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6.1 Overview of the ASM

The Abstract State Machine(ASM) method is a systems engineering method that
guides the development of software and embedded hardware-software systems seam-
lessly from requirements capture to their implementation.Within a single precise yet
simple conceptual framework, the ASM method supports and uniformly integrates the
major software life cycle activities of the development of complex software systems.
The process ofrequirements captureresults into constructing rigorousground models
which are precise but concise high-level system blueprints(“system contracts”), for-
mulated in domain-specific terms, using an application-oriented language which can
be understood by all stakeholders. From the ground model, bypiecemeal, systemat-
ically documented detailing of abstract models via stepwise refined models to code,
the architectural and component designis obtained in a way which bridges the gap
between specification and code. The resultingdocumentationmaps the structure of
the blueprint to compilable code, providing explicit descriptions of the software struc-
ture and of the major design decisions, besides a road map forsystem(re-)useand
maintenance.

On the basis of a systematic separation of different concerns (e.g. design from
analysis, orthogonal design decisions, multiple levels ofdefinitional or proof de-
tail, etc.), the ASM method allows a nowadays widely-requestedmodeling technique
which integrates dynamic (operational) and static (declarative) descriptions, and an
analysis techniquethat combinesvalidation (by simulation and testing) andverifica-
tion methods at any desired level of detail.

Even if the ASM method comes with a rigorous scientific foundation [BÖR 03],
the practitioner needs no special training to use the ASM method since Abstract State
Machines are a simple extension of Finite State Machines, obtained by replacing
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unstructured “internal” control states by states comprising arbitrarily complex data
[BÖR 05], and can be understood correctly as pseudo-code or Virtual Machines work-
ing over abstract data structures. Control state ASMs, a basic class of Abstract State
Machines, inherit from FSMs their standard graphical notation (see [B̈OR 03, Figure
7.1]). Similarly, UML activity diagrams pass to their ASM models their graphical
notation (see [B̈OR 03, Figure 6.18, 6.19]), as do SDL programs or Petri nets totheir
ASM models.

A complete introduction on the ASM method can be found in [BÖR 03], together
with a presentation of the great variety of its successful applications in different fields
as: definition of industrial standards for programming and modeling languages, de-
sign and re-engineering of industrial control systems, modeling e-commerce and web
services, design and analysis of protocols, architecturaldesign, language design, ver-
ification of compilation schemes and compiler back-ends, etc.

6.2 Requirements capture and specification of case 1

We formulate seven categories of questions to be used as guidelines for the spec-
ification task leading from loosely formulated requirements to accurate, application-
domain-oriented ground models. The questions are promptedby the application of the
ASM method to the case 1 of the invoicing order system, although similar questions
should be posed when using the ASM method for requirements capture and specifica-
tion of other systems. Answers are preceded by explanationsof some relevant ASM
concepts.

6.2.1 Identifying the agents

An ASM can be intuitively viewed as pseudo-code or Virtual Machine program work-
ing on abstract data. The notion of ASMs moved from a definition which formalises
simultaneous parallel actions of a single agent, either in an atomic way (Basic ASMs)
or in a structured and recursive way (Turbo ASMs), to a generalisation where multiple
agents interact in a synchronous/asynchronous manner1 (Synchronous/Asynchronous
Multi-Agent ASMs). The context in which an agent machine computes is represented
by an external agent calledenvironment.

Question 1: Who are the systemagentsand what are their relations? In particular,
what is the relation between the system and its environment?

Answer: R1 says that “the subject is to invoice orders”. This leads us todefine the
invoicing ordersspecification in terms of a single-agent machine which may
dispose of potentially unrestricted non-determinism and parallelism (appearing
in the form of the “choose” and “forall” rules defined below) with flat programs
(Basic ASM) or structured versions (Turbo ASM).

1For details and references on the treatment ofconcurrencyin the ASM framework and on concurrent
ASMs modeling threads in Java/C#, Petri nets, SDL, UML activity diagrams and state machines, etc., see
[BÖR 03, Chapter 6].
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6.2.2 Identifying the states

An ASM statemodels a machine state, i.e. the collection of elements and objects
the machine “knows”, and the functions and predicates it uses to manipulate them.
Mathematically, astateis defined as an algebraic structure, where data come as ab-
stract objects, i.e. as elements of sets (also calleddomainsor universes, one for each
category of data) which are equipped with basic operations (partial functions) and
predicates(attributes or relations).

For the evaluation of terms and formulas in an ASM state, the standard interpreta-
tion of function symbols by the corresponding functions in that state is used. Without
loss of generality we usually treat predicates as characteristic functions and constants
as 0-ary functions. Partial functions are turned into totalfunctions by interpreting
f(x) = undef with a fixed special valueundef asf(x) being undefined. The reader
who is not familiar with this notion of structure may view a state as a “database of
functions” (namely a set of function tables).

Question 2: What are the system states? What are the domains of objects and what
are the functions, predicates and relations defined on them?This question is
stressed by the object-oriented approach to system design2.

Answer: By R1 there is a setOrders and byR2 there is a functionorderState which
yields the state of each order, which can beinvoicedor pending. By R3 there
are two functions,referencedProduct3 representing the product referenced in an
order andorderQuantity, which returns the quantity in the order and which, by
R4,is not injective, not constant. ByR3we need a setQuantity (subset ofNatu-
ral) to denote the quantity values, while byR5there is a functionstockQuantity
which represents the quantity of products in stock.

6.2.3 Identifying static and dynamic parts of the states

In support of the principles of separation of concerns, information hiding, data abstrac-
tion, modularisation and stepwise refinement, the ASM method makes a systematic
distinction betweenbasicfunctions which are taken for granted (typically those form-
ing the basic signature of an ASM) andderivedfunctions (auxiliary functions coming
with a specification or computation mechanism given in termsof basic functions),
together with a classification of basic functions intostatic anddynamicones and of
the dynamic ones intomonitored(only read),controlled(read and write),sharedand
output(only write) functions. This functions classification reflects the different roles
these functions can assume in a given machine.Staticfunctions never change during

2For details on object-oriented ASMs, their theory (developed mainly in the work by Zamulin), their use
for modeling object-oriented databases and languages, e.g. C++, Java, C#, SDL, and their incorporation
into the language AsmL of .NET-executable ASMs, see [BÖR 03, Chapter 9].

3To allow an order to reference to several products, we shouldintroduce a single functionreferenced-
ProductQuantity: Orders × Products -> Quantity, which yields the quantity of products in an order (undef in
case a product is not referenced in a given order).
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any run of the machine so that their values for given arguments do not depend on the
states of the machine;dynamicfunctions may change as a consequence of agent ac-
tions (orupdates, see definition below) or by theenvironment, so that their values may
depend on the states of the machine. By definition static functions can be thought of
as given by the initial state, so that, where appropriate, handling them can be clearly
separated from the description of the system dynamics. Whether the meaning of these
functions is determined by a mere signature description, byaxiomatic constraints,
by an abstract specification or by an explicit or recursive definition depends on the
degree of information-hiding the specifier wants to realize. Static0-ary functions rep-
resentconstants, whereas with dynamic0-ary functions one can modelvariablesof
programming (not to be confused with logical variables).Controlledfunctions are dy-
namic functions which are directly updatable by and only by the machine instructions
(known astransition rules: see below). Therefore, these functions are the ones which
constitute the internally controlled part of the dynamic state of the machine; they are
not updatable by the environment (or more generally by another agent in the case of a
multi-agent machine).Monitoredfunctions are dynamic functions which are read but
not updated by a machine and directly updatable only by the environment (or more
generally by other agents). These monitored functions constitute the externally con-
trolled part of a machine state. As with static functions, the specification of monitored
functions is open to any appropriate method. The only (but crucial) assumption made
is that in a given state the values of all monitored functionsare determined. Combina-
tions of internal and external control are captured by interaction orsharedfunctions
that can be read and are directly updatable by more than one machine (so that typi-
cally a protocol is needed to guarantee consistency of updates).Outputfunctions are
updated but not read by a machine and are typically monitoredby other machines or
by the environment.

Question 3: What are the static and the dynamic parts of states? Who can update the
dynamic functions?

Answer: By R6a the setOrders is static. ByR2 andR5 the functionorderState is
dynamic and controlled by the system. ByR3andR6areferencedProduct and
orderQuantity are both static. ByR6athe functionstockQuantity is dynamic –
a static interpretation is not reasonable – but it is unclearif the function is up-
dated by the environment or by the system or by both of them (shared function).
We make theassumptionthat the stock is only updated by the system when it
invoices an order. The set of products and of quantities are assumed to be static.
For writing down ASMs we use the AsmM language [ASMM] which has been
derived from a metamodel of the ASMs and is endowed with a BNF grammar
[SCA 05] and a syntax checker.

asm orderSystemCase1
signature:

static abstract domain Orders
enum domain OrderStatus = { INVOICED | PENDING }
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static abstract domain Products
static domain Quantity subsetof Natural
static referencedProduct: Orders -> Products
dynamic controlled orderState: Orders -> OrderStatus
static orderQuantity: Orders -> Quantity
dynamic controlled stockQuantity: Product -> Quantity

6.2.4 Identifying the transitions

Basic ASMs are finite sets of so-calledtransition rulesof the form:

if Conditionthen Updates

which model the actions performed by the machine to manipulate elements of its
domains and which result in a new state. TheCondition (also calledguard) under
which a rule is applied is an arbitrary predicate logic formula without free variables,
whose interpretation evaluates to true or false.Updatesis a finite set of assignments
of the formf(t1, t2, . . . , tn) := t, whose execution is to be understood as changing
(or defining, if there was none) in parallel the value of the occurring functionsf at
the indicated arguments to the indicated value. More precisely, in the given state,
first all parametersti, t are evaluated to their values, sayvi, v, then the value of
f(v1, v2, . . . , vn) is updated tov, which represents the value off(v1, v2, . . . , vn) in
the next state. Such pairs of a function namef , which is fixed by the signature, and an
optional argument(v1, v2, . . . , vn), which is formed by a list of dynamic parameter
valuesvi of whatever type, are calledlocations. They represent the abstract ASM
concept of basic object containers (memory units), which abstracts from particular
memory addressing and object referencing mechanisms. Location-value pairs (loc, v)
are calledupdatesand represent the basic units of state change.

Non-determinismis a convenient way to abstract from details of scheduling ofrule
executions. It can be expressed by rules of the form:

choosev in D with Gv do R(v)

wherev is a variable,D is a domain in whichv takes its value,Gv is a term
representing a boolean condition overv, andR(v) is a transition rule which contains
the free variablev. The meaning of such an ASM rule is to execute ruleR(v) with
an arbitraryv chosen inD among those satisfying the selection propertyGv. If there
exists no suchv, nothing is done.

Question 4: How and by which transitions (actions) do system states evolve? Under
which conditions (guards) do the state transitions (actions) of single agents hap-
pen and what is their effect on the state? What is supposed to happen if those
conditions are not satisfied?

Answer: By R2 andR5 there is only one transition to change the state of an order.
It remains open whether the invoicing is done only for one order at a time,
simultaneously for all orders, or only for a subset of orders(with a synchroni-
sation for concurrent access of the same product by different orders). In case
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the update is meant to be made for one order at a time, it remains unspecified
in which succession and with what successful termination orabruption mecha-
nism this should be realized. The time model (duration of invoicing) is also not
mentioned.
Modulo all those missing pieces of information, one can nevertheless reason
upon possible rules for invoicing orders. A single-order rule can be formalised
as follows4. Per step at most one order is invoiced, with an unspecified schedule
(thus also not taking into account any arrival time of orders) and with an abstract
deletion function:

rule r InvoiceSingleOrder =
choose $o in Orders with orderState($o) = PENDING and

orderQuantity($o) <= stockQuantity(referencedProduct($o))
do par

orderState($o) := INVOICED
r DeleteStock[referencedProduct($o),orderQuantity($o)]

endpar

Under the assumptions thatstockQuantity is updated only by invoicing and only
one order is processed at a time, the deletion function can berefined by the
following macro rule:

rule macro r DeleteStock($p in Products, $q in Quantity) =
stockQuantity($p):= stockQuantity($p) - $q

The ruleInvoiceSingleOrder has the disadvantage to invoice an order at a time,
while some strategies could admit that the system can simultaneously invoice a certain
number of orders at a time, if any. Simultaneous execution provides a convenient way
to abstract from sequentiality where it is irrelevant for anintended design. In the
ASM execution model, thissynchronous parallelismis enhanced by the following
notation to express the simultaneous execution of a ruleR for eachv satisfying a
given conditionG (where typicallyv will have some free occurrences inR which are
bound by the quantifier):

forall v in D with Gv do R(v)

Question 5: Could the system actions be parallelised anyhow? Namely, inthe case
of invoicing orders, can the system invoice several orders in one step?

Answer: To speed up invoicing of orders, parallelism can be exploited in two di-
rections. A first strategy consists of selecting a given product (possibly in a
non-deterministic way) and then simultaneously invoicingall the correspond-
ing orders, if possible. An alternative policy could be selecting, still non-
deterministically, a set of orders to be invoiced in parallel.

4In AsmM a rule identifier begins withr and a logical variable identifier starts with$.
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In case all orders for one product are simultaneously invoiced (or none if the
stock cannot satisfy the request), an “all-or-none” strategy can be expressed
by the following ruleInvoiceAllOrNone which makes use of a functionpendin-
gOrders yielding the set of pending orders for a certain product, andof a (static)
function totalQuantity returning the total quantity of a set of orders. The func-
tions are defined below the rule:

rule r InvoiceAllOrNone =
choose $product in Products do

let $pending = pendingOrders($product),
$total = totalQuantity($pending) in

if $total <= stockQuantity($product) then par
forall $ord in $pending do orderState($ord) := INVOICED

r DeleteStock[$product, $total]
endpar endif

where:

static function pendingOrders($p in Products): Powerset(Orders) =
{$o | $o in Orders with orderState($o) = PENDING and

referencedProduct($o) = $p}

static function totalQuantity($so in Powerset(Orders)): Quantity =
if (isEmpty($so)) then 0
else let $first = first(asSequence($so) in

quantity($first) + totalQuantity(excluding($so,$first))
endif

The previous definition ofDeleteStock can be kept in this case as well. Indeed,
the cumulative effect of updating the product quantity in stock is obtained by
using the total quantity of the set of invoiced orders.
To avoid the system deadlock when the stock cannot satisfy any request, we
formalise, by the following ruleInvoiceOrdersForOneProduct, the second strat-
egy introducing some non-determinism in the choice of a set of pending orders
which can be invoiced according to the available quantity instock:

rule r InvoiceOrdersForOneProduct =
choose $product in Products do

let $pending = pendingOrders($product) in
choose $ordSet in Powerset($pending)

with totalQuantity($ordSet) <= stockQuantity($product)
do par

forall $ord in $ordSet do orderState($ord) := INVOICED
r DeleteStock[$product, totalQuantity($ordSet)]

endpar
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To parallelise invoicing orders over all products, a slightvariant of the previous
rule can be obtained replacingchoose $product in Products with forall $prod-
uct in Products. To further maximise a product quantity invoiced at the time,
a new strategy is formalised by the ruleInvoiceMaxOrdersForOneProduct. It
consists of choosing a maximal invoicable subset of simultaneously invoiced
pending orders for the same product. For this rule we need to define a static
function maxQuantitySubsets defined onPowerset(Powerset(Orders)) to Pow-
erset(Powerset(Orders)) which, given a set of set of orders, returns the set of all
the sets having a maximum quantity:

rule r InvoiceMaxOrdersForOneProduct =
choose $product in Products do

let $pending = pendingOrders($product),
$invoicable = {$o | $o in Powerset($pending)
with totalQuantity($o) <= stockQuantity($product) } in

choose $ordSet in maxQuantitySubsets($invoicable) do par
forall $ord in $ordSet do orderState($ord) := INVOICED
r DeleteStock[$product, totalQuantity($ordSet)]

endpar

If the user requests a selection strategy which is not drivenby a first choice of
a product, another possible policy is to choose a set of pending orders, with
enough referenced products in the stock, to be simultaneously invoiced. We
reckon that this policy matches the intended behavior of thesystem better than
the previous policies. The ruleInvoiceOrders uses a predicateinvoicable which
is true on a set of pending orders with enough quantity of requested products
in the stack, and a functionrefProducts which yields the set of all products
referenced in a set of orders (the function is recursively defined below):

rule r InvoiceOrders =
choose $oSet in Powerset(Orders) with invoicable($oSet)
do par

forall $ord in $oSet do orderState($ord) := INVOICED
forall $p in refProducts($oSet) do

r DeleteStock[$p, totalQuantity($oSet,$p)]
endpar

static function invoicable($so in Powerset(Orders)) : Boolean =
forall $o in $so with orderState($o) = PENDING and
forall $p in Products with totalQuantity($so,$p) <= stockQuan-

tity($p)

static function
refProducts($so in Powerset(Orders)) : Powerset(Products) =

if (isEmpty($so)) then {}
else let $first = first(asSequence($so) in

including(refProducts(excluding($so,$first)),
referencedProduct($first))

endif
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Note that in all the previous examples, the non-deterministic selection of the
orders to invoice could be performed by a monitored functionwhich would for-
malise the user selection of a set of orders or the results of aparticular schedul-
ing algorithm.

6.2.5 Identifying the initial and final states

The computationof an ASM is defined in the standard way transition systemruns
are defined. Applying one step of the abstract machine M to a stateS produces as
next state another stateS′ of the same signature, which is obtained as follows: first
evaluate inS, using the standard interpretation of classical logic, allthe guards of all
the rules ofM , then compute inS, for each of the rules ofM whose guard evaluates
to true, all the arguments and all the values appearing in theupdates of this rule;
finally replace, simultaneously for each rule and for all thelocations in question, the
previousS-function value by the newly computed value if no two required updates
contradict each other. The stateS′ thus obtained differs fromS by the new values
for those functions at those arguments where the values are updated by a rule ofM
which could fire inS. The effect of an ASMM , started in an arbitraryinitial state
S (generally provided by the user), is to repeatedly apply onestep ofM as long as
an M -rule can fire. Such a machine terminates (in afinal state) only if no rule is
applicable anymore (and if the monitored functions do not change in the state where
the guards of all theM -rules are false).

Question 6: What is the initialisation of the system and who provides it?Are there
termination conditions and, if so, how are they determined?What is the relation
between initialisation/termination and input/output?

Answer: No explicit initialisation is specified, although one can assume that all the
orders are initially pending:

default init s 1: function orderState( $o in Orders) = PENDING

No termination condition is given either. We assume that thesystem keeps to
invoice orders as long as there are orders which can be invoiced (i.e. they are
pending and there is enough product quantity in stock).

6.2.6 Exceptions handling and robustness

Usually, an ASM specification captures requirements concerning error handling by
transition rules guarded by events5 occurring in erroneous situations, and therefore
separated by transition rules describing the normal machine execution.

5For details on event-driven ASMs, see [BÖR 03, section 6.5], which includes UML activity diagram
ASMs. Event-driven ASMs also comprise Petri net ASMs [BÖR 03, sections 6.1,7.1.2], Abstract State
Processes and Event-B ASMs [BÖR 03, section 4.2].
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Furthermore, Turbo ASMs (see page 116) support exception-handling techniques
to treat errors due to inconsistent updates. In Turbo ASMs, an abstract method for
catching an inconsistent update set and of executing error handling rules is given by
the try-catch rule. LetT be a set of terms. The semantics oftry P catch T Q is to
executeP, if the update set ofP is consistent on the locations determined by elements
of T, otherwiseQ is executed.

Question 7: Which forms of erroneous use are to be foreseen and which exception
handling mechanisms should be installed to catch them? Whatare the desired
robustness features?

Answer: Since no exceptional computations are mentioned in the requirements and
no inconsistent updates are allowed by the specification (see Question 8), we
do not make use of the techniques supported by the ASM method to the error-
handling purpose.

6.2.7 Identifying the desired properties (validation/verification)

The notion of ASM run makes the mechanical execution of ASM models possible,
and various tools have been built for modelvalidationby simulation and testing (see
section 8.3 of [B̈OR 03]). Furthermore, the rigorous mathematical definitionof ASMs
allows any standard mathematicalverificationtechnique to prove ASM model prop-
erties: from proof sketches over traditional or formalizedmathematical proofs to tool
supported interactive or automatic theorem proving or model checking (see sections
8.1 and 8.2 of [B̈OR 03]).

Question 8: Is the system description complete and consistent?
Answer: Completenesswith respect to the requirements can be verified for exam-

ple by checking that every requirement has been analysed andcaptured by our
specification. To validate a specification and its completeness with respect to
user needs, it is important that the specification can be simulated by the user to
uncover missing bits and pieces in the ground model. An ASM isconsistentif
it always performs consistent updates (i.e. it never tries to update in the same
step the same location with different values). In our case there is a single rule
which invoices one or more orders by updating simultaneously the status of the
orders and the stock quantity. Since this single rule updates independently the
status of different orders and updates the stock quantity ofdifferent products
by means of a total quantity function which computes the cumulative effect of
invoiced orders on the stock, the updates are always consistent.

Question 9: What are the system assumptions and what are the desired system prop-
erties? What do the requirements say about the state of the system?

Answer: No explicit assumptions or desired properties are given in the original speci-
fication. Through the requirements capture we have introduced several assump-
tions to fill missing information. For example, we have assumed thatstock-
Quantity is updated only by the rule which invoices orders. Other assumptions
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can be introduced by means of auxiliary axioms. For example,the assumption
that the quantity in every order must be greater than 0 is formalised as:

axiom over orderQuantity:
forall $o in Orders with orderQuantity($o) > 0

We have stated the following desired properties which express state invariants
and correctness conditions. The first one states that the stock quantity is always
greater than 0, i.e. the system cannot over invoice orders:

axiom over stockQuantity:
forall $p in Products with stockQuantity($p)>=0

Another property is that the state of every order is either pending or invoiced,
but never undefined:

axiom over orderState:
forall $o in Orders with orderState($o) != undef

These properties have been proved by the method proposed in [GAR 00] and
based on the theorem prover PVS. We report here only a sketch of the result-
ing encoding in PVS of the ASM for the order system. The controlled part
of an ASM state is encoded in PVS as a record of functions representing the
controlled ASM functions:

CTRLSTATE: TYPE =[#orderState:[Orders -> OrderStatus],

stockQuantity : [Products -> Quantity] #]

Each rule is a function that given a current statec and an intermediate con-
trolled statectrl returns a new controlled state in which the updates have been
applied. The ruleInvoiceSingleOrder is translated as follows, where the choose
construct is substituted by the dynamic functionchoose order (as explained
in [GAR 00]):

InvoiceSingleOrder(c,ctrl) : CTRLSTATE =

let ord = choose order(c) in

let prod = referencedProduct(ord) in

if orderState(c)(ord) = PENDING then ctrl with [

orderState := orderState(c) with [(ord):= INVOICED],

stockQuantity := stockQuantity(c) with [(prod) :=

stockQuantity(c)(prod) + orderQuantity(ord)]]

else ctrl endif

The properties are encoded as functions fromSTATE to bool. For example, the
second property above is encoded as:

prop2(s: STATE) :bool =

forall (o:Orders): orderState(s) (o) /= undef
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and it is proved using induction and very simple PVS strategies.
Other more complex properties, which are not state invariants but which re-
fer to execution paths, cannot be encoded in our verificationmethod yet. For
these properties, temporal logic and model checkers [DEL 00] could be used,
although assumptions about the finiteness of the domains arenecessary and un-
interpreted domains are not allowed. For example, one may want to express that
an order o is eventually invoiced if it refers to a product available in the stock
in enough quantity. In CTL, this can be expressed as:

AF( AG( orderState(o) = INVOICED or

orderQuantity(o) > stockQuantity(referencedProduct(o)))

6.3 Requirements capture and specification of case 2

In this section we formulate for the answers to the very questions of case 1 only the
changes needed for case 2.

Question 10: Who are the systemagents?
Answer: The informal description does not specify the agents for dynamic manipu-

lation of orders, stock and products, how they interact for shared data (namely
the elements ofOrders and the functionstockQuantity), whether they act inde-
pendently or following a schedule. For the sake of simplicity we assume that
our system still has only one agent which performs all the requested actions.
The main program executed by the agent (i.e. itsmain rule) will take care of the
synchronisation of actions to avoid inconsistencies.

Question 11: What are the systemstates? What are the domains of objects and what
are the functions, predicates and relations defined on them?

Answer: The domainsOrders andProducts and all the functions for case 1 remain.
For the new operations of this case, we introduce the following three monitored
functions that respectively yield the sequence of orders toadd (as a sequence
of pairs product and quantity), the sequence of orders to cancel, and the new
quantities to add in the stock (as sequence of pairs product and quantity again):

monitored newOrders: Seq(Prod(Products,Quantity))
monitored ordersToCancel: Seq(Orders)
monitored newItems: Seq(Prod(Products,Quantity))

The value of these functions may be determined by the user or be the output
produced by other system components in charge of computing orders to add or
cancel and items to entry in the stock. They are considered system inputs.
The requirements do not specify whether a canceled order must be completely
deleted from the system or whether it must be kept and marked as canceled. We
assume that canceled orders are not deleted and their statuschanged toCAN-
CELED. Therefore, the order status is modified as:
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enum domain OrderStatus = {INVOICED | PENDING |CANCELED}

Question 12: What is theclassificationof domains and functions?

Answer: By R6b the setOrders is dynamic since new orders can be added and old
orders can be deleted. Therefore, functionsreferencedProduct andorderQuan-
tity are both dynamic and updated when a new order is inserted inOrders. The
setProducts is still assumed to be static since inR6bthe entry of new products
is not considered. The functionstockQuantity is still dynamic and updated not
only when an order or a set of orders is invoiced but also when new quantities
of products are entered in the stock.

Question 13: How and by whichtransitions(actions) do system states evolve? How
are the “internal” actions (of the system) related to “external” actions (of the
environment)?

Answer: Besides the action of invoicing an order,R6bintroduces other three opera-
tions: (1) cancelation of orders, (2) insertion of new orders, and (3) addition of
quantities of products in the stock. We assume that these operations are driven
by the monitored functionsordersToCancel, newOrders andnewItems which
return a sequence. The requested actions will be performed for every element
in the sequence at each step. If the sequence is empty, the action has no effect.
We introduce the following rule which is in charge of the cancelation of orders:

rule r CancelOrders =
forall $i in Natural with $i < length(ordersToCancel) do

orderState(at(ordersToCancel,$i)) := CANCELED

Note that an order may be canceled even if it is alreadyINVOICED. To allow
only the cancelation of pending orders, the update of the order state must be
guarded byorderState(at(ordersToCancel,$i))!= INVOICED.

Extending domains

So far we have updated locations, i.e. changed the value of functions on existing
elements. If we want to introduce new orders in theOrders set, then we have to create
or construct new orders. To construct new elements and to addthem to domains,
ASMs introduces theextend notation:

extendD with v do R(v)

whereD is the name of the abstract type-domain to be extended,v is the logi-
cal variable which is bound to the new element imported inD from thereserve(see
[BÖR 03]) andR is a transition rule executed afterv is added toD. GenerallyR will
perform some initialisation overv.

In order to deal with the problem of incoming new orders, we need to answer the
following question:
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Question 14: Could the domains be extended by adding new items? Namely, inthe
case of invoicing orders, can new orders be inserted?

Answer: We answer the question by the following ruleAddOrders which extends the
domainOrders with new elements and sets all functions on these new locations:

rule r AddOrders =
forall $i in Natural with $i < length(newOrders) do
let $p = first(at(newOrders,$i)),

$q = second(at(newOrders,$i)) in
extend Orders with $order do par

orderQuantity($order) :=$q
referencedProduct($order) :=$p
orderState($order) := PENDING

endpar

Sequentialisation and iteration

The characteristics of basic ASMs (simultaneous executionof multiple atomic actions
in a global state) come at a price, namely the lack of direct support for practical com-
position and structuring principles.Turbo ASMsoffer as building blocks sequential
composition, iteration and parametrised (possibly recursive) sub-machines extending
the macro notation used with basic ASMs. They capture the sub-machine notions in
a black-box view hiding the internals of sub-computations by compressing them into
one step. A Turbo ASM can be obtained from basic ASMs by applying finitely often
and in any order the operators ofsequential composition, iteration andsub-machine
call. We report here only the definition of theseqanditerateconstructors which we
need for our purposes (namely to deal with the problem of incoming new items; see
below). A complete overview of the Turbo ASMs can be found in [BÖR 03].

We denote thesequential compositionof two ASM rulesP andQ by P seqQ and
define its semantics as the effect of first executingP in a given stateSand thenQ in the
resulting (invisible micro-)stateS + U (if it is defined), whereU is the set of updates
produced byP in S. Q may overwrite a location which has been updated byP. The set
of updates produced byP and thenQ are merged only ifU is consistent, so obtaining
the new stateS′; otherwiseS′ is the effect of applyingU onS.

The constructiterate R iterates the sequential execution of a ruleR encapsulating
computations with a finite number of iterated steps into one step. It is defined byR0

= skip (i.e. do nothing) andRn+1 = Rn seqR. For iterated rule applications with
a priori fixed bounds, we use the constructwhile (cond) R (= iterate (if cond then
R)) when the stopping condition is specified, oriterate v in D with Gv do R(v) to
express the subsequent execution of a ruleR for eachv satisfying a given condition
G. There are two natural stop situations for iterated rule applications withouta priori
fixed bounds, namely when the update set becomes empty (the case of successful
termination) and when it becomes inconsistent (the case offailure).
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We exploit the last form of the construct iterate to deal withthe problem of entering
new items. Requirements do not guarantee that two (or more) entries of a same product
cannot arrive at the same time, so inconsistent updates may arise. The question is:

Question 15: How can location updates be sequentialized in order to avoidsynchro-
nous inconsistent updating? In the case study, how can the stock be updated
when new quantities for the same product arrive at the same time?

Answer: The following ruleAddItems performs the entry of quantities in the stock
by increasing the value of the functionstockQuantity for the entered products.
Since the monitored sequencenewItems could contain the same product several
times, the functionstockQuantity cannot be updated in parallel for each product
in the sequence, otherwise inconsistent updates may appear(unless one assumes
that a same product occurs no more than ones in the listnewItems):

rule r AddItems =
iterate $i in Natural with $i < length(newItems) do
let $p = first(at(newItems,$i)), $q = second(at(newItems,$i)) in

stockQuantity($p) := stockQuantity($p) + $q

The three new rulesCancelOrders, AddOrders andAddItems respectively up-
date the functionorderState for existing orders, the domainOrders, and the
functionstockQuantity. Therefore, they can be executed in parallel. The fourth
action of the system to invoice orders (described in case 1) updates the func-
tionsorderState andstockQuantity, hence it cannot be executed in parallel with
rulesCancelOrders andAddItems. Some form of synchronization or schedul-
ing must be introduced. Since this information is missing inthe requirements,
we decide to execute the first three actions in parallel and then perform the rule
that invoices orders. The following main ruleorderSystem which formalises the
whole system behavior, reports the ruleInvoiceOrders. However, any other rule
presented in section 6.2.4 can be replaced according with the chosen selection
strategy discussed for case 1.

main rule r orderSystem =
seq

par
r AddOrders()
r CancelOrders()
r AddItems()

endpar
r InvoiceOrders()

endseq
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6.4 The natural language description of the specification

6.4.1 Case 1

The system of invoicing orders is a single-agent machine. There is a setOrders which
is static, namely new orders cannot be added, and every orderhas a state, which can
be invoicedor pending. All the orders are initially pending. There is a set of prod-
ucts and new products cannot be added. Every order refers to aproduct for a certain
quantity (greater than zero) and these data cannot be changed. The same product can
be referenced by several different orders. Every product isin the stock in different
quantity. The quantity of a product in the stock is only updated by the system when
it invoices some orders. The system selects a set of orders which are invoicable, i.e.
they are pending and refer to a product in the stock in enough quantity, it simultane-
ously changes the state of each order in this set from pendingto invoiced, and updates
the stock by subtracting the total product quantity in orders to invoice. The system
keeps to invoice orders as long as there are orders which can be invoiced. The system
guarantees that the state of an order is always defined and thestock quantity is always
greater than or equal to zero.

6.4.2 Case 2

For the new operations foreseen in this case ofcanceling orders, entering new orders,
and adding new quantities of products in the stock, the system takes three inputs:
ordersToCancel, a sequence of orders to cancel,newOrders, a sequence of orders to
add (as a sequence of pairs product and quantity), andnewItems, which gives the new
quantities to add in the stock (as a sequence of pairs productand quantity).

At every computation step, all the orders inordersToCancel are not really deleted,
but their status changed toCANCELED. Since new orders can be entered, the setOr-
ders is dynamic in this case and all the orders innewOrders set are inserted inOrders
in one step. The reference to a product and the quantity for a new order are set when
this new order is entered. Furthermore, the system updates the stock quantities for
all the products innewItems in one step taking into account the total quantity when
the same product is present several times innewItems. The three new operations are
performed in parallel. The fourth action of invoicing orders (described in case 1) is
executed afterwards.

6.5 Conclusion

Elicitation of requirements is a notoriously difficult and most error-prone part of the
system development activities. Requirements capture is largely a formalisation task,
namely to realize the transition from natural language problem descriptions – which
are often incomplete or interspersed with misleading details, partly ambiguous or even
inconsistent – to a sufficiently precise, unambiguous, consistent, complete and mini-
mal description which can serve as a basis for thecontractbetween the customer or
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domain expert and the software designer. We have showed how the ASM method
makes it possible to capture informal requirements by constructing a consistent and
unambiguous, simple and concise, abstract and completeground modelwhich can be
understood and checked (for correctness and completeness)by both domain experts
and system designers.

During the formalisation process we have shown how requirements are often in-
complete and assumptions must be stated in order to completethe specification. We
have also shown how the ASM method is suitable to adapt the specification when
different interpretations of the same requirements are possible (i.e. the discussion on
different selection strategies of orders to be invoiced), and how the rigor of the ASM
ground model allows formal (automatic) verification of properties. Furthermore, the
documentation can be easily rephrased in natural language for an intuitive understand-
ing of the formal description.
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