (currently renamed
ACTS [32], featuring variants of the IPO algorithm), the ITCH tool from IBM (whose performance
was however not competitive), and one poorly documented greedy tool named Jenny [26], which is the
evidence that this area of research is far from being exhausted, and more investigation is needed in the
context of t-wise MCA construction tools.

This paper presents an original t-wise MCA construction technique falling in the category of greedy,
parameter based approaches, and implemented it in a tool which has been then tested and compared to
the best performing available tools with analogous features. It is important to highlight that while our
technique of course may share with other algorithms the parameter based background, on the other
hand, it has introduced some original ideas and improvements in that context, which will be exposed
in details in the following sections.

3. COVERAGE INHERITANCE

The approach proposed in this paper is inspired by one property of CAs, which is that they are
symmetric with respect to switching of any two columns. In fact, column ordering in a CA is irrelevant,
so the symbol assignment of one specific parameter (a column), could be safely exchanged with that
of any other parameter (another column), still having a valid CA. This holds also for MCAs, if the
switch is between parameters with the same alphabet size (range). In the following it is shown how it
is possible to take advantage of this property in the context of an MCA construction, to algebraically
compute the initial values of a column added for a new parameter in order to quickly achieve coverage
of a known subset of its required tuples.

Consider a system under test which has n input parameters (p1, . . . , pn), and assume that pk has
range rk and values in Pk = {0, 1, ..., rk − 1}, that is P = P1 ∪ · · · ∪ Pn is the whole input domain.
Note that actual symbols of every parameter have been mapped to an equivalent set of symbols (natural
numbers) for convenience. Assume that the first j − 1 (t ≤ j ≤ n) parameters have already been
combined into a t-wise mixed covering array, and that one wants to extend the covering array with an

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 A. CALVAGNA ET AL.

additional column in order to include one more parameter pj . Assuming that the system parameters
will be processed in not-ascending ranges order, that is:

rk−1 ≥ rk,∀k ∈ [2..n].

In this case, it will always be possible to choose k among the previous and define a mapping which
associates each symbol of parameter pj with a distinct symbol of parameter pk, and the don’t care
value x with any left symbol of pk.

As an example, a straightforward mapping is to copy the values of the k-th parameter into the new
column pj , except for those out of range, which are assigned to x. However, it is important to highlight
that many mappings are possible, even different for each added column. By initializing the new column
by such mappings, the extended MCA will already cover all of the additionally required tuples, except
for those that include both pj and pk. This coverage inheritance property can be easily proved by
considering that the previous j-1 parameters, including pk, were already combined with each other in
the test suite, by hypothesis. Thus, as long as the assignment of pj reproduces that of pk all tuples with
pj and the same parameters, but pk, will be covered too. Note that after this initialization the number
of tuples still required to be covered for the new parameter have been greatly reduced then, yet without
any greedy processing. In fact, to only the additional tuples including both pj and pk, which have not
been inherited.

The tuples left to be covered will then be added to the CIT test suite on a one by one basis, until
complete coverage is achieved. Many strategies can be adopted to order the processing of these tuples,
affecting the overall process performance, but not its successful termination. To create a given missing
tuple, one entry of the new column is changed accordingly. Note that, in this construction, changes take
place in the entries of the new column only. In case a change deletes any required tuples previously
existing in that row, then these will be restored by changing some other suitable column entries, too,
so that existing coverage is also preserved. Note that this is a recursive task, but its termination is
guaranteed as long as an upper bound has been put on its depth, e.g. by means of allowing each entry
to be edited only once, per processed tuple. When no more suitable entries are left to recover a tuple, a
new row will be added at the end of the test suite, in order to host it and terminate the recursion.

What’s more important, several entries in the column might be suitable to host the same change, but
these might not be equivalent in terms of the path of changes they would induce, and additional rows
they would trigger. Thus, a smart strategy is highly desirable in order to select the best entry where to
apply next change, as this will significantly affect the algorithm performance. However, any strategy
can be safely applied, since it will not impact the correctness of the built covering array. In fact, the core
recursive task of column change implements the sole general principle that any manipulation applied
to the column must not decrease the coverage.

To summarize, adding a new column for parameter pj to the covering array consists of the following
six steps:

1. Choose an existing column, k (e.g. k=j-1) and initialize the column of values for pj by mapping
(e.g. copying in modulo) the column for pk, to create a starting point where all tuples of pj and
the previous parameters, except those including both pj and pk, are covered by inheritance

2. for each the other missing tuple, do the following:
3. initialize a set of flags, one for each position in the column, indicating that it can be changed.
4. change one of the available values of pj to increase coverage with respect to pk and flag the

position as changed.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

7

5. If this manipulation destroys inherited tuples, recursively make further manipulations of
unchanged values of pj until original coverage is fully restored in some other rows (and mark
each edited row as changed).

6. When there are no more unchanged values left to restore a tuple, add it as a new row and
terminate recursion.

To conclude this section, note that the whole construction process does not define only a single
specific heuristic. It is also a framework operating a separation of concerns, where the validity of the
result is ensured by the framework, and the performance depends on the efficiency of external selection
strategies adopted to complement it, among the variety of those applicable in order to choose what
missing tuple to add next and where in the column it is best to make a change to create it.

3.1. Numerical example

Let’s clarify the approach with an example system with four parameters p1, p2, and p3 ∈ {0, 1, 2},
and p4 ∈ {0, 1}, for which a pairwise covering test suite is built. First of all, p1 and p2 are combined
together to get an initial test suite of nine rows. At next iteration the third column p3 is then initialized
by mapping from p2, assuming that in this example each new column pj will be set by copying exactly
the previous, pj−1, except for out of range values that will be set to x.

Since p2 was already fully combined with p1, and p3 has same number of symbols of p2, then p3 will
be already fully combined with p1 too (see figure 1-(a)). Then, coverage of the pairs between p3 and p2
only, which is incomplete, need to be explicitly processed. Note that some of the pairs between p3 and
p2 are already covered by construction: {(0, 0), (1, 1), (2, 2)}, and that they are (three times) redundant.
The pairs to be covered are {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)} and six redundant column entries
are available to this aim, among which to choose. A simple criteria applicable here is to edit the symbol
in the row position of first redundant instance of a pair. In this case, one can choose to create the
missing pair (p2, p3) = (0, 1) by changing the value in fourth row. Since this will delete the unique
pair (p1, p3) = (1, 0), it needs to be restored elsewhere. This can be done by changing last column entry
in sixth row, from 2 to 0. This last induced change deletes in turn the existing pair (p1, p3) = (1, 2),
then immediately restored by changing fifth row redundant entry to 2, which also increases (p2, p3)
coverage by additional pairs (2, 0) and (1, 2). Similarly, missing pair (p2, p3) = (0, 2) is added by
changing value in seventh row from 0 to 2, which deletes pair (p1, p3) = (2, 0) as a side-effect. This
latter is then restored by changing the entry in the eighth row from 1 to 0, which also creates the missing
pair (p2, p3) = (1, 0).

Eventually, the last missing pair (p2, p3) = (2, 1) is obtained by changing p3 entry ninth row, without
any side-effect. This terminates the first iteration, since pairing of p3 and p2 is now complete and
100% pairwise coverage between p3 and p1 has been restored.(see figure 1-(b)). A further iteration is
needed to add the last parameter p4 to the suite, which has smaller range than the previous. Again,
the fourth column’s values are copied from current values in adjacent column p3 (see figure 1-(c))
and then edited to complete the coverage. Since p3 has higher range than p4 this time x (don’t care)
values will appear in unmatched entries. As shown in figure 1-(c), after initialization only the set
of pairs (p3, p4) = {(1, 0), (0, 1), (2, 0), (2, 1)} is missing to reach complete coverage. The first
pair is created changing p4 value in fourth row, and restoring deleted pairs (p2, p4) = (0, 1) and
(p1, p4) = (1, 1) by replacing with 1 the x in seventh and fifth row respectively. This also adds

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

8 A. CALVAGNA ET AL.

p1 p2 p3

0 0 0
0 1 1
0 2 2
1 0 0
1 1 1
1 2 2
2 0 0
2 1 1
2 2 2

p1 p2 p3

0 0 0
0 1 1
0 2 2
1 0 1
1 1 2
1 2 0
2 0 2
2 1 0
2 2 1

p1 p2 p3 p4

0 0 0 0
0 1 1 1
0 2 2 x
1 0 1 1
1 1 2 x
1 2 0 0
2 0 2 x
2 1 0 0
2 2 1 1

p1 p2 p3 p4

0 0 0 0
0 1 1 1
0 2 2 0
1 0 1 0
1 1 2 1
1 2 0 1
2 0 2 1
2 1 0 0
2 2 1 1

(a) (b) (c) (d)

Figure 1. Example task: 3321.

missing pairs (p3, p4) = (2, 1), without deleting any previous pair. Moreover, creating missing pair
(p3, p4) = (0, 1) by changing to 1 the sixth row entry, and eventually changing the x in third row to
0 in order to create the last missing pair (p3, p4) = (2, 0), also do not produce any side effects. As no
more parameters need to be added, the construction process is complete (figure 1-(d)). Please note that
modifications have occurred at each iteration only in the new column of the test suite, and that a value
can be changed only if it has not been changed already. This requirement ensure that the processing
of each missing pair always ends up with a coverage increase, as previously added pairs cannot be
undone, but only moved elsewhere. On the one hand, this property guarantees that the overall process
eventually terminates. On the other hand, this safety property can lead to sub-optimal results. In fact,
in more complex tasks it may also happen that the sequence of changes generated by the adopted
row selection strategy leads to a point where no more entries in the column are available to host next
required change. In this case a new row has to be added to the test suite to host the missing pair, even
if the number of rows was still theoretically enough to host all pairs. The reader might want to refer
to Colbourn [14] for a comprehensive listing of known minimal CA size requirements at varying task
sizes and strengths. Unfortunately, to the best of our knowledge, there is not a comparable reference
systematically listing known sizes for MCAs also, which is the context of this research, but some
results can be collected from researching the literature and a few websites dedicated to combinatorial
testing research and/or commercial tools.

4. ALGORITHM PSEUDOCODE

Assume that the n input parameters have been sorted in non-ascending range order, and the MCA has
been initialized at start-up to an array covering all the t-tuples of the first t parameters, P1×P2 · · ·×Pt,
by simply putting one value combination per row. Pseudocode for the main extend() algorithm is shown

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

9

in Listing. 1. Given t ≤ j ≤ n, an index 1 ≤ k ≤ j of choice, and a map fj : Pk → Pj ∪ {x}, it adds
one column to the MCA, in order to cover the additional j-th parameter in the list, assuming it already
covers the previous j−1. This algorithm is structured in two basic steps: the first consists in initializing
the entries in column j, mapping by means of f the corresponding symbols in column k, so to inherit
partial coverage. The second step is a loop of calls to function recover(), whose pseudocode is shown in
Listing 2. Given a missing tuple, and the input MCA, the recover() function will return a manipulated
MCA additionally covering at least this new tuple. The set M is the set of t-wise tuples of parameters
whose coverage won’t be ensured by inheritance, and is given by combining all value pairs of pk and pj
with the set C of (t−2)-tuples of values from the other j−2 parameters: M = C ×Pk ×Pj . Note that
C is in turn the union of exactly

(
t−2
j−2

)
set of exhaustive enumerations of tuples of values, which are

all already covered by the input MCA. Hence, their enumeration does not really have to be computed
nor requires additional storage: they are listed in the MCA. At line six of Listing 1 a reset of the mark
flag array is performed. This is required in order to correctly determine a termination condition for the
core algorithm recover(), as explained more in detail in the following.

Listing 1. Incremental extension algorithm.
1 extend(MCA, j, k) {
2 MCA[][j] := fj(MCA[][k]);
3 for each m ∈M {
4 if m /∈MCA {
5 mark[] := false;
6 recover(m);
7 }
8 }
9 }

It is important to highlight that the set element m actually consists in a listing of t input symbols plus
a listing of t column/parameter indexes to whom they are bound: m = (v1, v2, . . . vt)@(c1, c2, . . . ct),
which means pc1 = v1, pc2 = v2, and so on. Also note that by construction, all m in M always
include a binding for column j, the last column in current MCA, and the only one whose entries shall
be modified. Without loss of generality, one can assume that this binding is specified in the last position
of m, that is, ct is always set to j, and so pj shall be set to vt.

4.1. Recursive tuple recovering

The recover() function creates the inputted t-tuple m by recursive manipulations of the j-th column
of the MCA. To this aim, it looks for a suitable row in the MCA, that is, one whose value assignment
matches all the values-to-columns bindings specified by m, but the last one (that is, that for pj), which
will be ignored. Any x values in the MCA contributes also to a possible match, as it can always be
safely changed to a desired value without decreasing the coverage. The missing tuple can then be
created in such row by replacing the entry in column j with the last value of m, vt. If many of such
rows are available, a heuristic of choice can be applied to select one of them. If no suitable row is
available instead, then a new row will be added to the MCA, containing only the tuple specified by m,
and x values in the other entries. If the change applied to the select entry of column j deletes the last

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 A. CALVAGNA ET AL.

occurrence of any tuple in that row, the same procedure will be recursively called to rebuild each of
them.

Of course, to avoid triggering an infinite loop of changes, this shall happen in some different rows of
the MCA. To this aim, an array mark of boolean flags keeps track of the entries of column j already
modified once in this recursion. Flagged rows will then be skipped, that is, they will not be suitable for
selection, for the rest of the recursion. As the number N of rows in the MCA is finite, the recursion
will always terminate. Moreover, each outer call to recover() (in the extend() procedure) in overall will
strictly increases the MCA coverage by one tuple at least: the one specified by m plus any additional
tuple possibly created as a side-effect of the operated column manipulation.

Pseudocode of algorithm recover() is shown in Listing. 2 and consists in few basic steps: select a row
suitable to the creation of m (line 2), or add a new row for it, if none is left (line 3); save the value in
last column (recall ct = j, always) of the selected row (line 4), before changing it to create m (line 5),
and flag the row as changed (line 6); eventually, list any tuple possibly deleted by the applied change
(lines 7 and 8), and restore it by means of recursive call to self (line 9).

Listing 2. Conservative column change algorithm.
1 recover(m = (v1, v2, . . . , vt)@(c1, c2, . . . , ct)) {
2 choose a row i s.t. mark[i]=false ∧MCA[i][cx] = vx ∀x ∈ [1..t−1];
3 if none {add m as new row and return;}
4 v′t := MCA[i][ct];
5 MCA[i][ct] := vt;
6 mark[i] := true;
7 for each parameter tuple (c′1, c

′
2, . . . , c

′
t−1) out of {p1, p2, . . . , pj−1} do {

8 m′ := (MCA[i][c′1],MCA[i][c′2], . . . ,MCA[i][c′t−1], v
′
t)@(c′1, c

′
2, . . . , c

′
t−1, ct);

9 if m′ /∈MCA then recover(m′);
10 }
11 }

5. ALGORITHM DISCUSSION

In previous sections, an original t-wise MCA construction technique has been presented that falls in the
category of greedy, parameter based approaches. It is important to highlight that while our technique
of course shares with IPO the parameter based background, on the other hand, it has been developed
independently and introduces some original ideas, which clearly differentiate it from IPO and the
existing t-wise, greedy MCA construction techniques, in general. In the following, these novel aspects
will be exposed in deep details.

5.1. Construction framework

It is easy to see that the construction algorithm encoded by extend() and recover() is not just one single
parameter-based heuristic, but rather a framework of parameter-based constructions, operating a clear
separation of concerns between the problem of building a valid t-wise MCA one column at a time,

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

11

solved by the algorithm, and the problem of minimizing its final size, which relies on the external
strategies adopted to complement it. Note that whatever the strategies applied in order to choose what
missing tuple to add next, and where in the column it is best to make a change to create it, the algorithm
produces a valid MCA.

Interestingly, many symbol mapping alternatives have been tested during the implementation of a
prototype, but, as expected, a limited impact on the overall resulting performance has been observed. In
fact, MCAs are also symmetric with respect to switching any two parameter symbols. In the prototype
used for the evaluation presented in section 7, copying by modulo has been our final choice. This in fact
produces a column assignment which has the same distribution of symbol occurrences of the copied
column, which in a CA tends to be even, in spite of a possibly smaller range of the new parameter.
At the same time, by always mapping to actual symbols instead of don’t care values, a higher number
of redundant tuples is produced. This reduces the probability of deleting last occurrence of a covered
tuple, and to have then to restore it with additional calls to recover(), which is where rows eventually
might be added.

Conversely, the choice of the column from which to initialize shown to be of significant impact on
the overall performance. Specifically, the observed performance was improved if copying from the very
previous column j-1, thus ensuring the smallest possible difference between the ranges of the new and
mapped parameters and, as a consequence, the smallest number of redundant symbols in the resulting
column initialization. Moreover, since the rows of the MCA suitable to apply a given required change
might be more than one, the final size of the whole MCA will mostly depend on the heuristic adopted
to select the best row to apply that change, in order to avoid unnecessary rows addition to the suite.
Unfortunately, to make an optimal choice, one should be able to predict in advance the overall number
of rows addition that each choice would trigger, in overall, up to the process completion, which is an
entire tree of possible editing sequences. In the evaluation presented in section 7 of this paper a simple
heuristic is adopted based on randomly selecting among the suitable rows, which shown to be already
effective in driving good performances, and is presented in section 7.1.

5.2. Time and space complexity

As several heuristics can be devised to be used in the proposed construction, with varying effects
on the performance but not on the validity of the construction process, their corresponding steps
in the algorithm pseudocode are shown as abstract computations, and a complexity analysis of the
construction algorithm is derived assuming that O(1) (i.e. random) heuristics have been adopted in
both extend() and recover(). It is well known that the number of tests N required for pairwise coverage
in a CA grows at most logarithmically in n and quadratically in r, with n the number of parameters and
r the number of symbols. Assume here for the sake of simplicity that all features have same range r,
but it is easy to extend this result to MCAs by averaging over the different ranges, and also to a generic
strength of interaction t, by writing it asO(rt log (n)) (see [10]). The regression analysis on data shown
in tables of section 7 confirmed the consistency of our tool performances with this theoretical result.

Computational time complexity of extend() algorithm is dominated by the loop of calls to the
recover() function, which is bound to the size of the missing tuples set M . Recalling that M =
C × Pk × Pj , and that C is the union of

(
n−2
t−2

)
set of tuples of size rt−2 each, then |M | =

rt−2
(
n−2
t−2

)
r2 = rt

(
n−2
t−2

)
. Since, as it can be easily derived,

(
n−2
t−2

)
≤ nt−2, the time complexity is

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

12 A. CALVAGNA ET AL.

then in O(|M |) = O(rtnt−2). It must be noted also that the set M really requires to be enumerated
only, in contrast with IPO which requires storing it also, as part of the state of the algorithm. As a
consequence, with our approach it is also possible to generate only one tuple at the time, and process
it on the fly, with space requirements in O(1).

Alternatively, the set M has the storage cost of the pairs of two parameters only, Pk × Pj, that is
in O(r2). In fact, C is a set of tuples already covered (that is, stored) in the MCA, and thus with no
additional storage requirements. However, in this case the tuples shall be read by running down the
N rows of the MCA, which includes redundancy, so the time complexity grows to O(Nnt−2r2) =
O(rt+2nt−2 log n). Either ways, the space requirements of the extend() algorithm are limited to the
size of the flag array mark, which is in O(N) and supersedes O(r2). Similarly, the complexity of
algorithm recover() is dominated by the loop that checks and recovers any deleted tuples. This is run
for a set of tuples whose size is

(
n−1
t−1

)
, and which can be easily computed only once in advance.

Each iteration of this loop could trigger a recursive call, but this can occur N times in overall. In
fact, recursion can be induced only when a row has been modified, which can be happen only once
per row. Moreover, determining if a tuple is covered requires checking it against the MCA, whose
size is in O(N). As a consequence, the computational complexity of the recover() algorithm is in
O(N2nt−1) = O(r2tnt−1 log2 n). On the other hand, the space complexity is in O(N), as long as
each recursion level requires storing only the one tuple it is currently checking, and this requirement
supersedes the storage requirements for the

(
n−1
t−1

)
combinations to check. In conclusion, the total time

complexity of the whole MCA extension process will be in O(r3tn2t−3 log3 n), if missing tuples are
generated on the fly, or in O(r3t+2n2t−3 log3 n) if tuples are generated by reading the MCA. In both
cases, the overall space complexity is in O(rt log n), which is the order of size of the output itself.
Note that the time complexity of the proposed construction algorithm is greater than many others (see
also in the following), but this does not limit its applicability to real world examples and it is balanced
by a lower space complexity and by a more compactness in the covering arrays as shown in section 7.

5.3. Contrasting with IPO

While IPO heuristic consists in sequentially filling in values in the new column by applying a global
optimization criterion, which is the coverage increase achieved by each choice, as a key difference, this
paper presents a general construction algorithm which has shown not to rely on any specific selection
criterion to guarantee successful building of a valid CIT test suite. Of course, smarter heuristics will
produce better overall performance, and will be the subject of further investigation in our future work.
However, in this paper, in order to avoid biasing the performance evaluation of the core algorithm, the
performance evaluation shown in section 7 has been based on random heuristics.

Moreover, the original IPO algorithm requires enumerating and storing the set of tuples to be
covered for an additional parameter entirely. Even if later evolutions of the IPO algorithm included
optimizations that improved this huge storage requirement, it still is proportional to the (exponentially
growing) size of required tuples. As a key difference, in this construction technique the new idea of
coverage inheritance is introduced in order to reduce the tuples enumeration and storage requirements
to only a fraction of that whole set, whose size is constant irrespective from the number of system
parameters. In fact, the number of tuples that have to be checked to extend the coverage to one
additional parameter is reduced to the t-tuples including two given parameters, the new one pj and

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

13

the mapped one pk. Note that this set of tuples can be seen as the Cartesian product of the set of
pairs Pk × Pj with the set of (t-2)-tuples of the other j-2 parameters. By construction, these (t-2)-
tuples are all already listed in the test suite rows (of course, with some redundant occurrences), so their
enumeration don’t need to be computed at all, but only that of the product Pk ×Pj . As a consequence,
the additional time and space required to enumerate and store t-tuples is dramatically limited to a
constant set of pairs, irrespective of the number of involved parameters and the interaction degree. Of
course, the number of (t-2)-tuples to be read out from the test suite is still proportional to t and n, but
avoiding their separate computation and storage will save significant time and memory, as explained in
detail in section 5.2.

In addition, section 4 explained that the proposed approach requires sorting the parameters by
range, in order to enable the application of coverage inheritance. Note that parameter sorting is not
a requirement for IPO, instead. In fact, it was not in the original pairwise IPO algorithm [33], but
has been added as an improvement in later work presenting its t-wise generalization, IPOG [31]. In
fact, experiments show that the performances of parameter-based constructions benefit from giving
precedence to parameters with highest ranges. The reason for that being, intuitively, that they require
a larger set of rows to host their tuples. This larger MCA lets the following parameters, with lower
ranges and thus less tuples to cover, find more room already available to allow an easier hosting of
their tuples, delaying (at least) the need for additional rows. As a last conceptual difference, note that
IPO proceeds sequentially by computing each entry in the new column, while the proposed algorithm
proceeds sequentially by adding one tuple (at least) at the time, each of which might require changes
to many column entries.

Finally, the space and time complexity of IPOG are in O(rtnt−1) and O(rt+1nt−1 log n)
respectively. In contrast, our algorithm has much better O(rt log n) space complexity, at the cost of
higher time complexity of O(r3tn2t−3 log3 n)), as is derived in section 5.2. This is due to the fact
that determining if a tuple is covered is performed in IPOG with time complexity in O(1), while our
algorithm has to check it against the MCA, whose size is in O(rt log n). On the other hand, although
better time complexity is achieved by IPOG, this is obtained by means of a larger state space, actually
a flag for each tuple indicating if it is already covered or not, whose size is proportional to the whole
set of tuples required for coverage. In contrast, our algorithm requires only an additional flag for each
row of the MCA. In order to deal with the problem of the exponentially growing space requirements
in IPOG, in Lei et al. presented a also a variant, IPOG-D,in which the number of tuples that have to be
explicit enumerated is dramatically reduced, but at the cost of significantly degraded performance in
terms of MCA sizes [31]. Moreover, the time and space complexities of IPOG-D remains the same of
the parent algorithm IPOG. On the contrary, as shown in section 7, our tool succeeds in having much
lower space requirements while achieving at the same time significantly better MCA size performance
than IPOG-D, actually comparable to that of IPOG.

6. CONSTRAINT SUPPORT

The CIT construction algorithm presented in section 4 has been also extended to support constraints
over the inputs, in the form of forbidden tuples. Although constraints can also be conveniently
expressed with more abstract and compact notations, such as logical expressions [21, 6], in this
paper the simpler approach has been preferred, consisting in inputing an explicit list of forbidden

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 A. CALVAGNA ET AL.

combinations, leaving more sophisticated solutions as future enhancements, and focusing only on
showing that it is possible to support constraints with the proposed construction technique. A forbidden
tuple is an assignment to a set of input parameters, which is not allowed by the user to appear in the
rows of the built MCA. Thus, a generic forbidden tuple

p1 = v1, p2 = v2, . . . px = vx

implies satisfying a logical constraint of the type:

p1 6= v1 ∨ p2 6= v2 ∨ . . . px 6= vx.

Assume that the forbidden tuples are internally sorted, that is, the involved parameters are always
listed in the same order as they appear in the MCA, and let AV be the set of all forbidden tuples. It is
important to remark that a forbidden tuple is an assignment of any number of parameters, which can
then be less, equal or higher than the size t of the required tuples.

It can be easily observed that in order to comply with the whole constraint, it is enough to satisfy
only one of the logical terms in order, e.g. the last one. Of course, an MCA under construction of its
j-th parameter can only comply with constraints which are already completely expressed, that is, that
involve parameters up to Pj , at most. At the same time, all constraints which involve parameters up
to Pj−1 shall have been already satisfied by the MCA in previous extension loops. As a consequence,
at this loop it is only required to comply with constraints which do have parameter Pj (in particular,
as their last parameter). The subset AVj of forbidden tuples involving parameter j, that can be easily
extracted from AV at each MCA extension loop. In conclusion, it will be possible to comply with this
subset of constraints by simply taking them into account opportunely when editing values in the entries
of column j only. Details of the constraint supporting, modified MCA extension process, are shown in
Listing 3, and commented in the following.

Listing 3. Extension algorithm modified in order to support constraints.
1 extend(MCA, j, k) {
2 MCA[][j] := fj(MCA[][k]);
3 move to M all tuples in R;
4 for each row i in the MCA
5 if this row matches any av ∈ AVj {
6 MCA[i][j] = x; // remove the violation
7 add to M all the t−tuples with Pj in that row;
8 }
9 for each m ∈M {

10 if m /∈MCA {
11 if m matches any av ∈ AVj { // inherently illegal tuple
12 set last parameter of m from Pj to Pj+1;
13 set last value of m from vj to fj+1(vj);
14 save m in R;
15 }else{
16 mark[] := false;
17 recover(m);

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

15

18 }// else
19 }// if
20 }// for
21 }

The modified algorithm starts with the usual initialization of the new column, to inherit a partial
coverage, at line 2. The main differences with the unconstrained version of the algorithm are the
additional loop at line 4, and the additional check at line 11. The new loop is required to ensure that
the values of column j assigned by initialization have not created any forbidden tuple, in any row. If
that happens, each interested row is turned to a legal row by temporarily setting its column j entry to
x. Later on, in the construction process, if this x needs to be set again to an actual symbol, it shall
only be a legal value, that is, such that the resulting row complies with the constraints. The tuples in
the row that have been deleted by putting the x are added to the set M of the (potentially) missing
tuples, so that they will be eventually restored, if still missing, in the loop at line 9. In this loop, the
only modification with respect to the unconstrained version is an additional check to remove the t-
tuples which are inherently illegal, that is, they just contain some forbidden tuple inside, thus cannot
be present in the suite. However, missing any tuples from the MCA, due to the constraints, means that
the extension process for next column j + 1 will start from an incomplete MCA. In fact, some symbol
occurrence will actually be omitted from column j. As a consequence, when initializing column j+1,
its mapped symbol will be missing also. In other words, the inherited tuples set will not include the
tuples that would be derived by mapping those that are missing, of course.

In a sense, it can be said that, the constraints applied to one column would be inherited by next
column, too. To easily overcame this problem, any tuples found to be illegal will be mapped in
advance by updating them with the next column’s index Pj+1 and mapped value fj+1(vj). These
tuples are then saved into a set R which will be reported to the next column extension loop, and then
processed normally. Consequently, at line 3 of the modified extension algorithm, the set R with the
tuples generated by previous extension loop is first emptied, by moving its tuples into M , and then
filled in again for next loop.

Since the only modifications to the starting assignment of column j are possible by means of the
recover() algorithm, this algorithm need to be slightly adjusted too, in order to take into account
the constraints. Specifically, it has to ensure that any change to a row won’t ever create an illegal
combination of values in a that row. Nevertheless, this does not require significative changes in the
algorithm presented in Listing 1, but only to enhance internally its row selection heuristic, that is the
step at line 2 of the algorithm. In fact, besides choosing a row i not yet modified (mark[i]=false),
and compatible with the required change (MCA[i][cx] = vx ∀x ∈ [1..t-1]), in addition it shall be such
that its change does not forms any illegal tuple av ∈ AVx, ∀x ∈ [1..j].

Note that before running the extend() algorithm, in the very first step of the whole constrained
construction process, when the startup MCA is initialized with the t-tuples of the first t parameters, an
additional checkup is needed too, in order to ensure that each of these combinations is not matching
any constraint, so to start with a valid MCA setup. Then, the modified extend() algorithm can be safely
invoked for the additional columns. The solution presented in this section to support constraints in the
form of forbidden tuples has been also implemented into our tool, and some experiments are reported
in table IV of next section.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 A. CALVAGNA ET AL.

7. IMPLEMENTATION AND ASSESSMENT

In order to assess the performance capabilities of the proposed construction algorithm, a prototype tool
have been implemented, called Ttuples, and applied to a set of tasks modeled after real-world software
systems. This allowed having a figure of its actual performance, and also to contrast it to that of other
tools with similar features. †

In order to do this, a concrete heuristic has been adopted to complement the general construction
algorithm. This section presents in details the setup of this comparison, including the selected heuristic,
compared tools and applied case studies, and draw some observations on the collected results.

7.1. Multipass Heuristic

Many different ordering strategies can be applied in order to sequence the missing tuples in the
extend() algorithm. This section presents the multipass processing strategy, that is adopted in the
current algorithm implementation as a smarter policy over the simpler random selection strategy. The
multipass selection heuristic is based on the observation that each invocation of the recover() function
by definition will always increase the current test suite coverage, but at the possible cost of adding one
or more rows to the current suite. As long as the objective is to minimize the size of the built MCA
then one should give priority to the creation of tuples triggering no MCA rows additions. Another
round of calls can then be run for the remaining tuples, on the new MCA resulting after the first
round is complete. Specifically, in the first round, a rollback of the state is performed if an MCA size
increase is observed after processing a tuple. In that case, the tuple will be saved to be processed again
in next round. This filtered processing can be reiterated for many rounds, unless al least one tuple is
successfully added at each round, but in the present work it has been limited to two rounds only. In fact,
this heuristic increases the algorithm running time with respect to the random policy, as a tuple could
be processed as many times as the number of processing rounds, that is, in this case, twice, at most.
On the other hand, experiments show that this heuristic outperforms the simpler random heuristic. This
can be explained considering that for each tuple successfully added in the first round, at no cost in
terms of size increase, a modification in the MCA is operated, producing a new MCA where some of
the second round tuples could have been indirectly created, or their successful insertion now could be
possible, maybe. Recall that the recover() algorithm will always increase the coverage. Moreover, the
time performance of our construction will benefit exponentially by any improvement in the MCA size,
which helps balancing the cost of any additional processing. As a final remark, note that in both rounds
tuples are still selected for processing randomly, thus the tool shows non deterministic behavior.

7.2. Compared Tools

In the experiments shown next in this section, a set of tasks has been applied to our tool and also
to other tools which have been selected as having comparable features, among the state of the art
tools for CIT. It is interesting to note that while a large number of tools for pairwise testing do

†The Ttuples tool is available for download at http://www.diit.unict.it/ acalva.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

17

exist, very few tools have been developed which support t-wise combinatorial testing, and constraints
over the input, instead. Moreover, among these, even fewer are those actually open source or freely
available for academic purposes. Thus, our selection of tools includes actually the only other tool
implementing parameter-based constructions, that is ACTS (formerly called FireEye) [32], the CASA
tool [13, 22], which implements a meta-heuristic algorithm and is also a tool with non deterministic
behavior, just like Ttuples, and an open source, greedy construction tool freely available on the web,
Jenny [26]. Note that actually ACTS is a big Java jar bundling implementations of many construction
algorithms. Specifically, it includes all the three variants of the IPO algorithm: IPOG, IPO-F and
IPOG-D. IPOG implements the generalization to t-wise testing of the original IPO algorithm. This
algorithm explicitly enumerates all possible combinations, and does not scale well to big tasks, where
the number of combinations is large, or when resources are constrained. IPO-F is a variant of IPOG
whose implementation has been optimized for speed [20] which succeeds also in achieving better
performance than IPOG. IPOG-D is a variant of IPOG, incorporating a recursive technique, namely the
doubling-construct, and developed just to address the problem of reducing the number of combinations
that have to be enumerated, so to improve the algorithm scalability. Note how this latter algorithm has
been designed with similar intent of ours.

All these cited algorithms are deterministic in their behavior, that is, the same input will produce
the same output. On the other hand, Ttuples due to its usage of randomness has non deterministic
behavior. It is common practice for non deterministic tools in the literature (see [10], [12], [1], [16]) to
be benchmarked over a reasonably sized series of executions. Consequently, data reported for Ttuples
and CASA in the following tables are the average out of a set of one hundred runs, or one hour of
running time, at most. The best (lowest) MCA size recorded is also reported next to the average, in
brackets, for convenience. To make the comparison fair, the other tools were also subject to comply
to the same limitation on the overall running time. Tests have all been run on a 2.4GHz Macbook Pro
equipped with 2GB of RAM.

7.3. Real-world Models

Test suite sizes have been computed for a set of five system specifications which are actual models of
well known, real-world software systems. It is important to remark that the performance comparison
presented in the following aims only at giving to the readers a figure of the actual capabilities of our
tool when applied on realistic tasks, while having as a reference for evaluation the state of the art tools
with similar features. Thus, none of the test models have been designed ad-hoc or passed any selection
in order to better fit our tool’s characteristics. In fact, a set of realistically large, real-world test models,
already introduced in the CIT research literature [12, 22, 28] are used here.

The first model, TCAS, is a well known model of the specification of a software module part of a
Traffic Collision Avoidance System (TCAS), presented by Kuhn at al. [28] and broadly used in the
CIT literature. SPIN is a well-known publicly available model checking tool [25], and can be used as
a simulator, to interactively run state machine specifications, or as a verifier to check properties of a
specification. It exposes different sets of configuration options available in its two operating modes,
so they can be accounted for two different tasks of different sizes: SPIN simulator and SPIN verifier.
The GCC task is derived after the version 4.1 GNU compiler toolset, supporting a wide variety of
languages, e.g., C, C++, Fortran, Java, and Ada, and over 30 different target machine architectures. Due

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

18 A. CALVAGNA ET AL.

to its excessive complexity the task size has been here reduced to model just the machine-independent
optimizer that lies at the heart of GCC.

Apache and Bugzilla are similarly modeled after the well known open source browser and bug-
tracking system, respectively. Note that these are all tasks with mixed ranges varying from two to ten
symbols, and number of involved parameters ranging from a dozen to almost two hundreds. Moreover,
all tasks have also constraints over the inputs, that is, restrictions on which tuples may legally be
present in the computed MCA (i.e. because they are actually realizable). In fact, in the following,
two tasks are reported, first ignoring the constraints and then taking them into account, with results
shown respectively in the data tables III and IV. Note that the exponential notation used by Hartman
and Raskin [24] to represent the problem domain size has been also adopted here, that is dn means a
task with n parameters of range d, while the notation used to represent the constraints has been taken
from Calvagna and Gargantini[8]. In this latter, similarly, the expression dn corresponds to a set of n
forbidden tuples of width d, that is, involving d parameters.

7.4. Test Results

Table III reports the size of the MCAs produced by the tested tools, at varying strength t, in each of the
considered example systems. Reported results for non deterministic tools are rounded averages, with
the lowest size found shown in brackets. Please note also that in table III all tasks have been tested
ignoring their constraints.

The first tested task, TCAS, has twelve parameters, whose ranges vary from two to ten symbols,
thus is the task involving the highest range among all the considered tasks. However, it is also the task
with the lowest number of involved parameters. In the TCAS experiment our tool outperformed all
the compared tools, at all tested degrees of interaction, producing also minimal sized MCAs for all t
but the sixth strength. In the SPIN Simulator task, our tool’s performance is not the best, but is fairly
comparable to the others’, at the lower strengths. On the other hand, it is the best at strengths five and
six, with minimal sized MCA produced at strength five. Note that the first two example systems, TCAS
and SPIN simulator, were tested up to the sixth degree, Bugzilla up to the fifth, and the last three up
to the fourth only. Although some tools (Ttuples and Jenny) can be run at any strengths, their running
times for TCAS and SPIN Simulator would have in that case fairly exceeded the one hour computation
limit, to which they came already close at strength six. On the other hand, in these two tasks IPO-F
happens to be faster, but a hard limit at strength six is encoded in ACTS. Clearly, the one hour time
bound prevented higher degrees of interaction from being completed on time in successive tasks, which
are also increasingly more complex tasks. In the Bugzilla task fifty two parameters are involved, with
ranges from two to four, which makes this task a medium size with low ranges involved. Results show
that our tool in this case achieved better performance than the others for strength two to four, and only
slightly worse than that of IPO-F at strength five. Our tool was the only achieving optimal (minimal)
performance for this task, at strength two. Moreover, IPOG and IPOG-D where not able to complete
on time the task for strength five.

In the SPIN Verifier task our tool performance at strength two (31) is comparable to that of the
best performing tool (29), while it is significantly worse for strengths three and four, by a percentage
amount of 15% and 30% respectively, which is an evidence that the heuristic adopted in Ttuples is
not as efficient as the others’ compared, when applied to tasks involving a significant number of non
boolean parameters. In fact, by looking at the table, it is possible to observe that the tasks where

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

19

Table III. Test suite sizes for unconstrained models of real-world systems. A dash sign (-) means that a tool did not
complete a task by 1 hour. A star (?) means that the tool did not complete but an intermediate result was available. A dagger (†)
mark appears on tests which required the Java heap size to be increased from the default size to 500MB, to be able to complete.
Note that this was never necessary for Ttuples. IPOG-D did not complete some tests at strength t=4, due to a software failure

of the ACTS tool.

task name and size t Ttuples IPOG IPO-F IPOG-D CASA Jenny

TCAS 2 100 (100) 100 100 130 100 (100) 100
102413227 3 400 (400) 400 400 480 404 (400) 418

4 1200 (1200) 1377 1357 NA 1230? 1548
5 3605 (3600) 4292 4260 13458 - 4621
6 10249 (10177) 11939 11241† 41280 - -

SPIN simulator 2 23 (17) 20 24 28 17 (16) 27
45213 3 112 (102) 78 96 112 86 (85) 108

4 394 (373) 341 339 NA - 409
5 1024 (1024) 1236 1159 5054 - 1290
6 3328 3516 3527 30214 - 3756

Bugzilla 2 16 (16) 18 19 26 17 (16) 20
4231249 3 52 (51) 66 69 90 63 (60) 70

4 202 (197) 233 212 669 305? 230
5 676 (670) - 644 - - 740

SPIN verifier 2 32 (29) 32 29 40 27 (26) 37
41132242 3 198 (191) 208 167 248 162? 172

4 1027 (992) 761 785 NA - 806
GCC 2 17 (16) 21 21 24 18 (17) 26
3102189 3 74 (70) 78 75 98 87? 83

4 275 (263) - 271 - - -
Apache 2 30 (30) 36 36 51 34 (31) 42
615144382158 3 183 (173) 175 173 255 246? 203

4 882 (868) - 808† - - -
Total 24927 25812 92257 2796 14706
Total for Ttuples on the same subset 22266 23897 19645 2639 12693
Improvements of Ttuples 11% 7% 79% 6% 14%

Ttuples performance degraded faster at higher strengths are actually those with the highest number of
non boolean parameters, with a constant or gradually varying ranges profile, specifically SPIN Verifier
and Apache. It is intuitively clear that if the ranges have a steep profile, like it is the case for TCAS,
a lot more tuples can be hosted in the MCA without requiring additional rows, making easier the task
of building a compact MCA. In the GCC task our tool has shown to be always capable of performance
slightly better than the other tools, despite the high number of low-ranged parameters involved, that is
199, which makes this task not a complex task but a long, time consuming task. In fact, besides Ttuples
only IPO-F was able to complete it on time up to the fourth degree.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

20 A. CALVAGNA ET AL.

In the last task, which is also the most complex of the set, our tool performed remarkably better
then the other tools at strength two, producing also a minimal sized test suite. At strength three the
performance is comparable to the best performance among the others, while at strength three it is only
slightly worse (about 10%) than that of IPO-F, which is though the only other tool able to complete
the task at that level. However, IPO-F required increasing the memory allocation with respect to the
default Java heap that was sufficient for Ttuples.

Overall, Ttuples showed comparable performance to the IPOG algorithm, and its optimized version
IPO-F, although with opposite trends in their behaviors. In fact, Ttuples is generally better or
comparable at the lower strengths, while it tends to be worse at the highest strengths, which is also
more evident as the task size increases. This is evidently the limitation of adopting a blind, statistical
approach, that is, the random-based heuristic currently employed, to drive the search for the solution.
When the search space becomes extremely larger, as it is for more complex tasks and/or higher
strengths, the constant number of tries, that is 100 at most, becomes too small to explore it adequately.
Thus, designing smarter heuristics to be used within Ttuples in order to improve its performance is
an objective of future research work. However, the tool as it is has already performed also comparably
with the other non deterministic tool, CASA, and noteworthy better than IPOG-D, in all the tasks and
strengths. This is particularly significant as IPOG-D is just the version of the IPO algorithm designed,
like ours, with the objective of limiting the enumeration requirements of the construction process.
Moreover Ttuples gave a total improvement in terms of total cost of testing, for the six considered
tasks, of about 7% with respect to IPO-F, which is the only tool comparable to it on all the tasks and
strengths (see the total in table III). Considering only the tasks completed by other tools, then the cost
savings obtained with Ttuples ranges from the 11% with respect to IPOG and the 79% with respect
to IPOG-D. In addition, Ttuples was the only tool capable of running all reported tests by the given
time lap, and without never running out of memory. It is then possible to conclude that Ttuples is a
better tradeoff between performance and resource consumption, when testing at higher strength than
pairwise is desirable, in environments with scarse or limited memory resources.

7.5. Tests with Constraints

In this paragraph a few additional experiments are reported, this time performed taking into account the
tasks constraints, in order to show that the construction algorithm proposed in this paper successfully
implements this kind of feature, too. In this case, a comparison is reported with Jenny and with
the CASA tool [13, 22], which implements the most up to date, optimized version of the mAETG
algorithm and, to the best of our knowledge, is the best performing tool freely available for constrained
MCAs construction. The CASA tool’s meta-heuristic algorithm has been specifically designed to
support constraints as an internal feature, instead of a separate processing stage. This design choice
is also shared with Ttuples and with the third compared tool, Jenny. Moreover, these tools all support
constraints in the form of forbidden tuples of varying width, only. On the other hand, it is even more
interesting to compare these three tools, as they are built upon completely different MCA construction
approaches: greedy and by columns (Ttuples), meta-heuristic and by rows (CASA), greedy and by
rows (Jenny). In addition, they also have differing approaches in order to support the constraints:
mAETG/CASA incorporates a SAT solver algorithm, while Ttuples adopts the approach presented
in section 6 (the solution adopted by Jenny is undocumented).

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

21

Table IV. Test suite sizes when taking into account their constraints.- : timeout of 1 hour reached. ?: incomplete results.
†: incomplete coverage

name constraint size t Ttuples CASA Jenny

TCAS 23 2 100 (100) 100 (100) 105†

3 401 (401) 407 (403) 410†

SPIN simulator 213 2 26 (23) 20 (19) 26
3 125(112) 101 (95) 117

Bugzilla 3124 2 16 (16) 16 (16) 21
3 62 (59) 63 (60) 73

SPIN verifier 32247 2 45 (41) 37 (34) 46†

3 305 (291) 242? 251†

GCC 33237 2 24 (21) 21 (19) 29†

3 121 (115) - 103†
Apache 51423123 2 31 (30) 33 (30) 42

3 185 (182) - 205†

Please note that among the available implementations of the original IPO algorithm featured by the
ACTS tool, only IPOG does support constraints over the inputs, although support of parameter relations
and constraints is listed as future work [31]. Unfortunately, ACTS was not able to build valid MCAs
satisfying the constraints and as a consequence, it has not been included in this comparison. Results
of the comparison are reported in Table IV for a the previous set of tasks, for which it also lists the
size of their constraints, in exponential notation. The performance of our tool is always comparable
to that of the others, and better in a few cases. It is interesting to note that the performance of the
CASA tool tends to be always better than the others, but its running times (not reported) were always
significantly longer then the other’s. In fact, already at strength three, for the GCC task, after one hour
it was not jet finished but already produced an intermediate MCA with the reported size (marked with
a ?) and, for the next (larger) tasks it has missed the one hour boundary without even producing any
usable intermediate result. Moreover, in order to comply with the constraints the Jenny tool produced
MCAs with incomplete coverage, in tasks marked with a †. In conclusion, if constrained CIT has to
be applied, Ttuples shows to be also a better trade-off between performance and viability, among the
compared tools.

8. CONCLUSION

In this paper a new parameter-based technique for incremental construction of mixed alphabet covering
arrays (MCAs) of arbitrary strength t, with constraints support, has been presented. Although a lot of
algorithms for building pairwise test suites have been already proposed, very few currently exist that
support constrained t-wise MCAs construction, among which only one parameter-based. Differently
from pairwise testing, at higher strengths of interaction the time and space requirements for the

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 A. CALVAGNA ET AL.

construction of the MCA became very relevant, as long as they grow exponentially with the size of
the task. Thus, it is of major importance to take them into account in order to design really usable
tools in practice, especially when the available resources are constrained. The presented algorithm
exploited a symmetry property of covering arrays in order to achieve partial coverage by initializing a
new column, so to inherit the combinatorial relations between existing parameters. As a consequence,
the resulting algorithm is characterized by the lowest space requirements among the state-of-the-art
greedy MCA construction approaches, to the best of our knowledge.

Thanks to the coverage inheritance concept, the enumeration requirements are reduced to a set of
pairs, constant with respect to the number of parameters in the system. Coverage inheritance and the
separation of concerns in the algorithm structure, between the reusable core construction algorithm and
the delegate objects, implementing interchangeable heuristic strategies, are also original contributions.

A tool, Ttuples, implementing the proposed algorithm has been developed and the results of its
application on unconstrained tasks has been reported and commented, with the intent to give also a
picture of its performance with respect to state of the art tools with similar features. Our solution
has outperformed IPOG-D, which is the only other greedy solution existing in the literature, besides
ours, just designed and proposed as a solution to cope with the problem of reducing the enumeration
requirements of constructing MCAs. Moreover, the comparison shows that our tool is less demanding
in terms of memory space, while being at the same time slightly better, on average, in terms of MCA
size, with respect to the best performing algorithm implemented by the ACTS tool, IPOF, even if this
has been designed to optimize just the MCA size, regardless of the space requirements.

An algorithm extension to support constraints over the inputs, in terms of forbidden tuples, has been
also presented and implemented, and results demonstrated that it performs comparably with state of
the art tools designed for constrained MCA generation, and in particular with the CASA tool, which
incorporates a SAT solver in the MCA construction process. It is also important to remark that, to the
best of our knowledge, this is the only solution currently presented in the CIT literature showing a
solution to integrate support for constraints in a parameter-based construction algorithm, which is then
an original contribution of this paper. Although in current experimentation only one heuristic have
been applied, there is probably a lot of potential to further improve the performance of this approach
by designing smarter heuristics (e.g. how to select rows, which uncovered pair to recover next, and so
on), particularly to further improve the performance with respect to very large parameter ranges, and
on applying the use of constraint solvers or model checkers to the CIT in the presence of constraints,
by combining the techniques proposed by Calvagna and Gargantini [6, 7] with the technique presented
in this paper.

9. THANKS

The authors thank Charles J. Colbourn for reading an early version of this paper. Thanks also to Jeff
Lei and D.Richard Khun for their kind support on the ACTS tool. The SPIN, GCC, Bugzilla, Apache
models, and the CASA tool have been introduced in [13] and [22] by Myra B. Cohen et al., to whom
goes also the authors’ sincere thanks for having kindly made them available.

REFERENCES

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

23

1. ATGT Abstract State Machines test generation tool project. http://cs.unibg.it/gargantini/software/
atgt/.

2. R. C. Bose and K. A. Bush. Orthogonal arrays of strength two and three. The Annals of Mathematical Statistics, 23(4):508–
524, 1952.

3. R. Brownlie, J.Prowse, and M.S. Phadke. Robust testing of AT&T PMX/starMAIL using OATS. AT&T Technical Journal,
71(3):41–47, 1992.

4. R. C. Bryce, C.J. Colbourn, and M.B. Cohen. A framework of greedy methods for constructing interaction test suites.
In ICSE ’05: Proceedings of the 27th international conference on Software engineering, pages 146–155, New York, NY,
USA, 2005. ACM.

5. K. Burr and W. Young. Combinatorial test techniques: Table-based automation, test generation, and code coverage. In
Proceedings of the Intl. Conf. on Software Testing Analysis and Review, pages 503–513, October 1998.

6. A. Calvagna and A. Gargantini. A logic-based approach to combinatorial testing with constraints. In Bernhard Beckert
and Reiner Hähnle, editors, Tests and Proofs, Second International Conference, TAP 2008, Prato, Italy, April 9-11, 2008.
Proceedings, volume 4966 of Lecture Notes in Computer Science, pages 66–83. Springer, 2008.

7. A. Calvagna and A. Gargantini. Using SRI SAL model checker for combinatorial tests generation in the presence of
temporal constraints. In John Rushby and Natarajan Shankar, editors, AFM’08: Third Workshop on Automated Formal
Methods (satellite of CAV), pages 43–52, 2008.

8. A. Calvagna and A. Gargantini. Combining satisfiability solving and heuristics to constrained combinatorial interaction
testing. In Catherine Dubois, editor, Tests and Proofs, Third International Conference, Prato, Italy, April 9-11, 2008.
Proceedings, volume 5668 of Lecture Notes in Computer Science, pages 27–42. Springer, 2009.

9. A. Calvagna and A. Gargantini. IPO-s: incremental generation of combinatorial interaction test data based on symmetries
of covering arrays. In 5th Workshop on Advances in Model Based Testing (A-MOST 2009), Proceedings, 2009. IEEE.

10. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: An approach to testing based on
combinatorial design. IEEE Transactions On Software Engineering, 23(7):437–444, 1997.

11. M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge. Constructing test suites for interaction testing. In ICSE,
pages 38–48, 2003.

12. M. B. Cohen, C.J. Colbourn, and A.C.H. Alan. Augmenting simulated annealing to build interaction test suites. In ISSRE
’03: Proceedings of the 14th International Symposium on Software Reliability Engineering, page 394, Washington, DC,
USA, 2003. IEEE Computer Society.

13. M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test suites for highly-configurable systems in the presence
of constraints: a greedy approach. IEEE Transactions on Software Engineering, to appear, 2008.

14. Charles J. Colbourn. Best known lower bounds for covering arrays. http://www.public.asu.edu/˜ccolbou/
src/tabby/catable.html.

15. Charles J. Colbourn, Sosina S. Martirosyan, G.L. Mullen, D.Shasha, G.B. Sherwood, and J. L. Yucas. Products of mixed
covering arrays of strength two. Journal of Combinatorial Designs, 14(2):124–138, 2006.

16. J. Czerwonka. Pairwise testing in real world. In 24th Pacific Northwest Software Quality Conference, 2006.
17. S. Dalal, A. Jain, N. Karunanithi, J. Leaton, and C. Lott. Model-based testing of a highly programmable system. In

Software Reliability Engineering, The Ninth International Symposium on, pages 174–179, Los Alamitos, CA, USA, 1998.
IEEE Computer Society.

18. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M. Horowitz. Model-based testing in
practice. In International Conference on Software Engineering ICSE, pages 285–295, New York, May 1999. Association
for Computing Machinery.

19. I. S. Dunietz, W. K. Ehrlich, B.D. Szablak, C.L. Mallows, and A. Iannino. Applying design of experiments to software
testing. In IEEE/Computer Society, editor, Proc. Int’l Conf. Software Eng. (ICSE), pages 205–215, 1997.

20. M. Forbes, J. Lawrence, Y. Lei, and D. R. Kuhn. Refining the in-parameter-order strategy for constructing covering arrays.
Internal Report 5, NIST Journal of Research, pp. 287-297, 2008.

21. A. Gargantini. Using model checking to generate fault detecting tests. In International Conference on Tests And Proofs
(TAP), number 4454 in Lecture Notes in Computer Science (LNCS), pages 189–206. Springer, 2007.

22. B. J. Garvin, M. B. Cohen, and M. B. Dwyer. An improved meta-heuristic search for constrained interaction testing. In
International Symposium on Search-Based Software Engineering (SSBSE), pages 13–22, May 2009.

23. M. Grindal, J. Offutt, and S.F. Andler. Combination testing strategies: a survey. Softw. Test, Verif. Reliab, 15(3):167–199,
2005.

24. A. Hartman and L. Raskin. Problems and algorithms for covering arrays. DMATH: Discrete Mathematics, 284(1-3):149–
156, 2004.

25. G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295, 1997.
26. Jenny combinatorial tool. http://www.burtleburtle.net/bob/math/jenny.html.
27. N. Kobayashi, T. Tsuchiya, and T. Kikuno. Non-specification-based approaches to logic testing for software. Journal of

Information and Software Technology, 44(2):113–121, February 2002.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://cs.unibg.it/gargantini/software/atgt/
http://cs.unibg.it/gargantini/software/atgt/
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.burtleburtle.net/bob/math/jenny.html

24 A. CALVAGNA ET AL.

28. D. R. Kuhn and V. Okum. Pseudo-exhaustive testing for software. In SEW ’06: IEEE/NASA Software Engineering
Workshop, volume 0, pages 153–158, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

29. D. R. Kuhn and M. J. Reilly. An investigation of the applicability of design of experiments to software testing. In
IEEE/Computer Society, editor, 27th NASA/IEEE Software Engineering workshop, pages 91–95, 2002.

30. D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions and implications for software testing. IEEE
Trans. Software Eng, 30(6):418–421, 2004.

31. Y. Lei, R. Kacker, D. R. Kuhn, V. Okum, and J. Lawrence. IPOG/IPOG-D: efficient test generation for multi-way
combinatorial testing. Software Testing Verification and Reliability, 18(3):125–148, 2008.

32. Y. Lei and D. R. Kuhn. Advanced combinatorial testing suite (ACTS). http://csrc.nist.gov/acts/.
33. Y. Lei and K.-C. Tai. In-parameter-order: A test generation strategy for pairwise testing. In 3rd IEEE International

Symposium on High-Assurance Systems Engineering (HASE ’98), 13-14 November 1998, Washington, D.C, USA,
Proceedings, pages 254–261. IEEE Computer Society, 1998.

34. C. Lott, A. Jain, and S. Dalal. Modeling requirements for combinatorial software testing. In A-MOST ’05: Proceedings of
the 1st international workshop on Advances in model-based testing, pages 1–7, New York, NY, USA, 2005. ACM Press.

35. K. Nurmela. Upper bounds for covering arrays by tabu. Discrete Applied Mathematics, 138(1-2):143–152, 2004.
36. Pairwise web site. http://www.pairwise.org/.
37. G. Seroussi and N. H. Bshouty. Vector sets for exhaustive testing of logic circuits. IEEE Transactions on Information

Theory, 34(3):513–522, 1988.
38. G.B. Sherwood. Optimal and near-optimal mixed covering arrays by column expansion. Discrete Mathematics,

308(24):6022–6035, 2008.
39. B. D. Smith, M. S. Feather, and N. Muscettola. Challenges and methods in validating the remote agent planner. In

CO Breckenridge, editor, Fifth International conference on Artificial Intelligence Planning Systems (AIPS), 2000.
40. K. C. Tai and Y. Lei. A test generation strategy for pairwise testing. IEEE Trans. Softw. Eng., 28(1):109–111, 2002.
41. A. W. Williams and R. L. Probert. Formulation of the interaction test coverage problem as an integer program. In

Proceedings of the 14th International Conference on the Testing of Communicating Systems (TestCom) Berlin, Germany,
pages 283–298, march 2002.

42. C. Yilmaz, M.B. Cohen, and A.A. Porter. Covering arrays for efficient fault characterization in complex configuration
spaces. IEEE Trans. Software Eng, 32(1):20–34, 2006.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2009; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://csrc.nist.gov/acts/
http://www.pairwise.org/

	1 INTRODUCTION
	2 BACKGROUND
	3 COVERAGE INHERITANCE
	3.1 Numerical example

	4 ALGORITHM PSEUDOCODE
	4.1 Recursive tuple recovering

	5 ALGORITHM DISCUSSION
	5.1 Construction framework
	5.2 Time and space complexity
	5.3 Contrasting with IPO

	6 CONSTRAINT SUPPORT
	7 IMPLEMENTATION AND ASSESSMENT
	7.1 Multipass Heuristic
	7.2 Compared Tools
	7.3 Real-world Models
	7.4 Test Results
	7.5 Tests with Constraints

	8 CONCLUSION
	9 THANKS

