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Abstract. In this paper we propose a formalization using state variables like
counters to model temporal relationships among events. We prove that the
proposed method is correct. We show that counters are more suitable to prove
properties and to implement events relationships by means of a programming
language.

1. INTRODUCTION

Many widely adopted approaches to modeling and specification are based on no-
tations centered on ontological entities like states and/or events. It is a basic fact of
the theory of state/transition systems that the formal models based on states and
those based on events are to a large extent equivalent, so the question may arise
whether it is more convenient to adopt either one of them, or both, when devel-
oping computer-based applications. From the standpoint of software engineering,
hence considering also matters related to organization, administration, and practi-
cal convenience, the concrete choice of the engineers is most times dictated by the
ease of use of a notation (a combination of expressiveness, readability, writ abil-
ity) and (we point out a bit provocatively) by the actual availability of commercial-
and industrial-strength tools that are well engineered, technically and commercially
supported, and integrated with the most common hardware/software platforms.

If we focus on the most conceptual aspects, we note that the use of states and
events is most useful in the modeling and analysis of reactive, embedded, real-time
systems, i.e., those systems that closely interact with an environment that they
have to monitor or control. The notations supporting modeling and analysis are
most relevant in the highest phases of development: for the purpose of design and
implementation the programming languages have reached a level of abstraction and
generality that makes them adequate and sufficient.

In the phases of user requirements identification, of design requirements spec-
ification, and of System Requirements Analysis (the activity whereby one wishes
to establish that the adopted hypotheses on the environment, combined with the
envisaged solutions, satisfy the user requirements) the chosen notation and its style
(operational versus descriptive, oriented towards properties or towards state/trans-
itions/events/ actions) can influence dramatically the cost effectiveness of the de-
velopment effort, and can favor or hinder the requirements elicitation, the commu-
nication among developers and between developers and users, the ability to reason
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on the models and the solutions to prove, at various levels of formality, their cor-
rectness and adequacy.

In the above described scenario (which, we note, is mostly influenced by method-
ological and pragmatic issues, rather than by strictly scientific and foundational
ones) the requirements of minimality and essentiality of the adopted formal nota-
tion (e.g., questions such as: can I do without events and use only states, or vice
versa) become much less relevant. In fact, one can obtain great benefits by com-
bining the notions of state and event, even at the cost of some redundancy, but
aiming at producing models and descriptions that are more compact and intuitive.
From a pragmatic point of view, it is also important that the adopted notation and
style be able to embody some psychological or even philosophical aspects of the
developers’ mental habits such as: the tendency to describe dynamic systems (and
reactive systems among these) in terms of cause-effect relations; the identification
of certain necessary or sufficient conditions/events/states in order for other ones
to hold; the great ease, for most people, to reason in visual or geometric terms,
which favors the adoption of certain conceptual entities that can be represented in
a graphical fashion (notice that this can occur for both states and events, as it will
be illustrated in the following).

Hence, for what concerns the questions raised by the ST.EVE workshop, our
position is based on a quite eclectic and pragmatic attitude: both the notion of
state and that of event have virtues and limitations, so that the worst thing to do
would be to reject one in favor of the other; the best approach, in our opinion, is to
make a constant effort to use them in combination, since most likely this will foster
the emergence of new, complementary and synergetic, points of view and ways of
describing and reasoning.

The dispute among supporters of state-based and event-based models and anal-
ysis is somehow reminiscent of another contention, the one between descriptive
notations (i.e., logic-based, best suited for expressing properties and relations) ver-
sus operational ones (based on state/transitions and hence more oriented towards
describing actions and execution steps of (abstract) machines). This contention,
like the one between states and events, is best settled by adopting the so-called
dual-language approach, which combines in a synergetic way a descriptive notation
(e.g., temporal logic) and an operational one (e.g., Petri nets), thus overcoming the
limitations and maintaining the advantages of both; we have applied and illustrated
the dual-language approach in [6, 7]

Coming back to the main topic of the workshop, in the present work we will
illustrate our position in favor of the combined use of states and events by presenting
some new developments of our previous work appeared in [8, 9], where we used
the language TRIO (a very general and expressive temporal logic) to characterize
axiomatically the various kinds of modeling and specification entities that can be
employed in the System Requirements Analysis of reactive, time-critical systems.
We formalized in terms of TRIO axioms the notions of time point- and time interval-
based predicates and variables (which have a close correspondence with events and
states, respectively), of (non)Zeno entities, and a quite rich variety of time and
causal (either deterministic or not) relationships among these entities. Here we
will provide new elaborations on the use of special, interval-based, integer-valued
variables that count the number of event occurrences; such counter variables turn
out to be a quite simple and effective means to express and to prove time and
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causal relations and properties that would be quite cumbersome and intricate to
characterize in terms of a specification alphabet composed of state-like items only
or event-like items only.

The paper is organized as follows. Section 2 briefly presents TRIO, events and
counters and reports the related work. In Section 3 we explain the most basic re-
lationship between events we model, namely the cause-effect relationship between
two event with bounded delay. In Section 4 we extend the same approach dealing
with non deterministic choice between events (with null delay) and in Section 4
we model the most general case with non deterministic choice and non determin-
istic delay. In Section 6 we discuss the advantages using counters providing some
examples.

2. BAsIcs

TRIO. We will use TRIO [10, 15] to express many temporal dependencies and
relations. TRIO is a first order logic augmented with temporal operators that
allow to express properties whose truth value may change over time and to model
variables whose value changes over time. The meaning of a TRIO formula is not
absolute, but is given with respect to a current time instant which is left implicit.
The basic temporal operator is called Dist: for a given formula W, Dist(W, t)
means that W is true at a time instant whose distance is exactly ¢ time units from
the current instant, i.e., the instant when the sentence is claimed. Many other
temporal operators can be derived from Dist.

Futr(F,d) d>0A Dist(F,d) future

Past(F,d) d>0A Dist(F,—d) past

NowOn(F) 3d(d > 0A Lasts(F,d)) F holds for an interval after now
Alw(F) Vd Dist(F,d) F always holds

AlwP(F)  Vd(d > 0— Past(F,d)) F always held in the past
Som(A) IdDist(F,d) Sometimes F held or will hold

Besides temporal dependent (TD) predicates, TRIO introduces temporal depen-
dent variables with domain D, as variables whose value changes in D over time. For
instance, TD variables are suitable to model enumerate variables and continuously
changing variables, as many physical quantities. To refer to values of a variable or
term in the past or in the future, the operator dist (as generalization of Dist) is
introduced: for a given term z, dist(z,t) has the value that z had or will have at
a time instant whose distance is t from now. From the dist operator, the futr and
past operators are derived, referring to values of variable sin the future and in the
past.

Note that in the following, when stating formulas and properties that always
hold, we omit an outermost Alw: stating such properties in a generic instant of
time we mean that they hold forever.

Events and Counters. In our framework, events are predicates that are true
only in single time instants and have null duration. A more detailed discussion
and a rigorous treatment of events and state (or interval) variables can be found
in [9]. Events can be distinguished but event occurrences of the same event cannot
be uniquely identified (except for the time they occur) since they do not carry
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other information, otherwise other axiomatizations are suitable to model temporal
relationships among events [11]; this point will be clear in Section 3. We admit
simultaneous occurrences of the same event. We use the notation A, B to indicate
events. For events we will use counters: for the event A we call #A the counter
of the event A. #A in each instant has an integer value indicating the number of
occurrences of A till the current instant. Counters are state variables, i.e. they
hold their value for temporal intervals and not just for time points.

We assume here that, for any event F, there exists a first occurrence, i.e., that
there is an instant before which E never occurred, a fact that is formalized in TRIO
as Som(AlwP(—FE)). Therefore, there exists a initial instant when all the counters
are null. This hypothesis is quite realistic for real-world systems. A less restrictive
assumption is however adopted in [8] in the proof of the theorem 1, showing that
it is immaterial from a mathematical viewpoint.

For the sake of simplicity, we assume event counters being incremented just after
the time instant when the counted event happens, i.e. we assume counters to be
left continuous (for details see [9]). For this reason, the following axiom holds (z is
an integer): BA#B =x — NowOn(#B =x + 1)

Related works. There exist several approaches that try to combine concepts from
state based methods with concepts from event based notations. In Chapter 18 of [5]
the authors discuss how to integrate Z and Object-Z with process algebraic methods
like CSP and CCS. In [3] some abstract concepts of process algebra and from
ASMs are integrated into Abstract State Processes (ASPs), i.e. evolving processes
(extended ASM programs which are structured and evolve like process-algebraic
behavior expressions) operating on evolving abstract states the way traditional
ASM rules do. This paper tackle a more particular concept but in a general way.

The idea of using counters to model relations between events was already pre-
sented in [4]. [4] defines events like functions from N to time: for the event e,
e(i) is the time of the i-th occurrence of the event e. It defines also counters of
events. In that paper constructs to express precedence (that is an event or a set of
events must precede or follow another event) between two events (or an event and a
set of events) are presented and these constructs use counters. Also [16] introduce
the counter #e for each event e. An example is provided where counters are used
to specify properties of the system, in a similar fashion proposed by our method,
but no formal framework is given. Indeed, counters are directly used to specify
system requirements (like, for instance, “the number of missiles fired is no more
than the number of targets located so far”). The generic requirement that a cer-
tain event must follow (or precede) another can be enriched specifying a bounded
delay between such events or requiring that an event can cause another event non
deterministically chosen among a set of possible effects. This kind of requirement
is widely (also informally) used. Furthermore it is explicitly modeled (somehow
embedded within the language itself) in Timed Petri Net (TPN) [13] and in MMT
timed Automata [14]. We shown how the use of counters can be extended to specify
this relation in a very simple and effective way.

3. CAUuseE-EFrFECcT RELATIONSHIP BETWEEN Two EVENTS WITH NON
DETERMINISTIC DELAY

The first relationship we tackle in this paper is the relationship involving only
two events: an event A causes another event B, in a future time that is not known
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precisely, due to some nondeterminism of the system. Typically, the delay between
A and B is characterized by means of a lower bound and an upper bound denoting
the minimal and maximal time distance between related occurrences of the two
events. The relation is therefore nondeterministic, being the exact instant in the
future, when B will occur after A, unknown. Moreover, we assume that the relation
is one-to-one (for instance because A is the unique cause of B: every occurrence
of A causes one B and every occurrence of B is caused by one occurrence of A).
An example of this kind in a concurrent systems could be the relation between the
event of taking a resource and that of returning it.
The preliminary following formal definition of this kind of relation follows.

Definition 1. An event A is a unique cause for an event B in [d,D] time units,
where d and D are positive real constants such that d < D, iff there exists a one-
to-one function ¢ from the occurrence times of A to those of B such that t +d <
o) <t+D

This definition, originally presented in [9], is not suitable to model events that
can occur several times in the same time instant. Indeed, if the event A occurs at
the time instant ¢ two times, a function ¢ would not suffice to express the relation
between occurrences of A and occurrence of B, since the two B events related with
the two occurrences of A could occur in distinct time instants, while ¢(¢) has an
unique value. To correctly model the relationship, we have to extend the definition
of the function ¢, such that ¢ counts the simultaneous occurrences of the same
event.

Definition 2. An event A is a unique cause for an event B in [d,D] time units,
where d and D are positive real constants such that d < D, iff there exists a one-
to-one function ¢ from Time x N to Time x N such that ¢(ta,ia) =tp,ip iff A
happens at least i 4 times at the time instant t o and B happens at least ip times at
the time instant tp , and ta +d <tp <ta+ D

The function ¢ relates the i4-th occurrence of A at the time instant t4 with the
ip-th occurrence of B at the time instant ¢g.

Note that the fact that event occurrences are indistinguishable (except for the
time they occur) makes the function generally non unique. For example if A is
unique cause of B, d = 8, and D = 14, A occurs at time 0 and 3 and B occurs at
time 9 and 14, we could have to possible functions ¢; and ¢o as depicted in the
following figure.

?A ?A B B
e gttt
> ~—e o __ - - time
0 -3 9 -7 14

The same observation can be extended to the case of simultaneous occurrences.
With simultaneous occurrences, the function ¢ always admits multiple solutions,
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since we cannot distinguish two simultaneous occurrences of the same event. This
case is depicted in the following figure, where event A happens two times at 3 and
each occurrence can be related with B at time 9 or with B at time 14.

A?. N ?B ?B
| S T T [ | |

|
I I < I =4 _ @l I I I I i I
1

time

This kind of relationship (together with the extensions we present in the following
sections) is widely used and in several formalisms it is the only temporal relationship
between events: see for instance timed Automata in [2, 14] and Timed Petri Net
(TPN) in [13]. In TPN, it is pictured as follows (through the paper we often use
TPNs to graphically represent the relationship we intend to deal with). We will
designate events also using name of transitions in TPNs, with lower case letters like
s, 1, ¢, ...

[d.D]

O

t
S

Definition 2 formally states the relationship between events we deal with (and
it guarantees to avoid misunderstandings), yet it is apparent that it can be barely
useful during analysis or synthesis of real systems. To be useful, the definition
can be formulated using TRIO axioms as reported in [9]. However, note that that
simple and natural formalizations using only temporal formulas (that is not using
predicates) are completely wrong (as shown by [8]). Correct solutions using several
additional predicates can be found in [7] and in [12].

In the following we demonstrate that the proposed approach using counters is
correct, simpler and more useful.

3.1. Formalizing Definition 2 Using Event Counters. We now introduce a
way to bind events A and B using the counters of their occurrences, respectively
denoted as #A and #B.

By means of a loose and informal reasoning we first find a suitable relation
modeling the cause-effect binding.

First of all, notice that, for any event F, at any time the number of occurrences
of E in the interval at distance [di,d2) (i.e., the interval starting d; time units in
the future and ending do time units in the future !) is equal to the total number
of events occurred before the end of the interval minus the total number of events
occurred before the beginning of the interval: this difference can be is denoted as
dist(#FE,ds) — dist(#E,dy).

IThe right end of the interval is not included because counters are assumed to be left continuous.
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The first concept we would like to express is: if in a interval [dy,d2) in the future
there are z occurrences of event A, then in a interval [d;+d,d2+D) there are at
least x occurrences of B:

dist(#A, dy) — dist(#A,dy) < dist(#B,dy + D) — dist(#B, dy + d) (1)

Vice versa if in an interval [d;,d2) the future there are z occurrences of B, then
in a interval [d;-D,d2-d) there are at least z occurrences of A:

dist(#B, dy) — dist(#B,dy) < dist(#A,dy — d) — dist(#A,d, — D) (2)

We would like to derive, from (1) and (2), a simpler, unique, and equivalent
relation. First we can rewrite (1) with di= d;-d and dy= d»-D:

dist(#A,ds — D) — dist(#A,d1 — d) < dist(#B,d2) — dist(#B,d1) (3)
From (2) and (3) we find a unique relation:

dist(#A, dy — D) — dist(#A,dy — d) < dist(#B, dy) — dist(#B, dy)
< dist(#A,dy — d) — dist(#A,dy — D) (4)

Taking some license in notation, we choose di=—00? and dy= 0:

dist(#A,—D) — dist(#A,—oc0 — d) < #B — dist(#B, —0)
< dist(#A, —d) — dist(#A, —o00 — D)

Since dist(#A,—oc0 — d) = dist(#B,—0) = dist(#A,—00-D) = 0 we finally
obtain:

dist(#A, —D) < #B < dist(#A, —d) (5)

We have found a relation between counters (formalized as a TRIO axiom) suit-
able to model the relation given in definition 2. This fact is stated in the following
theorem.

Theorem 1. Event A is a unique cause of event B in [d,D] time iff:
past(#A, D) < #B < past(#A4,d)

The preliminary version of the proof of this theorem can be found in [§].

Intuitively, if the relation of Definition 2 holds, when event A occurs, causing an
increment in counter # A, then counter # B is also bound to increase; however, due
to the assumed delay ranging between d and D, counter # B will increase no earlier
than d time units after the increase of # A, hence the inequality # B<past(#A,d)
holds; moreover, and symmetrically, # B will increase no later than D time units
after # A, hence #B>past(#A,D) holds.

Theorem 1 expresses the concept stated in Definition 2 with very simple relations
between event counters. Thanks to their simplicity (they are just linear inequalities)
these relation can be used very easily and effectively in the derivation of relevant
properties as shown by the following corollary.

Corollary 1. B — 3t(d <t < D A Past(A,t))
2By choosing di=—o00 we consider an instant in the past such that neither predicate A norB

ever occurred before that time, and therefore their counters are both zero; such an instant exists,
thanks to our previously mentioned assumption that Som(AlwP(—A)) and Som(AlwP(-B)).
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Proof. if B occurs, its counter increases by one (counter are left continuous):
B — 3x(#B =z ANowOn(#B =z + 1))
applying the relation between counters:
B — 3x(#B =z A Past(#A < x, D)A NowOn(#B=x+1NPast( z+1< #A,d)))
because of NowOn(A A B) < NowOn(A) A NowOn(B):
B — Jx(Past(#A< x, D)\ NowOn(Past( x+1< #A,d)))
thanks to the equality NowOn(Past(A,t))=Past(NowOn(A),t)
B —3x(Past(#A< z, D)A Past(NowOn(x+1<#A4),d)))
From this , it can be proved that there is an occurrence of A:
B — 3t(Past(A,t) Nd <t < D) O

Particular cases and generalizations. The model can be both generalized and
applied to particular cases. For instance, if the minimum delay d is zero (event B
can follow immediately event A) the relation becomes: past(#A,D) < #B < #A.

If the delay has no upper bound, then D = co and the relation reduces to: #B
< past(#A4,d).

A further, interesting generalization of the one-to-one relation introduced in
Definition 2 is to allow a negative minimum time d. In this most general case
one would not model a “cause-effect” relation, but a correspondence between event
occurrences that are somehow related, for instance because they are both effect
of a common (unique) cause. Theorem 1 can be generalized in a straightforward
way to this case by just changing the past operators (which assume a positive time
argument and necessarily refer to previous instants) into dist operators (which
equally admit a positive, null, or negative time argument, thus referring to both
past, present and future), obtaining the following relation

dist(#B,d) < #A < dist(#B, D)

which holds under the unique assumption that d < D.

As a concrete example, let us consider an electronic trading system where an
order for some goods performed by a client gives rise subsequently, through inde-
pendent chains of actions, to the physical delivery at the client’s address of the
parcel containing the ordered item, and to the billing of the price on the client’s
bank account. An important property of the trading system could be that there is a
one-to-one matching between goods delivery and bank account transactions. These
two events are clearly related, but there might be no strict temporal precedence
between them. If we model goods delivery by the event predicate GD and bank
account transactions by event predicate BAT, then we can abstractly specify that
each occurrence of GD may at most precede the corresponding occurrence of BAT
by 3 days, or at most follow it by 4 days, using the following inequalities

dist(#GD, —3) < #BAT < dist(#GD, 4)

Example 1. In the Generalized Rail Cross (GRC) case study (see [9]) a one-to-
one temporal relationship obviously exists between the entering of trains in the
various regions surrounding the crossing. The system is nondeterministic due to
the uncertainty about the trains speed, which may vary between minimum and
maximum allowed values.

The informal specification asserts that the trains take a minimum time d,, and a
maximum time dps to go from the beginning of region R to the beginning of region
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FIGURE 1. . Models for axiomatizations based on special predi-
cates or on counters.

R; it takes a minimum time h,, and a maximum time hjs to go from the beginning
of region I to its end.

These relations are formalized by the following inequalities between counters of
event occurrences (recall that RI, II, and IO are defined, respectively, as the events
of a train entering region R, entering region I, and exiting region I, and that they
are multiple events).

past(#RI,dy) < #11 < past(#RI,d,,)

past(#I11, hyr) < #10 < past(#11, hy,)
¢

Model for Function ¢and Counters. Note that the relation between counters
does not establish the exact mapping between the various occurrences of the cause
and effect events. It defines just the values of the counters as events occur in time,
without providing any information about the “physical” matching between event
occurrences. Of course, the simpler but slightly less informative description in
terms of counters suffices in the cases where the exact matching between the event
occurrences is immaterial with respect to the desired system properties.

As an illustration of this, consider again the GRC example, with a plant where
dm =5 and dp; =15. Suppose there are two occurrences of RI at times 0 and 3
(i-e., a train enters region R at time 0 and a second train enters at time 3), and two
occurrences of event II at times 9 and 14 (i.e., a train enters region I at time 9 and
another one at time 14). From a physical viewpoint there are two interpretations
of this event sequences: either the trains enter in region I in the same order as they
entered in region R, or the train that entered region R last passes the first one, and
enters region I before it.

Correspondingly, there are two models (i.e. two possible ¢ functions) with these
event occurrences: in each model the relation shows which event of the kind “en-
trance in region I” corresponds to each event of the kind “entrance in region R”, as
shown in Figure 1. When we use event counters, instead, we model the fact that
“sensors do not recognize trains”, so that there is just one possible model, shown
in Figure 1, accounting for the total number, up to any given time, of occurrences
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FIGUrE 2. BAT and GD

of events of kind “entrance in region R” and “entrance in region I”. Notice, how-
ever, that the second, less precise description is perfectly adequate to the purpose
of governing the Railway Crossing: the safety system does not need to “recognize
trains™ it can limit itself to counting them.

As an example where the exact matching between event occurrences can be rele-
vant to the desired system properties, consider again the above described electronic
trading system, with a sample “history”, shown in Figure 2, where two bank account
transactions take place at time 0 and 5, and goods delivery occur at time 2 and 4.
Figure 2 shows that there is only one model based on counters #GD and #BAT,
and there are two models based on the function ¢.

(Notice that the specification of the electronic trading system can be further
enriched by associating to every goods delivery and bank account transaction the
description of the acquired item; in this case it can be easily verified that the number
of candidate models increases, and a few additional simple axioms are needed to
state the property that related BAT and GD occurrences must refer to the same
acquired item.)

4. NON DETERMINISTIC CHOICE BETWEEN IMMEDIATE EFFECTS

The use of counters can be extended to deal with non deterministic choice be-
tween two or more events that are immediate (i.e. with no delay) effects of an
unique event cause. Let an event A be immediate cause of two concurrent events
B1 and B2.

Definition 3. An event A is the unique immediate cause of two concurrent events
B1 and B2 iff there exists a one-to-one function ¢ from Time x N to Time X N X
{B1,B2} such that ¢(ta,ia) =ta,ie, e iff A happens at least is times at the time
instant t 4 and the event e happens at least i, times at the time instant t

In this case the function ¢ relates each occurrence of A with one occurrence of
B; or one occurrence of By. This situation can modeled by the simple Petri Net
shown in Figure 3.

Using counters, we can immediately express the temporal relationship among
events s, t1 and to as follows.
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S t1 [0,0]

t2 [0,0]

FI1GURE 3. Non deterministic choice between two events

Theorem 2. An event s is the unique immediate cause of two concurrent events
t1 and to iff
#i1 + #to = F#s

When s fires once, it increases its counter by one, and one and only one counter
#t1 or #t5 is bound to increase, i.e. one transition between t; and t2 must fire.
The choice between t; and t5 is not deterministic. If s fires more than once, t;
and tomust fire such that the sum of their firings is equal to the number of firings
of transition s. In case of simultaneous firings of s, this equation admits many
solutions, and, therefore, it is (as expected) not deterministic.

Starting from the equation above, we can prove many useful relations between
the number of firings of ¢; and the number of firing of ¢3. For example, it is
immediate proving that if ¢; never fires, whenever s fires, to must fire and that, in
this case, the number of firings of s and t5 is equal. Indeed if ¢; never fires, then
#t1 = 0, and #to = #s. If s fires, its counter increases and the counter of t5 is
bound to increase and the two counters will always hold the same value.

5. NON DETERMINISTIC TEMPORAL CHOICE BETWEEN MULTIPLE EFFECTS

In this section, we want to model, using counters, the complex case when an
event A is cause of one event among a possible set of events with a delay that is
not fixed. In this case the non determinism regards both the delay (as in Section
3) and the choice between two or more effects (as in Section 4).

First, we try to model this kind of relationship by means of a function. Let an
event A be cause of two concurrent events By and Bs with bounded delay. We can
introduce the following definition.

Definition 4. An event A is an unique cause of two concurrent events By and Ba
in, respectively, [dp,,Dp,] and [dp,, Dp,] time units iff there ewvists a one-to-one
function ¢ from Time x N to Time x N x {By, Ba} such that ¢(ta,ia) = te,ic, e
iff A happens at least i o times at the time instant to and the event e happens at
least i, times at the time instant t, and ta + de < to <tag + D,

This situation can be modeled by the simple Timed Petri Net shown in Figure 4
(a). We assume that there is real conflict between the two transitions, i.e. 1 < ug
and I < wuq.

To model this case using counters, we can transform the TPN shown in Fig-
ure 4 (a) to the equivalent TPN shown in Figure 4 (b). Now we can model this
new equivalent TPN by means of the following relations between event counters,
exploiting Theorems 1 and 2:

(1) #r1 +H#ry =#s
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/H t1 [11,ul] rl 11 [11,u1]
s —(—

S

2 [12,u2]

r2 t2 M12.u21

(b)

FIGURE 4. Non deterministic temporal choice between multiple effects

(2) past(#r1,u1) < #t1 < past(#r1, 1)

(3) past(#ra,us) < #to < past(#ra,ls)
Now we want to translate the relation above in equivalent relations but without
the fictitious events r1and ry. Since relations (2) and (3) above are always true, we
can temporally translate them by [y, u1,l2, us, to obtain the following 4 relations:

(2°) #r1 < futr(#ti1,u1) and  (27)  futr(#t, ) < #r

(3) #ro < futr(#te,us) and  (37)  futr(#te,ls) < #ro

Combining (2’), (27), (3’) and (3”), we obtain the following 4 relations without
any reference to rand ro

(1) futr(#ti,u1) > #s— #ro > #s — futr(F#te, us)

(2) futr(#t1,l1) < #s — #ro < #s— futr(#ta,l2)

(3) futr(#ta,ug) > #s — futr(#t1,u1)

(4) futr(#ta,la) < #s— futr(#t1,11)
The intuitive meaning of such relations is that if s fires, then its counter is in-
creased and ¢; must fire in a time instant in the future between I, (equation 2) and
us(equation 1), unless a firing of t5 has consumed already the firing of s (the minus
sign in 1 and 2). Note that (1) is equivalent to (3) and (2) is equivalent to (4). We
can now formulate the following theorem.

Theorem 3. An event s is an unique cause of two concurrent events t1 and to in,
respectively, [l1,u1] and [l2,us] time units iff

Sutr(#t1, 1) + futr(#te, lo) < #s < futr(#t1,u1) + futr(#ta, us)

The meaning of this theorem is that the number of firings of ¢; and t, after
(before) the two upperbounds (lowerbounds) have elapsed must be greater (smaller)
than the number of firings of s.

Example 2. Thanks to the relations above, we can prove some interesting prop-
erties. For example we can prove that if {5 never fires, then ¢ fires as many times
as s. If we assume that initially the counter of t2 is equal to 0 (without loss of gen-
erality), then #t5 = 0 is always true. The relations become: futr(#t1,u;) > #s
and futr(#t1,11) < #s, i.e. t1 is unique effect of s in [l1, u1] time units.

Example 3. An ordering and delivering system is specified as follows. When a
good (whose identity is not important) is ordered, then it can be shipped using the
normal postal service in 0 to 5 days. If the item is not shipped after 3 days, then
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GO ?O PD ED
| ? | | | ? | f _
0 2 4 6 time
futr(#ED, 7)+futr(#PD,5) #GO futr(#ED,3)+#PD

futr(#ED,7) futr(#ED,3)
futr(#PD,5) #PD

FIGURE 5. A scenario for the ordering-delivering system

the shipping department can use an express currier, that, in any case, must deliver
the ordered good in 7 days from the date of the order. The event of ordering a
good GO is the unique cause of two concurrent events PD (postal delivery) and
ED (express delivery).

_ PDI0,5]

Go /

: j\ ED [3,7]

Applying Theorem 3 we obtain:

futr(#PD,5) 4+ futr(#ED,7) > #GO and #PD + futr(#ED,3) < #GO

Figure 5 depicts a scenario where an item is ordered at time 0 and another one
at time 2, and an item is delivered by postal service at time 4 and another item
is delivered at time 6. You can see that the exact mapping between orders and
delivering events is not modeled, and GO could happens in all the gray area.

5.1. Generalization to multiple causes. The proposed framework can be easily
extended to deal with the case of multiple causes (s1, s2, 83, ...). This case is
depicted in the following TPN. To model this, one must substitute in the relation
presented before, the counter of s, #s, with the sum of the counters #s1, #s2, ...

N

6. ADVANTAGES OF USING COUNTERS

We argue that counters and the proposed relations among them constitute a
viable means for proving properties of systems and for implementing such relations
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in real programming languages. Indeed, functions ¢ and their properties as pro-
posed in definitions 2, 3, and4 (as well as predicates introduced in [12]), are difficult
to handle, especially in performing proofs and in implementing them by means of
real programming language. It is intuitive that counters, temporal translation of
them, and linear inequalities between them are more manageable. In this Section
we provide evidence of this fact by means of some examples.

Example 4. Consider the following example, where an event s causes an event ¢
with temporal bounds I; and u¢, and ¢ causes an event r with temporal bounds [,
and u,

S t [It,ut] r [Ir,ur]

[~

The proof that s causes an event r with temporal bounds l; 4+ [,- and us + u, is
immediate. From the relations for counter #t and #r

past(#s,1;) < #t < past(#s,u)
past(#t,1.) < #r < past(#t,u,)
we can derive the following relation:

past(#s,l; + 1) < #r < past(#s,us + u,)

Example 5. For the ordering-delivering system presented in Example 3, we want
to prove that all the ordered items are shipped after 7 time units:

#PD + #ED > past(#GO,7)

Proof. Exploiting theorem 3, translating of 7 time units in the past, we can state
that #ED + past(#PD,2) > past(#GO, 7). Thanks to the counter property stat-
ing that a counter can only increase, we can assert that #PD > past(#PD,2).
Combining the two relations, we can prove the property above. (I

Example 6. The technique presented in this paper can be applied to prove refine-
ment rules for TPNs. A method based on temporal logic for proving that a TPN
is a correct implementation of another TPN (specification) and a set of correct
refinement rules are presented in [6]. Using counters the same proofs can be more
easily conducted and understood.

For example, in Figure 6 we show a simple TPN and a refinement of its, that we
want to prove to be correct, i.e. we want to prove that the refinement preserves the
cause effect relationship between s and ¢, i.e. the following relation between firings
of transitions ¢” and s’ holds:

Theorem 4. dist(#t',d) < #s' < dist(#t', D)
Proof. For the refined TPN, we can write (see Section 5.1):
(1) diSt(#t/, dg) < #Hrp 4 H#re < diSt(#t/, Dg)

For r; and 7y , exploiting theorem 3, we can write:
futr(#r1, D1) + futr(#re, D1) > #s' and futr(#r1,dy) + futr(#ra,dy) < #s'
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ri[d1,D1]

[d2,D2]

s t s r2 [d1,D1]
d1+d2=d and D1+D2=D

FIGURE 6. A TPN and its refinement

This can be rewritten:

(2) dist(#11 + #ra,dy) < #5' < dist(#r1 + #ra, D1)
Translating (1) by D; and d;, we obtain

(3)
dist(#r1+#r2, D1) < dist(#t', D1+Ds) ,and dist(#t', da+dy) < dist(#r1+#7r2, da+dy)

Combining (2) and (3), we have proved Theorem 4 that ¢’ is unique effect of s’
in [dl +do, Dy + Dg] O

Furthermore, specifications based on counters are readily implementable, since
counters are trivially computable by means of increments of integer-valued program
variables.

The translation of temporal relationships in terms of state variables as counters
can be of great advantage during the implementation phase. Indeed, events states,
counters, and temporal translation can be immediately implemented in terms of
simple hardware devices or software fragments so that the detailed design, dimen-
sioning, and implementation of monitoring and controlling systems can be made
quite systematic and intuitive using predefined, parametric components. For a re-
ally toy example, consider the following, where a program written in the syntax of
LEGO® Mindstorms® Quite C [1] like checks whether A is unique cause of B in
[5,7] time units.

#define N 100
clock clockABI[N];
int countA, countB;
while (1) { // forever
if A
// if A, reset the countA-th clock and count A
clockAB[countA++ % N].reset;
if B {
// if B, take the countB-th clock and count B
check = clockAB[countB++ ¥ NJ]
// check the delay is bound
if '( 5 <= check && check <=7) then ERROR
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7. CONCLUSIONS

We have presented our position that states and events should not be considered
as exclusive alternatives, but are best exploited in an integrated usage to facilitate
modeling and analysis of reactive, embedded time critical systems. As an illus-
tration of this point we have discussed temporal logic axiomatizations for events,
state-like counter variables, and relations among them. By means of examples de-
rived from case studies, we have shown that events and counters can be the basis for
effective reasoning and for implementing the modeled systems in real programming
languages.
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