
USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPSAMONG EVENTSANGELO GARGANTINI, ANGELO MORZENTI, AND ELVINIA RICCOBENEAbstra
t. In this paper we propose a formalization using state variables like
ounters to model temporal relationships among events. We prove that theproposed method is 
orre
t. We show that 
ounters are more suitable to proveproperties and to implement events relationships by means of a programminglanguage. 1. Introdu
tionMany widely adopted approa
hes to modeling and spe
i�
ation are based on no-tations 
entered on ontologi
al entities like states and/or events. It is a basi
 fa
t ofthe theory of state/transition systems that the formal models based on states andthose based on events are to a large extent equivalent, so the question may arisewhether it is more 
onvenient to adopt either one of them, or both, when devel-oping 
omputer-based appli
ations. From the standpoint of software engineering,hen
e 
onsidering also matters related to organization, administration, and pra
ti-
al 
onvenien
e, the 
on
rete 
hoi
e of the engineers is most times di
tated by theease of use of a notation (a 
ombination of expressiveness, readability, writ abil-ity) and (we point out a bit provo
atively) by the a
tual availability of 
ommer
ial-and industrial-strength tools that are well engineered, te
hni
ally and 
ommer
iallysupported, and integrated with the most 
ommon hardware/software platforms.If we fo
us on the most 
on
eptual aspe
ts, we note that the use of states andevents is most useful in the modeling and analysis of rea
tive, embedded, real-timesystems, i.e., those systems that 
losely intera
t with an environment that theyhave to monitor or 
ontrol. The notations supporting modeling and analysis aremost relevant in the highest phases of development: for the purpose of design andimplementation the programming languages have rea
hed a level of abstra
tion andgenerality that makes them adequate and su�
ient.In the phases of user requirements identi�
ation, of design requirements spe
-i�
ation, and of System Requirements Analysis (the a
tivity whereby one wishesto establish that the adopted hypotheses on the environment, 
ombined with theenvisaged solutions, satisfy the user requirements) the 
hosen notation and its style(operational versus des
riptive, oriented towards properties or towards state/trans-itions/events/ a
tions) 
an in�uen
e dramati
ally the 
ost e�e
tiveness of the de-velopment e�ort, and 
an favor or hinder the requirements eli
itation, the 
ommu-ni
ation among developers and between developers and users, the ability to reasonAngelo Gargantini - University of Catania, gargantini�dmi.uni
t.it and Angelo Morzenti -Polite
ni
o di Milano, morzenti�elet.polimi.it and Elvinia Ri
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USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 2on the models and the solutions to prove, at various levels of formality, their 
or-re
tness and adequa
y.In the above des
ribed s
enario (whi
h, we note, is mostly in�uen
ed by method-ologi
al and pragmati
 issues, rather than by stri
tly s
ienti�
 and foundationalones) the requirements of minimality and essentiality of the adopted formal nota-tion (e.g., questions su
h as: 
an I do without events and use only states, or vi
eversa) be
ome mu
h less relevant. In fa
t, one 
an obtain great bene�ts by 
om-bining the notions of state and event, even at the 
ost of some redundan
y, butaiming at produ
ing models and des
riptions that are more 
ompa
t and intuitive.From a pragmati
 point of view, it is also important that the adopted notation andstyle be able to embody some psy
hologi
al or even philosophi
al aspe
ts of thedevelopers' mental habits su
h as: the tenden
y to des
ribe dynami
 systems (andrea
tive systems among these) in terms of 
ause-e�e
t relations; the identi�
ationof 
ertain ne
essary or su�
ient 
onditions/events/states in order for other onesto hold; the great ease, for most people, to reason in visual or geometri
 terms,whi
h favors the adoption of 
ertain 
on
eptual entities that 
an be represented ina graphi
al fashion (noti
e that this 
an o

ur for both states and events, as it willbe illustrated in the following).Hen
e, for what 
on
erns the questions raised by the ST.EVE workshop, ourposition is based on a quite e
le
ti
 and pragmati
 attitude: both the notion ofstate and that of event have virtues and limitations, so that the worst thing to dowould be to reje
t one in favor of the other; the best approa
h, in our opinion, is tomake a 
onstant e�ort to use them in 
ombination, sin
e most likely this will fosterthe emergen
e of new, 
omplementary and synergeti
, points of view and ways ofdes
ribing and reasoning.The dispute among supporters of state-based and event-based models and anal-ysis is somehow reminis
ent of another 
ontention, the one between des
riptivenotations (i.e., logi
-based, best suited for expressing properties and relations) ver-sus operational ones (based on state/transitions and hen
e more oriented towardsdes
ribing a
tions and exe
ution steps of (abstra
t) ma
hines). This 
ontention,like the one between states and events, is best settled by adopting the so-
alleddual-language approa
h, whi
h 
ombines in a synergeti
 way a des
riptive notation(e.g., temporal logi
) and an operational one (e.g., Petri nets), thus over
oming thelimitations and maintaining the advantages of both; we have applied and illustratedthe dual-language approa
h in [6, 7℄Coming ba
k to the main topi
 of the workshop, in the present work we willillustrate our position in favor of the 
ombined use of states and events by presentingsome new developments of our previous work appeared in [8, 9℄, where we usedthe language TRIO (a very general and expressive temporal logi
) to 
hara
terizeaxiomati
ally the various kinds of modeling and spe
i�
ation entities that 
an beemployed in the System Requirements Analysis of rea
tive, time-
riti
al systems.We formalized in terms of TRIO axioms the notions of time point- and time interval-based predi
ates and variables (whi
h have a 
lose 
orresponden
e with events andstates, respe
tively), of (non)Zeno entities, and a quite ri
h variety of time and
ausal (either deterministi
 or not) relationships among these entities. Here wewill provide new elaborations on the use of spe
ial, interval-based, integer-valuedvariables that 
ount the number of event o

urren
es; su
h 
ounter variables turnout to be a quite simple and e�e
tive means to express and to prove time and
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ausal relations and properties that would be quite 
umbersome and intri
ate to
hara
terize in terms of a spe
i�
ation alphabet 
omposed of state-like items onlyor event-like items only.The paper is organized as follows. Se
tion 2 brie�y presents TRIO, events and
ounters and reports the related work. In Se
tion 3 we explain the most basi
 re-lationship between events we model, namely the 
ause-e�e
t relationship betweentwo event with bounded delay. In Se
tion 4 we extend the same approa
h dealingwith non deterministi
 
hoi
e between events (with null delay) and in Se
tion 4we model the most general 
ase with non deterministi
 
hoi
e and non determin-isti
 delay. In Se
tion 6 we dis
uss the advantages using 
ounters providing someexamples. 2. Basi
sTRIO. We will use TRIO [10, 15℄ to express many temporal dependen
ies andrelations. TRIO is a �rst order logi
 augmented with temporal operators thatallow to express properties whose truth value may 
hange over time and to modelvariables whose value 
hanges over time. The meaning of a TRIO formula is notabsolute, but is given with respe
t to a 
urrent time instant whi
h is left impli
it.The basi
 temporal operator is 
alled Dist : for a given formula W, Dist(W, t)means that W is true at a time instant whose distan
e is exa
tly t time units fromthe 
urrent instant, i.e., the instant when the senten
e is 
laimed. Many othertemporal operators 
an be derived from Dist.Futr(F, d) d ≥ 0 ∧ Dist(F, d) futurePast(F, d) d ≥ 0 ∧ Dist(F,−d) pastNowOn(F) ∃d(d > 0 ∧ Lasts(F, d)) F holds for an interval after nowAlw(F) ∀dDist(F, d) F always holdsAlwP(F) ∀d(d > 0→ Past(F, d)) F always held in the pastSom(A) ∃dDist(F, d) Sometimes F held or will holdBesides temporal dependent (TD) predi
ates, TRIO introdu
es temporal depen-dent variables with domain D, as variables whose value 
hanges in D over time. Forinstan
e, TD variables are suitable to model enumerate variables and 
ontinuously
hanging variables, as many physi
al quantities. To refer to values of a variable orterm in the past or in the future, the operator dist (as generalization of Dist) isintrodu
ed: for a given term x, dist(x,t) has the value that x had or will have ata time instant whose distan
e is t from now. From the dist operator, the futr andpast operators are derived, referring to values of variable sin the future and in thepast.Note that in the following, when stating formulas and properties that alwayshold, we omit an outermost Alw: stating su
h properties in a generi
 instant oftime we mean that they hold forever.Events and Counters. In our framework, events are predi
ates that are trueonly in single time instants and have null duration. A more detailed dis
ussionand a rigorous treatment of events and state (or interval) variables 
an be foundin [9℄. Events 
an be distinguished but event o

urren
es of the same event 
annotbe uniquely identi�ed (ex
ept for the time they o

ur) sin
e they do not 
arry



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 4other information, otherwise other axiomatizations are suitable to model temporalrelationships among events [11℄; this point will be 
lear in Se
tion 3. We admitsimultaneous o

urren
es of the same event. We use the notation A, B to indi
ateevents. For events we will use 
ounters: for the event A we 
all #A the 
ounterof the event A. #A in ea
h instant has an integer value indi
ating the number ofo

urren
es of A till the 
urrent instant. Counters are state variables, i.e. theyhold their value for temporal intervals and not just for time points.We assume here that, for any event E, there exists a �rst o

urren
e, i.e., thatthere is an instant before whi
h E never o

urred, a fa
t that is formalized in TRIOas Som(AlwP (¬E)). Therefore, there exists a initial instant when all the 
ountersare null. This hypothesis is quite realisti
 for real-world systems. A less restri
tiveassumption is however adopted in [8℄ in the proof of the theorem 1, showing thatit is immaterial from a mathemati
al viewpoint.For the sake of simpli
ity, we assume event 
ounters being in
remented just afterthe time instant when the 
ounted event happens, i.e. we assume 
ounters to beleft 
ontinuous (for details see [9℄). For this reason, the following axiom holds (x isan integer): B ∧ #B = x → NowOn(#B = x + 1)Related works. There exist several approa
hes that try to 
ombine 
on
epts fromstate based methods with 
on
epts from event based notations. In Chapter 18 of [5℄the authors dis
uss how to integrate Z and Obje
t-Z with pro
ess algebrai
 methodslike CSP and CCS. In [3℄ some abstra
t 
on
epts of pro
ess algebra and fromASMs are integrated into Abstra
t State Pro
esses (ASPs), i.e. evolving pro
esses(extended ASM programs whi
h are stru
tured and evolve like pro
ess-algebrai
behavior expressions) operating on evolving abstra
t states the way traditionalASM rules do. This paper ta
kle a more parti
ular 
on
ept but in a general way.The idea of using 
ounters to model relations between events was already pre-sented in [4℄. [4℄ de�nes events like fun
tions from N to time: for the event e,e(i) is the time of the i-th o

urren
e of the event e. It de�nes also 
ounters ofevents. In that paper 
onstru
ts to express pre
eden
e (that is an event or a set ofevents must pre
ede or follow another event) between two events (or an event and aset of events) are presented and these 
onstru
ts use 
ounters. Also [16℄ introdu
ethe 
ounter #e for ea
h event e. An example is provided where 
ounters are usedto spe
ify properties of the system, in a similar fashion proposed by our method,but no formal framework is given. Indeed, 
ounters are dire
tly used to spe
ifysystem requirements (like, for instan
e, �the number of missiles �red is no morethan the number of targets lo
ated so far�). The generi
 requirement that a 
er-tain event must follow (or pre
ede) another 
an be enri
hed spe
ifying a boundeddelay between su
h events or requiring that an event 
an 
ause another event nondeterministi
ally 
hosen among a set of possible e�e
ts. This kind of requirementis widely (also informally) used. Furthermore it is expli
itly modeled (somehowembedded within the language itself) in Timed Petri Net (TPN) [13℄ and in MMTtimed Automata [14℄. We shown how the use of 
ounters 
an be extended to spe
ifythis relation in a very simple and e�e
tive way.3. Cause-Effe
t Relationship Between Two Events with NonDeterministi
 DelayThe �rst relationship we ta
kle in this paper is the relationship involving onlytwo events: an event A 
auses another event B, in a future time that is not known
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isely, due to some nondeterminism of the system. Typi
ally, the delay betweenA and B is 
hara
terized by means of a lower bound and an upper bound denotingthe minimal and maximal time distan
e between related o

urren
es of the twoevents. The relation is therefore nondeterministi
, being the exa
t instant in thefuture, when B will o

ur after A, unknown. Moreover, we assume that the relationis one-to-one (for instan
e be
ause A is the unique 
ause of B : every o

urren
eof A 
auses one B and every o

urren
e of B is 
aused by one o

urren
e of A).An example of this kind in a 
on
urrent systems 
ould be the relation between theevent of taking a resour
e and that of returning it.The preliminary following formal de�nition of this kind of relation follows.De�nition 1. An event A is a unique 
ause for an event B in [d,D℄ time units,where d and D are positive real 
onstants su
h that d ≤ D, i� there exists a one-to-one fun
tion φ from the o

urren
e times of A to those of B su
h that t + d ≤

φ(t) ≤ t + DThis de�nition, originally presented in [9℄, is not suitable to model events that
an o

ur several times in the same time instant. Indeed, if the event A o

urs atthe time instant t two times, a fun
tion φ would not su�
e to express the relationbetween o

urren
es of A and o

urren
e of B, sin
e the two B events related withthe two o

urren
es of A 
ould o

ur in distin
t time instants, while φ(t) has anunique value. To 
orre
tly model the relationship, we have to extend the de�nitionof the fun
tion φ, su
h that φ 
ounts the simultaneous o

urren
es of the sameevent.De�nition 2. An event A is a unique 
ause for an event B in [d,D℄ time units,where d and D are positive real 
onstants su
h that d ≤ D, i� there exists a one-to-one fun
tion φ from Time × N to Time × N su
h that φ(tA, iA) = tB, iB i� Ahappens at least iA times at the time instant tA and B happens at least iB times atthe time instant tB , and tA + d ≤ tB ≤ tA + DThe fun
tion φ relates the iA-th o

urren
e of A at the time instant tA with the
iB-th o

urren
e of B at the time instant tB.Note that the fa
t that event o

urren
es are indistinguishable (ex
ept for thetime they o

ur) makes the fun
tion generally non unique. For example if A isunique 
ause of B, d = 8, and D = 14, A o

urs at time 0 and 3 and B o

urs attime 9 and 14, we 
ould have to possible fun
tions φ1 and φ2 as depi
ted in thefollowing �gure.

AA

0 3 9 14

B

time

B

2

1

The same observation 
an be extended to the 
ase of simultaneous o

urren
es.With simultaneous o

urren
es, the fun
tion φ always admits multiple solutions,
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e we 
annot distinguish two simultaneous o

urren
es of the same event. This
ase is depi
ted in the following �gure, where event A happens two times at 3 andea
h o

urren
e 
an be related with B at time 9 or with B at time 14.
3 9 14

BB

time

A

A

2

1

This kind of relationship (together with the extensions we present in the followingse
tions) is widely used and in several formalisms it is the only temporal relationshipbetween events: see for instan
e timed Automata in [2, 14℄ and Timed Petri Net(TPN) in [13℄. In TPN, it is pi
tured as follows (through the paper we often useTPNs to graphi
ally represent the relationship we intend to deal with). We willdesignate events also using name of transitions in TPNs, with lower 
ase letters likes, r, t, ...
[d,D]

s
tDe�nition 2 formally states the relationship between events we deal with (andit guarantees to avoid misunderstandings), yet it is apparent that it 
an be barelyuseful during analysis or synthesis of real systems. To be useful, the de�nition
an be formulated using TRIO axioms as reported in [9℄. However, note that thatsimple and natural formalizations using only temporal formulas (that is not usingpredi
ates) are 
ompletely wrong (as shown by [8℄). Corre
t solutions using severaladditional predi
ates 
an be found in [7℄ and in [12℄.In the following we demonstrate that the proposed approa
h using 
ounters is
orre
t, simpler and more useful.3.1. Formalizing De�nition 2 Using Event Counters. We now introdu
e away to bind events A and B using the 
ounters of their o

urren
es, respe
tivelydenoted as #A and #B.By means of a loose and informal reasoning we �rst �nd a suitable relationmodeling the 
ause-e�e
t binding.First of all, noti
e that, for any event E, at any time the number of o

urren
esof E in the interval at distan
e [d1,d2) (i.e., the interval starting d1 time units inthe future and ending d2 time units in the future 1) is equal to the total numberof events o

urred before the end of the interval minus the total number of eventso

urred before the beginning of the interval: this di�eren
e 
an be is denoted as

dist(#E, d2) − dist(#E, d1).1The right end of the interval is not in
luded be
ause 
ounters are assumed to be left 
ontinuous.
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on
ept we would like to express is: if in a interval [d1,d2) in the futurethere are x o

urren
es of event A, then in a interval [d1+d,d2+D) there are atleast x o

urren
es of B:
dist(#A, d2) − dist(#A, d1) ≤ dist(#B, d2 + D) − dist(#B, d1 + d) (1)Vi
e versa if in an interval [d1,d2) the future there are x o

urren
es of B, thenin a interval [d1-D,d2-d) there are at least x o

urren
es of A:
dist(#B, d2) − dist(#B, d1) ≤ dist(#A, d2 − d) − dist(#A, d1 − D) (2)We would like to derive, from (1) and (2), a simpler, unique, and equivalentrelation. First we 
an rewrite (1) with d1= d1-d and d2= d2-D:
dist(#A, d2 − D) − dist(#A, d1 − d) ≤ dist(#B, d2) − dist(#B, d1) (3)From (2) and (3) we �nd a unique relation:
dist(#A, d2 − D) − dist(#A, d1 − d) ≤ dist(#B, d2) − dist(#B, d1)

≤ dist(#A, d2 − d) − dist(#A, d1 − D) (4)Taking some li
ense in notation, we 
hoose d1=−∞2 and d2= 0:
dist(#A,−D) − dist(#A,−∞− d) ≤ #B − dist(#B,−∞)

≤ dist(#A,−d) − dist(#A,−∞− D)Sin
e dist(#A,−∞ − d) = dist(#B,−∞) = dist(#A,−∞-D) = 0 we �nallyobtain:
dist(#A,−D) ≤ #B ≤ dist(#A,−d) (5)We have found a relation between 
ounters (formalized as a TRIO axiom) suit-able to model the relation given in de�nition 2. This fa
t is stated in the followingtheorem.Theorem 1. Event A is a unique 
ause of event B in [d,D℄ time i�:

past(#A, D) ≤ #B ≤ past(#A, d)The preliminary version of the proof of this theorem 
an be found in [8℄.Intuitively, if the relation of De�nition 2 holds, when event A o

urs, 
ausing anin
rement in 
ounter #A, then 
ounter #B is also bound to in
rease; however, dueto the assumed delay ranging between d and D, 
ounter #B will in
rease no earlierthan d time units after the in
rease of #A, hen
e the inequality #B≤past(#A,d)holds; moreover, and symmetri
ally, #B will in
rease no later than D time unitsafter #A, hen
e #B≥past(#A,D) holds.Theorem 1 expresses the 
on
ept stated in De�nition 2 with very simple relationsbetween event 
ounters. Thanks to their simpli
ity (they are just linear inequalities)these relation 
an be used very easily and e�e
tively in the derivation of relevantproperties as shown by the following 
orollary.Corollary 1. B → ∃t(d ≤ t ≤ D ∧ Past(A, t))2By 
hoosing d1=−∞ we 
onsider an instant in the past su
h that neither predi
ate A norBever o

urred before that time, and therefore their 
ounters are both zero; su
h an instant exists,thanks to our previously mentioned assumption that Som(AlwP(¬A)) and Som(AlwP(¬B)).
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urs, its 
ounter in
reases by one (
ounter are left 
ontinuous):
B → ∃x(#B = x ∧NowOn(#B = x + 1))applying the relation between 
ounters:
B → ∃x(#B = x ∧ Past(#A ≤ x, D)∧ NowOn(#B=x+1∧Past( x+1≤ #A,d)))be
ause of NowOn(A ∧ B) ↔ NowOn(A) ∧ NowOn(B):
B → ∃x(Past(#A≤ x, D)∧ NowOn(Past( x+1≤ #A,d)))thanks to the equality NowOn(Past(A,t))=Past(NowOn(A),t)
B →∃x(Past(#A≤ x, D)∧ Past(NowOn(x+1≤#A),d)))From this , it 
an be proved that there is an o

urren
e of A:
B → ∃t(Past(A, t) ∧ d ≤ t ≤ D) �Parti
ular 
ases and generalizations. The model 
an be both generalized andapplied to parti
ular 
ases. For instan
e, if the minimum delay d is zero (event B
an follow immediately event A) the relation be
omes: past(#A,D) ≤ #B ≤ #A.If the delay has no upper bound, then D = ∞ and the relation redu
es to: #B

≤ past(#A,d).A further, interesting generalization of the one-to-one relation introdu
ed inDe�nition 2 is to allow a negative minimum time d. In this most general 
aseone would not model a �
ause-e�e
t� relation, but a 
orresponden
e between evento

urren
es that are somehow related, for instan
e be
ause they are both e�e
tof a 
ommon (unique) 
ause. Theorem 1 
an be generalized in a straightforwardway to this 
ase by just 
hanging the past operators (whi
h assume a positive timeargument and ne
essarily refer to previous instants) into dist operators (whi
hequally admit a positive, null, or negative time argument, thus referring to bothpast, present and future), obtaining the following relation
dist(#B, d) ≤ #A ≤ dist(#B, D)whi
h holds under the unique assumption that d ≤ D.As a 
on
rete example, let us 
onsider an ele
troni
 trading system where anorder for some goods performed by a 
lient gives rise subsequently, through inde-pendent 
hains of a
tions, to the physi
al delivery at the 
lient's address of thepar
el 
ontaining the ordered item, and to the billing of the pri
e on the 
lient'sbank a

ount. An important property of the trading system 
ould be that there is aone-to-one mat
hing between goods delivery and bank a

ount transa
tions. Thesetwo events are 
learly related, but there might be no stri
t temporal pre
eden
ebetween them. If we model goods delivery by the event predi
ate GD and banka

ount transa
tions by event predi
ate BAT, then we 
an abstra
tly spe
ify thatea
h o

urren
e of GD may at most pre
ede the 
orresponding o

urren
e of BATby 3 days, or at most follow it by 4 days, using the following inequalities

dist(#GD,−3) ≤ #BAT ≤ dist(#GD, 4)Example 1. In the Generalized Rail Cross (GRC) 
ase study (see [9℄) a one-to-one temporal relationship obviously exists between the entering of trains in thevarious regions surrounding the 
rossing. The system is nondeterministi
 due tothe un
ertainty about the trains speed, whi
h may vary between minimum andmaximum allowed values.The informal spe
i�
ation asserts that the trains take a minimum time dm and amaximum time dM to go from the beginning of region R to the beginning of region
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0

past(#RI,15)#IIpast(#RI,5)#RI

time

  2

  1

IIIIRIRI

1493

Figure 1. . Models for axiomatizations based on spe
ial predi-
ates or on 
ounters.R; it takes a minimum time hm and a maximum time hM to go from the beginningof region I to its end.These relations are formalized by the following inequalities between 
ounters ofevent o

urren
es (re
all that RI, II, and IO are de�ned, respe
tively, as the eventsof a train entering region R, entering region I, and exiting region I, and that theyare multiple events).
past(#RI, dM ) ≤ #II ≤ past(#RI, dm)

past(#II, hM ) ≤ #IO ≤ past(#II, hm)

♦Model for Fun
tion φand Counters. Note that the relation between 
ountersdoes not establish the exa
t mapping between the various o

urren
es of the 
auseand e�e
t events. It de�nes just the values of the 
ounters as events o

ur in time,without providing any information about the �physi
al� mat
hing between evento

urren
es. Of 
ourse, the simpler but slightly less informative des
ription interms of 
ounters su�
es in the 
ases where the exa
t mat
hing between the evento

urren
es is immaterial with respe
t to the desired system properties.As an illustration of this, 
onsider again the GRC example, with a plant where
dm =5 and dM =15. Suppose there are two o

urren
es of RI at times 0 and 3(i.e., a train enters region R at time 0 and a se
ond train enters at time 3), and twoo

urren
es of event II at times 9 and 14 (i.e., a train enters region I at time 9 andanother one at time 14). From a physi
al viewpoint there are two interpretationsof this event sequen
es: either the trains enter in region I in the same order as theyentered in region R, or the train that entered region R last passes the �rst one, andenters region I before it.Correspondingly, there are two models (i.e. two possible φ fun
tions) with theseevent o

urren
es: in ea
h model the relation shows whi
h event of the kind �en-tran
e in region I� 
orresponds to ea
h event of the kind �entran
e in region R�, asshown in Figure 1. When we use event 
ounters, instead, we model the fa
t that�sensors do not re
ognize trains�, so that there is just one possible model, shownin Figure 1, a

ounting for the total number, up to any given time, of o

urren
es
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BAT BATGDGD

0 2 4 5

#GD

time

dist(#GD,4)dist(#GD,−3) #BAT

2

1

Figure 2. BAT and GDof events of kind �entran
e in region R� and �entran
e in region I�. Noti
e, how-ever, that the se
ond, less pre
ise des
ription is perfe
tly adequate to the purposeof governing the Railway Crossing: the safety system does not need to �re
ognizetrains�: it 
an limit itself to 
ounting them.As an example where the exa
t mat
hing between event o

urren
es 
an be rele-vant to the desired system properties, 
onsider again the above des
ribed ele
troni
trading system, with a sample �history�, shown in Figure 2, where two bank a

ounttransa
tions take pla
e at time 0 and 5, and goods delivery o

ur at time 2 and 4.Figure 2 shows that there is only one model based on 
ounters #GD and #BAT,and there are two models based on the fun
tion φ.(Noti
e that the spe
i�
ation of the ele
troni
 trading system 
an be furtherenri
hed by asso
iating to every goods delivery and bank a

ount transa
tion thedes
ription of the a
quired item; in this 
ase it 
an be easily veri�ed that the numberof 
andidate models in
reases, and a few additional simple axioms are needed tostate the property that related BAT and GD o

urren
es must refer to the samea
quired item.)4. Non Deterministi
 Choi
e Between Immediate Effe
tsThe use of 
ounters 
an be extended to deal with non deterministi
 
hoi
e be-tween two or more events that are immediate (i.e. with no delay) e�e
ts of anunique event 
ause. Let an event A be immediate 
ause of two 
on
urrent eventsB1 and B2.De�nition 3. An event A is the unique immediate 
ause of two 
on
urrent eventsB1 and B2 i� there exists a one-to-one fun
tion φ from Time × N to Time × N ×{B1,B2} su
h that φ(tA, iA) = tA, ie, e i� A happens at least iA times at the timeinstant tA and the event e happens at least ie times at the time instant tAIn this 
ase the fun
tion φ relates ea
h o

urren
e of A with one o

urren
e of
B1 or one o

urren
e of B2. This situation 
an modeled by the simple Petri Netshown in Figure 3.Using 
ounters, we 
an immediately express the temporal relationship amongevents s, t1 and t2 as follows.
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t1 [0,0]

t2 [0,0]

s

Figure 3. Non deterministi
 
hoi
e between two eventsTheorem 2. An event s is the unique immediate 
ause of two 
on
urrent events
t1 and t2 i�

#t1 + #t2 = #sWhen s �res on
e, it in
reases its 
ounter by one, and one and only one 
ounter
#t1 or #t2 is bound to in
rease, i.e. one transition between t1 and t2 must �re.The 
hoi
e between t1 and t2 is not deterministi
. If s �res more than on
e, t1and t2must �re su
h that the sum of their �rings is equal to the number of �ringsof transition s. In 
ase of simultaneous �rings of s, this equation admits manysolutions, and, therefore, it is (as expe
ted) not deterministi
.Starting from the equation above, we 
an prove many useful relations betweenthe number of �rings of t1 and the number of �ring of t2. For example, it isimmediate proving that if t1 never �res, whenever s �res, t2 must �re and that, inthis 
ase, the number of �rings of s and t2 is equal. Indeed if t1 never �res, then
#t1 = 0, and #t2 = #s. If s �res, its 
ounter in
reases and the 
ounter of t2 isbound to in
rease and the two 
ounters will always hold the same value.5. Non Deterministi
 Temporal Choi
e Between Multiple Effe
tsIn this se
tion, we want to model, using 
ounters, the 
omplex 
ase when anevent A is 
ause of one event among a possible set of events with a delay that isnot �xed. In this 
ase the non determinism regards both the delay (as in Se
tion3) and the 
hoi
e between two or more e�e
ts (as in Se
tion 4).First, we try to model this kind of relationship by means of a fun
tion. Let anevent A be 
ause of two 
on
urrent events B1 and B2 with bounded delay. We 
anintrodu
e the following de�nition.De�nition 4. An event A is an unique 
ause of two 
on
urrent events B1 and B2in, respe
tively, [dB1

, DB1
] and [dB2

, DB2
] time units i� there exists a one-to-onefun
tion φ from Time × N to Time × N × {B1, B2} su
h that φ(tA, iA) = te, ie, ei� A happens at least iA times at the time instant tA and the event e happens atleast ie times at the time instant te and tA + de ≤ te ≤ tA + DeThis situation 
an be modeled by the simple Timed Petri Net shown in Figure 4(a). We assume that there is real 
on�i
t between the two transitions, i.e. l1 ≤ u2and l2 ≤ u1.To model this 
ase using 
ounters, we 
an transform the TPN shown in Fig-ure 4 (a) to the equivalent TPN shown in Figure 4 (b). Now we 
an model thisnew equivalent TPN by means of the following relations between event 
ounters,exploiting Theorems 1 and 2:(1) #r1 + #r2 = #s



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 12
s

t2 [l2,u2]

t1 [l1,u1]

s

r2

r1 t1 [l1,u1]

t2 [l2,u2](a) (b)Figure 4. Non deterministi
 temporal 
hoi
e between multiple e�e
ts(2) past(#r1, u1) ≤ #t1 ≤ past(#r1, l1)(3) past(#r2, u2) ≤ #t2 ≤ past(#r2, l2)Now we want to translate the relation above in equivalent relations but withoutthe �
titious events r1and r2. Sin
e relations (2) and (3) above are always true, we
an temporally translate them by l1, u1,l2, u2, to obtain the following 4 relations:(2') #r1 ≤ futr(#t1, u1) and (2�) futr(#t1, l1) ≤ #r1(3') #r2 ≤ futr(#t2, u2) and (3�) futr(#t2, l2) ≤ #r2Combining (2'), (2�), (3') and (3�), we obtain the following 4 relations withoutany referen
e to r1and r2(1) futr(#t1, u1) ≥ #s − #r2 ≥ #s − futr(#t2, u2)(2) futr(#t1, l1) ≤ #s − #r2 ≤ #s − futr(#t2, l2)(3) futr(#t2, u2) ≥ #s − futr(#t1, u1)(4) futr(#t2, l2) ≤ #s − futr(#t1, l1)The intuitive meaning of su
h relations is that if s �res, then its 
ounter is in-
reased and t1 must �re in a time instant in the future between l1(equation 2) and
u2(equation 1), unless a �ring of t2 has 
onsumed already the �ring of s (the minussign in 1 and 2). Note that (1) is equivalent to (3) and (2) is equivalent to (4). We
an now formulate the following theorem.Theorem 3. An event s is an unique 
ause of two 
on
urrent events t1 and t2 in,respe
tively, [l1, u1] and [l2, u2] time units i�

futr(#t1, l1) + futr(#t2, l2) ≤ #s ≤ futr(#t1, u1) + futr(#t2, u2)The meaning of this theorem is that the number of �rings of t1 and t2 after(before) the two upperbounds (lowerbounds) have elapsed must be greater (smaller)than the number of �rings of s.Example 2. Thanks to the relations above, we 
an prove some interesting prop-erties. For example we 
an prove that if t2 never �res, then t1 �res as many timesas s. If we assume that initially the 
ounter of t2 is equal to 0 (without loss of gen-erality), then #t2 = 0 is always true. The relations be
ome: futr(#t1, u1) ≥ #sand futr(#t1, l1) ≤ #s, i.e. t1 is unique e�e
t of s in [l1, u1] time units.Example 3. An ordering and delivering system is spe
i�ed as follows. When agood (whose identity is not important) is ordered, then it 
an be shipped using thenormal postal servi
e in 0 to 5 days. If the item is not shipped after 3 days, then
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GO PDGO ED

futr(#ED,3)

futr(#PD,5)

#GOfutr(#ED,7)+futr(#PD,5)

futr(#ED,7)

futr(#ED,3)+#PD

#PD

time0 2 4 6

Figure 5. A s
enario for the ordering-delivering systemthe shipping department 
an use an express 
urrier, that, in any 
ase, must deliverthe ordered good in 7 days from the date of the order. The event of ordering agood GO is the unique 
ause of two 
on
urrent events PD (postal delivery) andED (express delivery).
PD [0,5]

ED [3,7]

GO

Applying Theorem 3 we obtain:
futr(#PD, 5) + futr(#ED, 7) ≥ #GO and #PD + futr(#ED, 3) ≤ #GOFigure 5 depi
ts a s
enario where an item is ordered at time 0 and another oneat time 2, and an item is delivered by postal servi
e at time 4 and another itemis delivered at time 6. You 
an see that the exa
t mapping between orders anddelivering events is not modeled, and GO 
ould happens in all the gray area.5.1. Generalization to multiple 
auses. The proposed framework 
an be easilyextended to deal with the 
ase of multiple 
auses (s1, s2, s3, ...). This 
ase isdepi
ted in the following TPN. To model this, one must substitute in the relationpresented before, the 
ounter of s, #s, with the sum of the 
ounters #s1, #s2, ...

s1

s2

s36. Advantages of Using CountersWe argue that 
ounters and the proposed relations among them 
onstitute aviable means for proving properties of systems and for implementing su
h relations
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tions φ and their properties as pro-posed in de�nitions 2, 3, and4 (as well as predi
ates introdu
ed in [12℄), are di�
ultto handle, espe
ially in performing proofs and in implementing them by means ofreal programming language. It is intuitive that 
ounters, temporal translation ofthem, and linear inequalities between them are more manageable. In this Se
tionwe provide eviden
e of this fa
t by means of some examples.Example 4. Consider the following example, where an event s 
auses an event twith temporal bounds lt and ut, and t 
auses an event r with temporal bounds lrand ur

r [lr,ur]t [lt,ut]sThe proof that s 
auses an event r with temporal bounds lt + lr and ut + ur isimmediate. From the relations for 
ounter #t and #r
past(#s, lt) ≤ #t ≤ past(#s, ut)

past(#t, lr) ≤ #r ≤ past(#t, ur)we 
an derive the following relation:
past(#s, lt + lr) ≤ #r ≤ past(#s, ut + ur)Example 5. For the ordering-delivering system presented in Example 3, we wantto prove that all the ordered items are shipped after 7 time units:

#PD + #ED ≥ past(#GO, 7)Proof. Exploiting theorem 3, translating of 7 time units in the past, we 
an statethat #ED + past(#PD, 2) ≥ past(#GO, 7). Thanks to the 
ounter property stat-ing that a 
ounter 
an only in
rease, we 
an assert that #PD ≥ past(#PD, 2).Combining the two relations, we 
an prove the property above. �Example 6. The te
hnique presented in this paper 
an be applied to prove re�ne-ment rules for TPNs. A method based on temporal logi
 for proving that a TPNis a 
orre
t implementation of another TPN (spe
i�
ation) and a set of 
orre
tre�nement rules are presented in [6℄. Using 
ounters the same proofs 
an be moreeasily 
ondu
ted and understood.For example, in Figure 6 we show a simple TPN and a re�nement of its, that wewant to prove to be 
orre
t, i.e. we want to prove that the re�nement preserves the
ause e�e
t relationship between s and t, i.e. the following relation between �ringsof transitions t' and s' holds:Theorem 4. dist(#t′, d) ≤ #s′ ≤ dist(#t′, D)Proof. For the re�ned TPN, we 
an write (see Se
tion 5.1):(1) dist(#t′, d2) ≤ #r1 + #r2 ≤ dist(#t′, D2)For r1 and r2 , exploiting theorem 3, we 
an write:
futr(#r1, D1) + futr(#r2, D1) ≥ #s′ and futr(#r1, d1) + futr(#r2, d1) ≤ #s′
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[d,D]

s
t [d1,D1]

[d1,D1]
[d2,D2]

t’
s’

r1

r2d1+d2=d and D1+D2=DFigure 6. A TPN and its re�nementThis 
an be rewritten:(2) dist(#r1 + #r2, d1) ≤ #s′ ≤ dist(#r1 + #r2, D1)Translating (1) by D1 and d1, we obtain(3)
dist(#r1+#r2, D1) ≤ dist(#t′, D1+D2) , and dist(#t′, d2+d1) ≤ dist(#r1+#r2, d2+d1)Combining (2) and (3), we have proved Theorem 4 that t' is unique e�e
t of s'in [d1 + d2, D1 + D2] �Furthermore, spe
i�
ations based on 
ounters are readily implementable, sin
e
ounters are trivially 
omputable by means of in
rements of integer-valued programvariables.The translation of temporal relationships in terms of state variables as 
ounters
an be of great advantage during the implementation phase. Indeed, events states,
ounters, and temporal translation 
an be immediately implemented in terms ofsimple hardware devi
es or software fragments so that the detailed design, dimen-sioning, and implementation of monitoring and 
ontrolling systems 
an be madequite systemati
 and intuitive using prede�ned, parametri
 
omponents. For a re-ally toy example, 
onsider the following, where a program written in the syntax ofLEGO r© Mindstorms r© Quite C [1℄ like 
he
ks whether A is unique 
ause of B in[5,7℄ time units.#define N 100
lo
k 
lo
kAB[N℄;int 
ountA, 
ountB;while (1) { // foreverif A // if A, reset the 
ountA-th 
lo
k and 
ount A
lo
kAB[
ountA++ % N℄.reset;if B {// if B, take the 
ountB-th 
lo
k and 
ount B
he
k = 
lo
kAB[
ountB++ % N℄// 
he
k the delay is boundif !( 5 <= 
he
k && 
he
k <=7) then ERROR}}
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lusive alternatives, but are best exploited in an integrated usage to fa
ilitatemodeling and analysis of rea
tive, embedded time 
riti
al systems. As an illus-tration of this point we have dis
ussed temporal logi
 axiomatizations for events,state-like 
ounter variables, and relations among them. By means of examples de-rived from 
ase studies, we have shown that events and 
ounters 
an be the basis fore�e
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