Chapter 6

ASM

Egon BORGER Angelo GARGANTINI and Elvinia RCCOBENE

6.1 Overview of the ASM

The Abstract State Machin@ASM) method is a systems engineering method that
guides the development of software and embedded hardwétrease systems seam-
lessly from requirements capture to their implementatidfthin a single precise yet
simple conceptual framework, the ASM method supports aifdumly integrates the
major software life cycle activities of the development ofrplex software systems.
The process afequirements captuneesults into constructing rigoroggsound models
which are precise but concise high-level system bluep(isistem contracts”), for-
mulated in domain-specific terms, using an applicatioerdgd language which can
be understood by all stakeholders. From the ground modgljémemeal, systemat-
ically documented detailing of abstract models via stepwifined models to code,
the architectural and component desiggobtained in a way which bridges the gap
between specification and code. The resultiogumentatiormaps the structure of
the blueprint to compilable code, providing explicit dégtions of the software struc-
ture and of the major design decisions, besides a road magy$tem(re-)useand
maintenance

On the basis of a systematic separation of different coscérry. design from
analysis, orthogonal design decisions, multiple levelgiefinitional or proof de-
tail, etc.), the ASM method allows a nowadays widely-retgegnodeling technique
which integrates dynamioperationa) and static declarativg descriptions, and an
analysis techniquéhat combinewalidation (by simulation and testing) ancrifica-
tion methods at any desired level of detail.

Even if the ASM method comes with a rigorous scientific fouraa[BOR 03],
the practitioner needs no special training to use the ASMhotesince Abstract State
Machines are a simple extension of Finite State Machinewirdd by replacing

104 Software Specification Methods

unstructured “internal” control states by states compgsarbitrarily complex data
[BOR 05], and can be understood correctly as pseudo-codetaa\vachines work-
ing over abstract data structures. Control state ASMs, iz lobesss of Abstract State
Machines, inherit from FSMs their standard graphical riotasee [BOR 03, Figure
7.1]). Similarly, UML activity diagrams pass to their ASM mhels their graphical
notation (see [BR 03, Figure 6.18, 6.19]), as do SDL programs or Petri netisetio
ASM models.

A complete introduction on the ASM method can be found i®B03], together
with a presentation of the great variety of its successfpliagtions in different fields
as: definition of industrial standards for programming aratieling languages, de-
sign and re-engineering of industrial control systems, etind e-commerce and web
services, design and analysis of protocols, architectigsign, language design, ver-
ification of compilation schemes and compiler back-ends, et

6.2 Requirements capture and specification of case 1

We formulate seven categories of questions to be used aslmgis for the spec-
ification task leading from loosely formulated requirensetat accurate, application-
domain-oriented ground models. The questions are prontygtdte application of the

ASM method to the case 1 of the invoicing order system, aljhaimilar questions

should be posed when using the ASM method for requiremeptsieand specifica-
tion of other systems. Answers are preceded by explanatibssme relevant ASM

concepts.

6.2.1 Identifying the agents

An ASM can be intuitively viewed as pseudo-code or Virtualdfiime program work-
ing on abstract data. The notion of ASMs moved from a definititich formalises
simultaneous parallel actions of a single agent, eitheniatamic way Basic ASM}
or in a structured and recursive walugbo ASM§, to a generalisation where multiple
agents interact in a synchronous/asynchronous maig@gnchronous/Asynchronous
Multi-Agent ASMp The context in which an agent machine computes is repteden
by an external agent calleshvironment

Question 1: Who are the systeragentsand what are their relations? In particular,
what is the relation between the system and its environment?

Answer: R1says that “the subject is to invoice orders”. This leads udefine the
invoicing ordersspecification in terms of a single-agent machine which may
dispose of potentially unrestricted non-determinism aaclelism (appearing
in the form of the “choose” and “forall” rules defined belowitinflat programs
(Basic ASM) or structured versions (Turbo ASM).

1For details and references on the treatmertasfcurrencyin the ASM framework and on concurrent
ASMs modeling threads in Java/C#, Petri nets, SDL, UML #gtiiagrams and state machines, etc., see
[BOR 03, Chapter 6].

ASM 105

6.2.2 Identifying the states

An ASM statemodels a machine state, i.e. the collection of elements aietts
the machine “knows”, and the functions and predicates is teemanipulate them.
Mathematically, sstateis defined as an algebraic structure, where data come as ab-
stract objects, i.e. as elements of sets (also caltadainsor universesone for each
category of data) which are equipped with basic operatipasti@l functiong and
predicateqattributes or relations).

For the evaluation of terms and formulas in an ASM state, thiedard interpreta-
tion of function symbols by the corresponding functionshattstate is used. Without
loss of generality we usually treat predicates as chaiatitefunctions and constants
as O-ary functions. Partial functions are turned into tédalctions by interpreting
f(z) = undefwith a fixed special valuendefas f(x) being undefined. The reader
who is not familiar with this notion of structure may view at& as a “database of
functions” (hamely a set of function tables).

Question 2: What are the system states? What are the domains of objattstat
are the functions, predicates and relations defined on th€h& question is
stressed by the object-oriented approach to system design

Answer: By Rlthere is a seDrders and byR2there is a functiomrderState which
yields the state of each order, which caniteicedor pending By R3there
are two functionsieferencedProduct® representing the product referenced in an
order andorderQuantity, which returns the quantity in the order and which, by
R4,is not injective, not constant. BR3we need a s&Quantity (subset oNatu-
ral) to denote the quantity values, while Bthere is a functionstockQuantity
which represents the quantity of products in stock.

6.2.3 Identifying static and dynamic parts of the states

In support of the principles of separation of concerns,imfation hiding, data abstrac-
tion, modularisation and stepwise refinement, the ASM netthakes a systematic
distinction betweelbasicfunctions which are taken for granted (typically those ferm
ing the basic signature of an ASM) addrivedfunctions (auxiliary functions coming
with a specification or computation mechanism given in teahbasic functions),
together with a classification of basic functions istaticanddynamicones and of
the dynamic ones intmonitored(only read),controlled(read and write)sharedand
output(only write) functions. This functions classification refie the different roles
these functions can assume in a given mach8taticfunctions never change during

2For details on object-oriented ASMs, their theory (devetbmainly in the work by Zamulin), their use
for modeling object-oriented databases and languages,CG2:¢j, Java, C#, SDL, and their incorporation
into the language AsmL of .NET-executable ASMs, se®fB03, Chapter 9].

3To allow an order to reference to several products, we shiatidduce a single functioreferenced-
ProductQuantity: Orders x Products -> Quantity, which yields the quantity of products in an ordendef in
case a product is not referenced in a given order).

106 Software Specification Methods

any run of the machine so that their values for given argum@otot depend on the
states of the machinelynamicfunctions may change as a consequence of agent ac-
tions (orupdatessee definition below) or by thenvironmentso that their values may
depend on the states of the machine. By definition statictimme can be thought of
as given by the initial state, so that, where appropriatedliag them can be clearly
separated from the description of the system dynamics. Néh&te meaning of these
functions is determined by a mere signature descriptionabgmatic constraints,
by an abstract specification or by an explicit or recursivéniteon depends on the
degree of information-hiding the specifier wants to real&aticO-ary functions rep-
resentconstantswhereas with dynami@-ary functions one can modehriablesof
programming (not to be confused with logical variabl&)ntrolledfunctions are dy-
namic functions which are directly updatable by and onlyh®/machine instructions
(known adransition rules see below). Therefore, these functions are the ones which
constitute the internally controlled part of the dynamatstof the machine; they are
not updatable by the environment (or more generally by aratbent in the case of a
multi-agent machineMonitoredfunctions are dynamic functions which are read but
not updated by a machine and directly updatable only by tkeé@ment (or more
generally by other agents). These monitored functionstitatesthe externally con-
trolled part of a machine state. As with static functions, $pecification of monitored
functions is open to any appropriate method. The only (hutief) assumption made
is that in a given state the values of all monitored functimmresdetermined. Combina-
tions of internal and external control are captured by axtdon orsharedfunctions
that can be read and are directly updatable by more than ookimea(so that typi-
cally a protocol is needed to guarantee consistency of epfl@utputfunctions are
updated but not read by a machine and are typically monitoyeather machines or
by the environment.

Question 3: What are the static and the dynamic parts of states? Who aateithe
dynamic functions?

Answer: By R6athe setOrders is static. ByR2andR5the functionorderState is
dynamic and controlled by the system. BB andR6areferencedProduct and
orderQuantity are both static. ByR6athe functionstockQuantity is dynamic —

a static interpretation is not reasonable — but it is undfetéie function is up-
dated by the environment or by the system or by both of themréhfunction).
We make theassumptiorthatthe stock is only updated by the system when it
invoices an orderThe set of products and of quantities are assumed to be. stati
For writing down ASMs we use the AsmM language [ASMM] whiclshzeen
derived from a metamodel of the ASMs and is endowed with a BNi#fngnar
[SCA 05] and a syntax checker.

asm orderSystemCasel
signature:
static abstract domain Orders
enum domain OrderStatus = { INVOICED | PENDING }

ASM 107

static abstract domain Products

static domain Quantity subsetof Natural

static referencedProduct: Orders -> Products

dynamic controlled orderState: Orders -> OrderStatus
static orderQuantity: Orders -> Quantity

dynamic controlled stockQuantity: Product -> Quantity

6.2.4 Identifying the transitions

Basic ASMs are finite sets of so-callgdnsition rulesof the form:
if Conditionthen Updates

which model the actions performed by the machine to manip@kements of its
domains and which result in a new state. T®endition (also calledguard) under
which a rule is applied is an arbitrary predicate logic fotanwithout free variables,
whose interpretation evaluates to true or faldpdatess a finite set of assignments
of the form f(¢1,to,...,t,) := t, whose execution is to be understood as changing
(or defining, if there was none) in parallel the value of thewdng functionsf at
the indicated arguments to the indicated value. More peggign the given state,
first all parameters;, ¢ are evaluated to their values, say v, then the value of
f(v1,ve,...,v,) is updated ta), which represents the value ¢fv,, va,...,v,) in
the next state. Such pairs of a function nafpevhich is fixed by the signature, and an
optional argumentuvy, va, . . ., v,), Which is formed by a list of dynamic parameter
valuesv; of whatever type, are calleldcations They represent the abstract ASM
concept of basic object containers (memory units), whicétralts from particular
memory addressing and object referencing mechanismstiboeaalue pairslpc, v)
are calledupdatesand represent the basic units of state change.

Non-determinisns a convenient way to abstract from details of schedulingief
executions. It can be expressed by rules of the form:

choosevin D with G, do R(v)

wherev is a variable,D is a domain in whichv takes its value(, is a term
representing a boolean condition oveand R(v) is a transition rule which contains
the free variables. The meaning of such an ASM rule is to execute rilg) with
an arbitraryv chosen inD among those satisfying the selection propé&rty If there
exists no suchy, nothing is done.

Question 4: How and by which transitions (actions) do system statesve?oUnder
which conditions (guards) do the state transitions (as)ionsingle agents hap-
pen and what is their effect on the state? What is supposedppen if those
conditions are not satisfied?

Answer: By R2andR5there is only one transition to change the state of an order.
It remains open whether the invoicing is done only for oneeorat a time,
simultaneously for all orders, or only for a subset of orderith a synchroni-
sation for concurrent access of the same product by diffeneters). In case

108 Software Specification Methods

the update is meant to be made for one order at a time, it renuaispecified
in which succession and with what successful terminaticetbouption mecha-
nism this should be realized. The time model (duration obicing) is also not
mentioned.

Modulo all those missing pieces of information, one can nfedess reason
upon possible rules for invoicing orders. A single-orddean be formalised
as follows. Per step at most one order is invoiced, with an unspecifieesde

(thus also not taking into account any arrival time of orjlarsl with an abstract
deletion function:

rule r_InvoiceSingleOrder =
choose $o in Orders with orderState($0) = PENDING and
orderQuantity($0) <= stockQuantity(referencedProduct($0))
do par
orderState($0) := INVOICED
r_DeleteStock[referencedProduct($0),orderQuantity($0)]
endpar

Under the assumptions thetbckQuantity is updated only by invoicing and only
one order is processed at a time, the deletion function carefireed by the
following macro rule:

rule macro r_DeleteStock($p in Products, $q in Quantity) =
stockQuantity($p):= stockQuantity($p) - $q

The ruleinvoiceSingleOrder has the disadvantage to invoice an order at a time,
while some strategies could admit that the system can simedtusly invoice a certain
number of orders at a time, if any. Simultaneous executioriges a convenient way
to abstract from sequentiality where it is irrelevant foriatended design. In the
ASM execution model, thisynchronous parallelisns enhanced by the following
notation to express the simultaneous execution of a Rifer eachv satisfying a
given conditionGG (where typicallyv will have some free occurrencesitwhich are
bound by the quantifier):

forall vin D with G, do R(v)

Question 5: Could the system actions be parallelised anyhow? Namethercase
of invoicing orders, can the system invoice several ordeme step?

Answer: To speed up invoicing of orders, parallelism can be expdoitetwo di-
rections. A first strategy consists of selecting a given podbdpossibly in a
non-deterministic way) and then simultaneously invoicafigthe correspond-
ing orders, if possible. An alternative policy could be séle, still non-
deterministically, a set of orders to be invoiced in patalle

4ln AsmM a rule identifier begins with_and a logical variable identifier starts wih

ASM 109

In case all orders for one product are simultaneously irati©r none if the
stock cannot satisfy the request), an “all-or-none” styatean be expressed
by the following ruleinvoiceAllOrNone which makes use of a functigrendin-
gOrders yielding the set of pending orders for a certain product,@fral(static)
functiontotalQuantity returning the total quantity of a set of orders. The func-
tions are defined below the rule:

rule r_InvoiceAllOrNone =
choose $product in Products do

let $pending = pendingOrders($product),
$total = totalQuantity($pending) in

if $total <= stockQuantity($product) then par
forall $ord in $pending do orderState($ord) := INVOICED

r_DeleteStock[$product, $total]
endpar endif

where:

static function pendingOrders($p in Products): Powerset(Orders) =
{$0 | $0 in Orders with orderState($o) = PENDING and
referencedProduct($o) = $p}

static function totalQuantity($so in Powerset(Orders)): Quantity =
if (isEmpty($so)) then 0
else let $first = first(asSequence($so) in
quantity($first) + totalQuantity(excluding($so, $first))
endif

The previous definition dbeleteStock can be kept in this case as well. Indeed,
the cumulative effect of updating the product quantity iocktis obtained by
using the total quantity of the set of invoiced orders.

To avoid the system deadlock when the stock cannot satisfyreguest, we
formalise, by the following rulénvoiceOrdersForOneProduct, the second strat-
egy introducing some non-determinism in the choice of a pending orders
which can be invoiced according to the available quantitstack:

rule r_InvoiceOrdersForOneProduct =
choose $product in Products do
let $pending = pendingOrders($product) in
choose $ordSet in Powerset($pending)
with totalQuantity($ordSet) <= stockQuantity($product)
do par
forall $ord in $ordSet do orderState($ord) := INVOICED
r_DeleteStock[$product, totalQuantity($ordSet)]
endpar

110 Software Specification Methods

To parallelise invoicing orders over all products, a sligltiant of the previous
rule can be obtained replacinfjoose $product in Products with forall $prod-

uct in Products. To further maximise a product quantity invoiced at the time
a new strategy is formalised by the ruteoiceMaxOrdersForOneProduct. It
consists of choosing a maximal invoicable subset of simabasly invoiced
pending orders for the same product. For this rule we neecefioala static
function maxQuantitySubsets defined onPowerset(Powerset(Orders)) to Pow-
erset(Powerset(Orders)) which, given a set of set of orders, returns the set of all
the sets having a maximum quantity:

rule r_InvoiceMaxOrdersForOneProduct =
choose $product in Products do
let $pending = pendingOrders($product),
$invoicable = {$o0 | $0 in Powerset($pending)
with totalQuantity($0) <= stockQuantity($product) } in
choose $ordSet in maxQuantitySubsets($invoicable) do par
forall $ord in $ordSet do orderState($ord) := INVOICED
r_DeleteStock[$product, totalQuantity($ordSet)]
endpar

If the user requests a selection strategy which is not didyea first choice of
a product, another possible policy is to choose a set of pgnaliders, with
enough referenced products in the stock, to be simultaheowoiced. We
reckon that this policy matches the intended behavior ojfstem better than
the previous policies. The rulevoiceOrders uses a predicateavoicable which

is true on a set of pending orders with enough quantity of ested products
in the stack, and a functiorefProducts which yields the set of all products
referenced in a set of orders (the function is recursivefindd below):

rule r_InvoiceOrders =
choose $0Set in Powerset(Orders) with invoicable($oSet)
do par
forall $ord in $0Set do orderState($ord) := INVOICED
forall $p in refProducts($oSet) do
r_DeleteStock[$p, totalQuantity($oSet,$p)]
endpar

static function invoicable($so in Powerset(Orders)) : Boolean =
forall $o in $so with orderState($0) = PENDING and
forall $p in Products with totalQuantity($so,$p) <= stockQuan-

tity($p)

static function
refProducts($so in Powerset(Orders)) : Powerset(Products) =
if (iIsEmpty($s0)) then {}
else let $first = first(asSequence($so) in
including(refProducts(excluding($so,$first)),
referencedProduct($first))
endif

ASM 111

Note that in all the previous examples, the non-deterningstlection of the
orders to invoice could be performed by a monitored functiich would for-
malise the user selection of a set of orders or the resultpaftacular schedul-
ing algorithm.

6.2.5 Identifying the initial and final states

The computationof an ASM is defined in the standard way transition systems
are defined. Applying one step of the abstract machine M tate Stproduces as
next state another stat¥ of the same signature, which is obtained as follows: first
evaluate inS, using the standard interpretation of classical logicttedlguards of all
the rules ofM, then compute irf, for each of the rules a¥/ whose guard evaluates
to true, all the arguments and all the values appearing irugigates of this rule;
finally replace, simultaneously for each rule and for all liteations in question, the
previousS-function value by the newly computed value if no two reqditgpdates
contradict each other. The sta® thus obtained differs fron$ by the new values
for those functions at those arguments where the valuespatated by a rule oft/
which could fire inS. The effect of an ASMM, started in an arbitrarinitial state
S (generally provided by the user), is to repeatedly apply step of M as long as
an M-rule can fire. Such a machine terminates (ifinal state) only if no rule is
applicable anymore (and if the monitored functions do naetingfe in the state where
the guards of all thé/-rules are false).

Question 6: What is the initialisation of the system and who providesAt2 there
termination conditions and, if so, how are they determinatfat is the relation
between initialisation/termination and input/output?

Answer: No explicit initialisation is specified, although one caswase that all the
orders are initially pending:

default init s_1: function orderState($o in Orders) = PENDING

No termination condition is given either. We assume thatsystem keeps to
invoice orders as long as there are orders which can be eddie. they are
pending and there is enough product quantity in stock).

6.2.6 Exceptions handling and robustness

Usually, an ASM specification captures requirements cariagrerror handling by
transition rules guarded by evehtsccurring in erroneous situations, and therefore
separated by transition rules describing the normal mactwecution.

5For details on event-driven ASMs, see(JB 03, section 6.5], which includes UML activity diagram
ASMs. Event-driven ASMs also comprise Petri net ASM©OB 03, sections 6.1,7.1.2], Abstract State
Processes and Event-B ASMsQR 03, section 4.2].

112 Software Specification Methods

Furthermore, Turbo ASMs (see page 116) support exceptimaing techniques
to treat errors due to inconsistent updates. In Turbo ASMsatsstract method for
catching an inconsistent update set and of executing eamdling rules is given by
thetry-catch rule. LetT be a set of terms. The semanticstigf P catch T Q is to
executeP, if the update set d? is consistent on the locations determined by elements
of T, otherwiseQ is executed.

Question 7: Which forms of erroneous use are to be foreseen and whictptane
handling mechanisms should be installed to catch them? ¥fkeahe desired
robustness features?

Answer: Since no exceptional computations are mentioned in thenagents and
no inconsistent updates are allowed by the specificatios (aeestion 8), we
do not make use of the techniques supported by the ASM methtbekterror-
handling purpose.

6.2.7 Identifying the desired properties (validation/veification)

The notion of ASM run makes the mechanical execution of ASMiat® possible,
and various tools have been built for modalidationby simulation and testing (see
section 8.3 of [OR 03]). Furthermore, the rigorous mathematical definitibASMs
allows any standard mathematica@rificationtechnique to prove ASM model prop-
erties: from proof sketches over traditional or formalireathematical proofs to tool
supported interactive or automatic theorem proving or rholdecking (see sections
8.1 and 8.2 of [®R 03]).

Question 8: Is the system description complete and consistent?

Answer: Completeneswith respect to the requirements can be verified for exam-
ple by checking that every requirement has been analysedaptdred by our
specification. To validate a specification and its complketsrwith respect to
user needs, it is important that the specification can belateaiby the user to
uncover missing bits and pieces in the ground model. An ASkbissistenif
it always performs consistent updates (i.e. it never tioespdate in the same
step the same location with different values). In our caseetlis a single rule
which invoices one or more orders by updating simultangothe status of the
orders and the stock quantity. Since this single rule updatiependently the
status of different orders and updates the stock quantitiftéfrent products
by means of a total quantity function which computes the dative effect of
invoiced orders on the stock, the updates are always censist

Question 9: What are the system assumptions and what are the desirethsysip-
erties? What do the requirements say about the state of gtensy

Answer: No explicit assumptions or desired properties are giveheroriginal speci-
fication. Through the requirements capture we have intredseveral assump-
tions to fill missing information. For example, we have assdrthatstock-
Quantity is updated only by the rule which invoices orders. Other mggions

ASM 113

can be introduced by means of auxiliary axioms. For exantpéeassumption
that the quantity in every order must be greater than 0 isdtised as:

axiom over orderQuantity:
forall $o in Orders with orderQuantity($o) > 0

We have stated the following desired properties which esgstate invariants
and correctness conditions. The first one states that thk gt@antity is always
greater than 0, i.e. the system cannot over invoice orders:

axiom over stockQuantity:
forall $p in Products with stockQuantity($p)>=0

Another property is that the state of every order is eitherdi®y or invoiced,
but never undefined:

axiom over orderState:
forall $o in Orders with orderState($0) != undef

These properties have been proved by the method propos&hiR PO] and
based on the theorem prover PVS. We report here only a skéttie oesult-
ing encoding in PVS of the ASM for the order system. The cdlgdopart
of an ASM state is encoded in PVS as a record of functions septéang the
controlled ASM functions:

CTRLSTATE: TYPE =[#orderState:[0Orders -> OrderStatus],
stockQuantity : [Products -> Quantity] #]

Each rule is a function that given a current statand an intermediate con-
trolled statectrl returns a new controlled state in which the updates have been
applied. The rulenvoiceSingleOrder is translated as follows, where the choose
construct is substituted by the dynamic functititvose_order (as explained

in [GAR 00]):

InvoiceSingleOrder(c,ctrl) : CTRLSTATE =

let ord = choose_order(c) in

let prod = referencedProduct(ord) in

if orderState(c) (ord) = PENDING then ctrl with [
orderState := orderState(c) with [(ord):= INVOICED],
stockQuantity := stockQuantity(c) with [(prod) :=

stockQuantity(c) (prod) + orderQuantity(ord)]]

else ctrl endif

The properties are encoded as functions fBIATE to bool. For example, the
second property above is encoded as:

prop2(s: STATE) :bool =
forall (o:0rders): orderState(s) (o) /= undef

114 Software Specification Methods

and it is proved using induction and very simple PVS strategi
Other more complex properties, which are not state invegibot which re-
fer to execution paths, cannot be encoded in our verificatiethod yet. For
these properties, temporal logic and model checkers [DELcO0Id be used,
although assumptions about the finiteness of the domainseaessary and un-
interpreted domains are not allowed. For example, one maytwaxpress that
an order o is eventually invoiced if it refers to a product éahle in the stock
in enough quantityln CTL, this can be expressed as:

AF(AG(orderState(o) = INVOICED or

orderQuantity(o) > stockQuantity(referencedProduct(o)))

6.3 Requirements capture and specification of case 2

In this section we formulate for the answers to the very qaestof case 1 only the
changes needed for case 2.

Question 10: Who are the systemgent®

Answer: The informal description does not specify the agents forattyic manipu-
lation of orders, stock and products, how they interact Fared data (namely
the elements obrders and the functiorstockQuantity), whether they act inde-
pendently or following a schedule. For the sake of simplieie assume that
our system still has only one agent which performs all theiested actions.
The main program executed by the agent (i.emi rule) will take care of the
synchronisation of actions to avoid inconsistencies.

Question 11: What are the systestate® What are the domains of objects and what
are the functions, predicates and relations defined on them?

Answer: The domain®rders andProducts and all the functions for case 1 remain.
For the new operations of this case, we introduce the foligwiree monitored
functions that respectively yield the sequence of orderadih (as a sequence
of pairs product and quantity), the sequence of orders teetaand the new
quantities to add in the stock (as sequence of pairs proddagaantity again):

monitored newOrders: Seq(Prod(Products,Quantity))
monitored ordersToCancel: Seq(Orders)
monitored newltems: Seq(Prod(Products,Quantity))

The value of these functions may be determined by the usee ¢iné output
produced by other system components in charge of computdey®to add or
cancel and items to entry in the stock. They are considergeésyinputs.

The requirements do not specify whether a canceled order meusompletely
deleted from the system or whether it must be kept and markedraceled. We
assume that canceled orders are not deleted and their stetnged taCAN-
CELED. Therefore, the order status is modified as:

ASM 115

enum domain OrderStatus = {INVOICED | PENDING |CANCELED}

Question 12: What is theclassificationof domains and functions?

Answer: By R6bthe setOrders is dynamic since new orders can be added and old
orders can be deleted. Therefore, functisisrencedProduct andorderQuan-
tity are both dynamic and updated when a new order is insertodii#rs. The
setProducts is still assumed to be static sinceRtbthe entry of new products
is not considered. The functiaockQuantity is still dynamic and updated not
only when an order or a set of orders is invoiced but also wheswn quantities
of products are entered in the stock.

Question 13: How and by whichtransitions(actions) do system states evolve? How
are the “internal” actions (of the system) related to “emédt actions (of the
environment)?

Answer: Besides the action of invoicing an ord&6bintroduces other three opera-
tions: (1) cancelation of orders, (2) insertion of new osjand (3) addition of
quantities of products in the stock. We assume that thesatipes are driven
by the monitored functionsrdersToCancel, newOrders and newltems which
return a sequence. The requested actions will be perfororeslery element
in the sequence at each step. If the sequence is empty, the hat no effect.
We introduce the following rule which is in charge of the calation of orders:

rule r_CancelOrders =
forall $i in Natural with $i < length(ordersToCancel) do
orderState(at(ordersToCancel,$i)) := CANCELED

Note that an order may be canceled even if it is alredtiyOICED. To allow
only the cancelation of pending orders, the update of therosthte must be
guarded byrderState(at(ordersToCancel,$i))!= INVOICED.

Extending domains

So far we have updated locations, i.e. changed the valuenafifins on existing
elements. If we want to introduce new orders in @hders set, then we have to create
or construct new orders. To construct new elements and tatesld to domains,
ASMs introduces thextend notation:

extend D with v do R(v)

whereD is the name of the abstract type-domain to be extendésl the logi-
cal variable which is bound to the new element importe® ifrom thereserve(see
[BOR 03]) andR is a transition rule executed afteis added tdD. GenerallyR will
perform some initialisation over.

In order to deal with the problem of incoming new orders, wech® answer the
following question:

116 Software Specification Methods

Question 14: Could the domains be extended by adding new items? Nametyein
case of invoicing orders, can new orders be inserted?

Answer: We answer the question by the following rélédOrders which extends the
domainOrders with new elements and sets all functions on these new latsitio

rule r. AddOrders =
forall $i in Natural with $i < length(newOrders) do
let $p = first(at(newOrders,$i)),
$q = second(at(newOrders,$i)) in
extend Orders with $order do par
orderQuantity($order) :=$q
referencedProduct($order) :=$p
orderState($order) := PENDING
endpar

Sequentialisation and iteration

The characteristics of basic ASMs (simultaneous execuationultiple atomic actions
in a global state) come at a price, namely the lack of diregpett for practical com-
position and structuring principlesiurbo ASMffer as building blocks sequential
composition, iteration and parametrised (possibly reeefsub-machines extending
the macro notation used with basic ASMs. They capture thensathine notions in
a black-box view hiding the internals of sub-computatiopgbmpressing them into
one step. A Turbo ASM can be obtained from basic ASMs by apglfinitely often
and in any order the operators séquential compositigiiteration and sub-machine
call. We report here only the definition of tiseganditerate constructors which we
need for our purposes (namely to deal with the problem ofriting new items; see
below). A complete overview of the Turbo ASMs can be foundBOR 03].

We denote theequential compositioof two ASM rulesP andQ by P seq@ and
define its semantics as the effect of first execuBrig a given stat&and therQ in the
resulting (invisible micro-)stat§ + U (if it is defined), wherdJ is the set of updates
produced byP in S. Q may overwrite a location which has been updateé®byhe set
of updates produced By and therQ are merged only itJ is consistent, so obtaining
the new states’; otherwiseS’ is the effect of applying) onS.

The construciterate R iterates the sequential execution of a relencapsulating
computations with a finite number of iterated steps into dap.slt is defined byR,
= skip (i.e. do nothing) and?,,+1 = R, seqR. For iterated rule applications with
a priori fixed bounds, we use the construdhile (cond R (= iterate (if condthen
R)) when the stopping condition is specified,irate v in D with G, do R(v) to
express the subsequent execution of a ful®r eachv satisfying a given condition
G. There are two natural stop situations for iterated ruldieations withouta priori
fixed bounds, namely when the update set becomes empty (seeofauccessful
terminatior) and when it becomes inconsistent (the casiidiiire).

ASM 117

We exploit the last form of the construct iterate to deal g problem of entering
new items. Requirements do not guarantee that two (or mote¢e of a same product
cannot arrive at the same time, so inconsistent updates ris&y &he question is:

Question 15: How can location updates be sequentialized in order to ayoidhro-
nous inconsistent updating? In the case study, how can dlc& be updated
when new quantities for the same product arrive at the same?ti

Answer: The following ruleAdditems performs the entry of quantities in the stock
by increasing the value of the functiatockQuantity for the entered products.
Since the monitored sequeneavitems could contain the same product several
times, the functiostockQuantity cannot be updated in parallel for each product
in the sequence, otherwise inconsistent updates may afuypd@ss one assumes
that a same product occurs no more than ones in theeligtems):

rule r.Addltems =
iterate $i in Natural with $i < length(newltems) do
let $p = first(at(newltems,$i)), $g = second(at(newltems,$i)) in
stockQuantity($p) := stockQuantity($p) + $q

The three new rule€ancelOrders, AddOrders and AddItems respectively up-
date the functiororderState for existing orders, the domaidrders, and the
functionstockQuantity. Therefore, they can be executed in parallel. The fourth
action of the system to invoice orders (described in casedates the func-
tionsorderState andstockQuantity, hence it cannot be executed in parallel with
rulesCancelOrders and Additems. Some form of synchronization or schedul-
ing must be introduced. Since this information is missinghie requirements,
we decide to execute the first three actions in parallel aed prerform the rule
that invoices orders. The following main rudederSystem which formalises the
whole system behavior, reports the rideoiceOrders. However, any other rule
presented in section 6.2.4 can be replaced according wétkhhbsen selection
strategy discussed for case 1.

main rule r_orderSystem =
seq
par
r_AddOrders()
r_CancelOrders()
r_Addltems()
endpar
r_InvoiceOrders()
endseq

118 Software Specification Methods

6.4 The natural language description of the specification

6.4.1 Casel

The system of invoicing orders is a single-agent machinerd is a seOrders which

is static, namely new orders cannot be added, and every badea state, which can
beinvoicedor pending All the orders are initially pending. There is a set of prod-
ucts and new products cannot be added. Every order referprimdact for a certain
quantity (greater than zero) and these data cannot be cthafibe same product can
be referenced by several different orders. Every produict the stock in different
quantity. The quantity of a product in the stock is only ugdiby the system when
it invoices some orders. The system selects a set of ordachahe invoicable, i.e.
they are pending and refer to a product in the stock in enoughtity, it simultane-
ously changes the state of each order in this set from pemdingoiced, and updates
the stock by subtracting the total product quantity in osderinvoice. The system
keeps to invoice orders as long as there are orders whichecavdiced. The system
guarantees that the state of an order is always defined astbitiequantity is always
greater than or equal to zero.

6.4.2 Case?

For the new operations foreseen in this caseanfceling orders, entering new orders
and adding new quantities of products in the stotthe system takes three inputs:
ordersToCancel, a sequence of orders to canaawOrders, a sequence of orders to
add (as a sequence of pairs product and quantity)pnawtdems, which gives the new
guantities to add in the stock (as a sequence of pairs pradaoguantity).

At every computation step, all the ordersirlersToCancel are not really deleted,
but their status changed @ANCELED. Since new orders can be entered, theCset
ders is dynamic in this case and all the ordersiswOrders set are inserted i@rders
in one step. The reference to a product and the quantity femaander are set when
this new order is entered. Furthermore, the system updagestbck quantities for
all the products imewltems in one step taking into account the total quantity when
the same product is present several timesemitems. The three new operations are
performed in parallel. The fourth action of invoicing ordédescribed in case 1) is
executed afterwards.

6.5 Conclusion

Elicitation of requirements is a notoriously difficult andbst error-prone part of the
system development activities. Requirements capturedeliaa formalisation task,
namely to realize the transition from natural language lemmbdescriptions — which
are often incomplete or interspersed with misleading gfaértly ambiguous or even
inconsistent — to a sufficiently precise, unambiguous, isterst, complete and mini-
mal description which can serve as a basis fordbmetractbetween the customer or

ASM 119

domain expert and the software designer. We have showed t®w$M method
makes it possible to capture informal requirements by caoshg a consistent and
unambiguous, simple and concise, abstract and comgietsd modelvhich can be
understood and checked (for correctness and completemefsith domain experts
and system designers.

During the formalisation process we have shown how requérémare often in-
complete and assumptions must be stated in order to contpketpecification. We
have also shown how the ASM method is suitable to adapt theifgfation when
different interpretations of the same requirements arsiptes(i.e. the discussion on
different selection strategies of orders to be invoicedd, how the rigor of the ASM
ground model allows formal (automatic) verification of peofes. Furthermore, the
documentation can be easily rephrased in natural language intuitive understand-
ing of the formal description.

Bibliography

[ASMM] “The Abstract State Machines Metamodel (AsmM) wdbsi
http://www.dti.unimi.it/~riccobene/asmm/.

[BOR 03] BSRGERE., STARK R., Abstract State Machines: A Method for High-
Level System Design and AnalysSpringer-Verlag, 2003.

[BOR 05] BORGERE., “The ASM Method for System Design and Analysis. A Tu-
torial Introduction”, in GRAMLICH B., Ed.,FroCoS 2005vol. 3717 ofLecture
Notes in Artificial IntelligenceVienna (Austria), Springer, p. 264-283, September
2005.

[DEL 00] DEL CAsTILLO G., WINTER K., “Model Checking Support for the ASM
High-Level Language”, in GAF S., SSHWARTZBACH M., Eds.,Proc. of TACAS
vol. 1785 ofLNCS Springer-Verlag, p. 331-346, 2000.

[GAR 00] GARGANTINI A., RICCOBENEE., “Encoding Abstract State Machines in
PVS”, in GUREVICH Y., KUTTER P., ODERSKY M., THIELE L., Eds.,Abstract
State Machines — Theory and Applications: Internationatk&bop, ASM 2000
vol. 1912 ofLNCS Monte Verita, Switzerland, Springer, p. 303-322, Marob@.

[SCA 05] SCANDURRA P., GARGANTINI A., GENOVESEC., GENOVESET., RiC-
COBENE E., “A concrete syntax derived from the Abstract State Maehneta-
model”, inProc. of Abstract State Machines 2Q@®05.

