
Optimal Test Suite Generation for Modified
Condition Decision Coverage using SAT solving

Takashi Kitamura1, Quentin Maissonneuve1,2, Eun-Hye Choi1, Cyrille Artho3,
and Angelo Gargantini4

1 Nat. Inst. of Advanced Industrial Science and Technology (AIST), Japan
{t.kitamura,e.choi}@aist.go.jp

2 University of Nantes, France, quentin.maisonneuve1@etu.univ-nantes.fr
3 KTH Royal Institute of Technology, Sweden, artho@kth.se
4 Università di Bergamo, Italy, angelo.gargantini@unibg.it

Abstract. Boolean expressions occur frequently in descriptions of com-
puter systems, but they tend to be complex and error-prone in complex
systems. The modified condition decision coverage (MCDC) criterion in
system testing is an important testing technique for Boolean expression,
as its usage mandated by safety standards such as DO-178 [1] (avionics)
and ISO26262 [2] (automotive). In this paper, we develop an algorithm
to generate optimal MCDC test suites for Boolean expressions. Our algo-
rithm is based on SAT solving and generates minimal MCDC test suites.
Experiments on a real-world avionics system confirm that the technique
can construct minimal MCDC test suites within reasonable times, and
improves significantly upon prior techniques.

1 Introduction

Boolean expressions occur frequently in descriptions of computer systems, and
are prevalent in software and hardware artifacts, such as programs, specifications,
and hardware descriptions. On the other hand, they tend to be complicated and
thus error-prone. Boolean expression testing is a technique to effectively test
such complicated Boolean expressions. Modified Condition Decision Coverage
(MCDC), a. k. a., Active Clause Coverage (ACC), is one of main coverage cri-
teria for testing Boolean expressions. The MCDC criterion requires that each
condition in a decision is shown by execution to independently affect the out-
come of the decision, where “decision” means “Boolean expression” [3].

Table 1: A MCDC test suite
for φ1 = s ∧ (t ∨ u).

No. s t u φ1

1 1 1 0 1
2 1 0 0 0
3 0 1 0 0
4 1 0 1 1

To demonstrate the notion, take the following
Boolean expression: φ1 = s∧ (t∨u) (1). The test
suite in Table 1 consisting of the four test cases
satisfies the MCDC criterion for this Boolean ex-
pression. Observe that, for example, the pair of
the first and third test cases confirms that con-
dition s independently affects the outcome of the
expression: the value of condition s changes the

value of φ1 while the values of the other conditions, i. e. t and u, remain un-
changed. Observe similarly that the first and second test cases confirm that for
t, and the second and fourth confirm that for u. Boolean expressions such as (1)
often represent abstract versions of actual logical expressions used in software
artifacts; e. g., the following logical expression, (z > 1) ∧ (f(x) ∨ (x < y + 1)),
can be represented by (1), where the conditions (z > 1), f(x), and (x < y + 1)
are abstracted by s, t, and u respectively.

The usage of the MCDC criterion is motivated by several rationales.

1. MCDC can detect an erroneous use of and for or (or vice versa) in a Boolean
expression; this is called “Operator Reference Fault (ORF)” [4].

2. MCDC is a stricter form of decision coverage than decision coverage, which
stipulates each decision must evaluate to true and false.

3. The size of a test suite to satisfy the MCDC criterion (MCDC test suite, for
short) is reasonably small, and hence testing with MCDC incurs a reason-
able test cost. For a Boolean expression φ with n conditions, the size of its
minimal MCDC test suite is n+ 1 (e. g., [4], [5], [6]), instead of 2n required
for exhaustive testing. (This will be explained more in details in Section 2.2.)

Thus, MCDC effectively detects faults at reasonable cost. Due to such practi-
cal rationales, MCDC has been widely used. Various safety standards mandate
its use in testing safety-critical components, such as DO-178 [1] (avionics) and
ISO26262 [2] (automotive).

Driven by such industrial demands, MCDC has been actively studied from
various aspects, e. g., development of variants of MCDC [4,7], model-based test-
ing with MCDC [7], coverage-driven test generation (a. k. a., CDTG) for program
codes [8], empirical studies on its effectiveness [9,10,11], and testing Deep Neu-
ral Networks (DNNs) with MCDC [12]. Among them, test case generation for
MCDC for Boolean expressions, which, given a Boolean expression, to find its
MCDC test suite, is a basic function for such testing techniques with MCDC,
and thus has been an important subject. Jones and Harrold developed algo-
rithms for MCDC test reduction [13]. Arcaini et al. [14] developed a Boolean
expression testing framework to construct a small test suite including MCDC.
Bloem et al. [7] proposed yet another approach for MCDC test generation in
developing a model based testing technique using MCDC.

In this paper, we develop an algorithm to construct small or even minimum
MCDC test suites; i. e., given a Boolean expression φ with n conditions, generate
an MCDC test suite whose size is equal to or smaller than n+ 1. To realize such
an algorithm, we use SAT solving as the key technique. To evaluate the proposed
technique, we conduct experiments where we apply it to a real-world avionics
system in comparison with state-of-the-art techniques. The experiments confirm
that the technique can construct minimal MCDC test suites within reasonable
times, and improves significantly upon prior techniques.

This paper is organized as follows. The next section states the problem that
we tackle. Section 3 describes technical details of the proposed technique. Section
4 reports our evaluation of the proposed technique via experimental results.

2

Section 5 states the significance of the work w. r. t., existing studies. Section 6
mentions possible future directions of this work.

2 Preliminaries

2.1 Definitions and Problem Formulations

In this subsection, we define the notion of ACC more formally. It is important to
note that there have been proposed several variants of ACC, including General
Active Clause Coverage (GACC), Restricted Active Clause Coverage (RACC),
Correlated Active Clause Coverage (CACC), General Inactive Clause Coverage
(GICC), Restricted Inactive Clause Coverage (RICC) [4,15], Reinforced Con-
dition Decision Coverage (RCDC) [11,16], and Observable Modified Condition
Decision Coverage (OMCDC) [17].

RACC is the classical and traditional form of ACC testing. On the other
hand, recently, CACC has become known to be more practical in industrial
usage. In this paper, we thus focus on RACC and CACC, but note that our
proposed techniques in this paper can be applied to the other variants of ACC.

In the following, we define RACC and CACC. First, as in this paper we aim
to develop ACC test generation techniques, we handle logical formulas as the
target object that our techniques process; however, we mainly deal with them
in the form of Boolean expressions by abstracting conditions in logical formulas
by Boolean variables. This is as exemplified by the example in Section 1. We
call Boolean variables in Boolean expressions conditions. We also use the term
predicate as a shorthand for Boolean expression.

Next we introduce the notion of determination:

Definition 1 (Determination). Let φ be a predicate and c be a condition of
φ. We say that condition c determines φ, if all the other conditions in φ have
values so that changing the truth value of c changes the truth value of φ.

ACC stipulates that each condition of predicate φ independently determines
the result of φ. Thus, it is convenient to name the condition on which we are
focusing as the major condition, and all of the other conditions are minor con-
ditions. Formally, for a predicate φ with n conditions c1, c2, · · · , cn, and a con-
dition ci in φ, i. e., i ∈ {1 · · ·n} called the major condition, conditions cj such
that j ∈ {1 · · ·n} ∧ (i 6= j) are called minor conditions.

Definitions of test cases and test suites are also provided as follows:

Definition 2 (Test case and Test suite). A test case of a predicate φ is a
possible truth assignment for all the conditions in φ. A test suite is a set of test
cases.

The definitions of RACC and CACC are now ready as follows:

Definition 3. [RACC and CACC] Let φ be a predicate and T be a test suite. A
CACC pair of a condition c of φ is a pair of test cases of φ, satisfying that (1)

3

condition c determines φ as the major condition in both test cases and (2) the
values of c are different. An RACC pair is a CACC pair such that the values
for the minor conditions are same in the two test cases. We say that T covers a
condition of φ in RACC (resp. CACC), if it includes an RACC (resp. CACC)
pair of the condition. The test requirement of RACC (resp. CACC) for φ is that
T should cover all the conditions of φ. RACC (resp. CACC) is a measure to
describe the degree to which test requirements of RACC (resp. CACC), i. e., how
many conditions, are covered by T .

Note that RACC only differs from CACC in that the former requires the
minor conditions of a test case pair have to have the same values, while the
latter does not. Therefore, we can say RACC is stricter criterion than CACC;
i. e., a RACC test suite for a predicate φ is also a CACC for it, but not vice
versa. We call a test suite satisfying RACC (resp. CACC) test requirements a
RACC (CACC) test suite.

2.2 Sizes of Minimum ACC Test Suites

The size of a test suite often plays a critical factor for the feasibility and success of
real-world (software and hardware) system testing, and has been a main concern
in theory and practice of testing techniques. A main reason for it is that “full
automation” of test case execution, despite of a large body of research on it,
is still largely limited in practice due to problems such as the oracle problem.5

Another reason is that execution of one test case, even if automated, is often too
expensive for allowed time and/or financial constraints; and thus the number of
test cases that can be executed is limited.

Regarding properties on the ACC test suite size, it is often mentioned in
literature that the size of a minimum ACC test suite is “around” n + 1, for a
predicate with n conditions:

1. “Achieving MCDC requires, in general, a minimum of n+ 1 test cases for a
decision with n inputs.”, by Hayhurst et al. [5], where “decision” here means
“predicate” in our setting.

2. “MCDC requires for n input variables a test suite at least of size n+ 1.”, by
Felbinger et al. [6], where ‘variables’ here mean ‘conditions’ in our setting.

3. “It turns out that for a predicate with n clauses, n+ 1 distinct test require-
ments, rather than the 2n one might expect, are sufficient to satisfy active
clause coverage.”, by Amman and Offutt [4], where ‘clause’ here means ‘con-
dition’ in our setting.

These claims are similar but not equivalent: the first two claims state that at
least n+1 test cases are required to for an ACC test suite for a predicate with n
conditions, while the third one states n+ 1 test cases are sufficient. Although it
can be conjectured from these that the minimum sizes of ACC test suites exist
around n+ 1, according to our best knowledge, a formal proof of this property
is still an open problem.

5 The challenge of distinguishing the corresponding desired and correct behavior from
potentially incorrect behavior given a test case for a system under test.

4

2.3 Boolean Satisfiability Problem (SAT) and SAT Solvers

The Boolean satisfiability problem (SAT), known to be an NP-complete problem,
is the problem of determining if there exists an interpretation, a. k. a., model,
that satisfies a given Boolean expression. SAT solvers are software tools that
automatically solve SAT problems. As many NP-complete problems can be re-
duced to SAT, the development of efficient SAT solvers is an important and
active research subject. We use SAT solvers for our ACC test generation.

3 Algorithm for Optimal MCDC Test Generation

In this section, we develop an algorithm for generating an optimal test suite for
MCDC. We explain our algorithm by first introducing the notion of Predicate
Determining Condition (PDC), based upon which we develop our algorithm.

3.1 Predicate Determining Condition (PDC)

We explain the notion of predicate determining condition (PDC), introduced
in [4], which we use in developing our ACC test generation algorithm.

Definition 1 provided the definition of determination. PDC, given the target
predicate φ and the major condition of φ, provides the condition, as a logical
formula for minor conditions, under which the major condition c determines φ.

Definition 4 (Predicate determining condition: PDC). Let φ be a pred-
icate φ and c be a condition in φ. The predicate determining condition (PDC)
of a predicate φ and a condition c, denoted by φc, is a predicate under which the
value of c determines that of φ.

Since a predicate expresses a set of test cases, the PDC of condition c can be
also interpreted as all test cases for which c determines φ.

An advantage of PDCs is that we can compute them. Given a predicate φ
and a condition c, the PDC is computed as follows:

Proposition 1 Let φc=True (and φc=False) represent the predicate φ with every
occurrence of c replaced by ‘True’ (and ‘False’), respectively. Neither φc=True

nor φc=False has any occurrences of condition c. The PDC of condition c for a
predicate φ is obtained by connecting the two expression with exclusive-or:

φc = φc=True ⊕ φc=False (2)

This proposition holds, as the requirement that condition c independently
affects the outcome of predicate φ can be described as the following formula,
which corresponds to (2):

(φc=True ∧ ¬φc=False) ∨ (¬φc=True ∧ φc=False),

5

Example 1. Let φ be φ1 = s ∧ (t ∨ u) of Boolean expression (1). The PDC of
predicate φ and condition s, i. e., φs, can be derived as follows:

φs = φs=True ⊕ φs=False

= (True ∧ (t ∨ u))⊕ (False ∧ (t ∨ u))
= (t ∨ u)⊕ False
= (t ∨ u)

This means that for the major condition s to determine predicate φ, there are
three choices for truth assignments, (t, u), (t,¬u), and (¬t,¬u).

We remark that if the PDC of a predicate and a condition is not satisfi-
able, then this means that it is not feasible to create an ACC test pair for that
condition. We call such a condition an infeasible condition.

3.2 SAT-encoding

The key device to develop our algorithm is the SAT-encoding of the following
problem: “For a predicate φ and the number of test cases k, is it possible to
construct an ACC test suite?”. We explain about the SAT-encoding of this
problem in this subsection. The encoding uses a matrix model with p columns
and n rows as Boolean conditions xnp to encode the test suite, as follows:

X =

x
1
1 . . . x

1
p

...
...

xk1 . . . x
k
p

This matrix model of a test suite expresses that the i-th row represents the i-
th test case, and the p-th column of the row represents the value of the p-th
parameter of the i-th test case.

Using the matrix model to represent a test suite, we construct the SAT
encoding to construct an ACC test suite with the size k, as follows:

encode(φ, condsφ, k) =
∧

c∈condsφ
(1)

k∨
i=1

(
(xic ∧ φic)

(2)

∧
k∨

j=1,i6=j

(
(¬xjc ∧ φjc)

(3)

∧

∧
d∈condsφ s.t. c 6=d

(xid ⇔ xjd)

(4)

))

where φic is PDC of condition c whose Boolean conditions are those in the i-th
row of the matrix model, and condsφ is a set of feasible conditions in φ. This SAT-
encoding specifies the following: Sub-formula (2) specifies that for a condition of
the predicate, say c, in at least one row of the matrix table, i. e., in one test case
of the test suite, the value of the condition in the test case, xc, must be ‘True’,
while the PDC of the condition c must be also true. On the other hand, sub-
formula (3) specifies that the same condition must be ‘False’, while the PDC of

6

c must be ‘True’, in at least one test case. The i 6= j in formula (3) clarifies that
the value of condition c cannot be ‘True’ and ‘False’ in the same row. This sub-
formula can be omitted, but carefully placed redundant SAT formula can speed
up the solving process. The outermost conjunction (1) indexed by conditions of
φ imposes that the above sub-formulas (2) and (3) are to be applied to all the
conditions in the predicate under test φ.

Sub-formulas (1), (2), and (3) are encoding for CACC, since sub-formulas (2)
and (3) together satisfy condition (1) and (2) of Definition 3, and sub-formula
(1) guarantees it for all the conditions. Sub-formula (4) specifies the condition
for RACC that stipulates that values of all the minor conditions are equivalent.
For RACC, we may also omit φjc in (2); this is possible, since if constraints (2)
and (4) hold and xjc = False, then the i-th test case and the j-th test case differ
only in the value of xc so that φjc and φic should be equivalent.

The encoding for a given test suite size induces a SAT formula, such that
‘SAT’ for the evaluation of the formula entails the existence of an ACC test suite
with that size; in that case, the solution contains all the information on the ACC
test suite. On the other hand, ‘UNSAT’ means the refutation of the existence of
such a test suite.

Example 2. The following snippet of SAT-formula is the SAT-encoding of Boolean
expression φ1 with the test suite size 4. The sub-formulas (i), (ii), and (iii), re-
spectively, express that conditions s, t and u are confirmed to independently
affect the outcome of the predicate.

(s1 ∧ φ1
s) ∧

((
(¬s2 ∧ φ2

s) ∧ (t1 ⇔ t2) ∧ (u1 ⇔ u2)
)
∨(

(¬s3 ∧ φ3
s) ∧ (t1 ⇔ t3) ∧ (u1 ⇔ u3)

)
∨
(
(¬s4 ∧ φ4

s) ∧ (t1 ⇔ t4) ∧ (u1 ⇔ u4)
))

.

.

.

∨ (s4 ∧ φ4
s) ∧

((
(¬s1 ∧ φ1

s) ∧ (t4 ⇔ t1) ∧ (u4 ⇔ u1)
)
∨(

(¬s2 ∧ φ2
s) ∧ (t4 ⇔ t2) ∧ (u4 ⇔ u2)

)
∨
(
(¬s3 ∧ φ3

s) ∧ (t4 ⇔ t3) ∧ (u4 ⇔ u3)
))

(i)

∧

(t1 ∧ φ1
t) ∧

((
(¬t2 ∧ φ2

t) ∧ (s1 ⇔ s2) ∧ (u1 ⇔ u2)
)
∨(

(¬s3 ∧ φ3
s) ∧ (t1 ⇔ t3) ∧ (u1 ⇔ u3)

)
∨
(
(¬s4 ∧ φ4

s) ∧ (t1 ⇔ t4) ∧ (u1 ⇔ u4)
))

.

.

.

(ii)∧ (

(u1 ∧ φ1
u) ∧ · · ·

)
(iii)

3.3 Algorithm

We proceed with the actual algorithm on how to find a smaller ACC test suite
using SAT-encoding. For the discussion, we first argue about properties on the
size of ACC test suites. From our literature review in Section 2.2, we conjecture
that the minimum size of ACC test suites should be around n+1 for a predicate
with n conditions. However, because no formal proof for this lower bound exists
yet, we use the following proposition, which is a weaker form of the conjecture,
but which can be proved easily:

7

Algorithm 1: The main of our algorithm for CACC

Input: A Boolean Expression (φ)
Output: A CACC test suite

1 Compute the feasible conditions of φ, and store them in condsφ;
2 if(|condsφ| == 0) return (“Exception: No feasible conditions exist.”);
3 Set size ← 2 ∗ |condsφ|, for the initial test size;
4 while true do
5 (isSAT,model) ← checkSat(encode(φ, condsφ, size));
6 if(isSAT == UNSAT) return suite;
7 Make test suite from model;
8 size ← size − 1

9 end

Proposition 2 For a predicate with n conditions, the minimum size of a CAC-
C/RACC test suite is at most 2n.

Proof. From Definition 3, an RACC test suite should include at least one RACC
pair for each condition in φ. Since we can make an RACC pair with two test
cases, 2n is enough for the size of an RACC test suite for φ with n conditions.
Since a RACC test suite is also an CACC one, this property also holds for CACC.

Using Proposition 2, the algorithm is designed as in Algorithm 1. The algo-
rithm, at the beginning (in Line 1), computes feasible conditions of φ. Computing
all the feasible conditions can be done by collecting conditions whose PDCs are
satisfiable (possibly, using a SAT solver). Based on the computed feasible con-
ditions (condsφ) and their number (|condsφ|), the algorithm starts searching for
a minimum test suite. It iteratively attempts to generate an ACC test suite by
decrementing the size of a test suite by one, starting from 2 ∗ |condsφ|. In each
iteration, the algorithm applies the SAT-encoding of the current test size, and
applies a SAT solver to the encoded formula. The decremental iteration contin-
ues while the encoded formula is satisfiable, and terminates when it encounters
‘unsatisfiable (UNSAT)’ (Line 6). The test suite found in the last satisfying iter-
ation is minimal. Line 2 handles a corner case, where no feasible conditions are
contained in φ, by throwing an exception.

The encoded formula in each iteration is a SAT problem over Boolean vari-
ables, and the test size. The size starts at ‘2 ∗ |condsφ|’ and is reduced by one
in each iteration. Thus, the algorithm is guaranteed to terminate with a mini-
mum ACC test suite, in principle. In practice, however, limited computational
resources may prevent us from finding the minimum one. The SAT solver may
take a lot of time and/or a lot of memory, as the attempted search approaches the
optimal size. Thus, a concern is scalability of the algorithm, which we examine
by experiments in Section 5.

The algorithm uses 2n for the initial test size based on Proposition 2. We
have two main reasons to adopt this proposition, instead of the conjecture for
n+ 1. First, our algorithm is certainly correct using the proved proposition with

8

2n, instead of using the (unproved) conjecture with n+1. Second, our algorithm
with 2n for the initial size performs well in practice, outperforming existing
techniques, as shown in Section 5. Moreover, if the worst-case bound of n+ 1 is
proven in the future, we can easily adapt that result in our algorithm, by setting
n+ 1 as the initial size.

4 Related Work

Test suite reduction and minimization is one of central subjects in software
testing. To the best of our knowledge, the earliest work which discusses the test
suite sizes in MCDC testing is by Jones and Harrold [13]. They develop a test
suite reduction technique for MCDC, which, given a predicate φ and an MCDC
test suite T , finds an MCDC test suite T ′ such that T ′ ⊂ T . The basic approach
of the technique is to construct such an MCDC test suite T ′, by iteratively
choosing or removing one test case from the given MCDC test suite T based
on the contribution weight computed for each test case in T . For example, their
‘build-up’ approach constructs an MCDC test suite by iteratively adding a test
case in T with the highest contribution weight to T ′, starting from the empty
set as the initial test suite of T ′. Note that the JH-algorithm is a test reduction
technique, rather than MCDC test generation; however, by complementing the
algorithm with a function to prepare initial MCDC test suites, it can be used as
a test generation technique for MCDC.

Arcaini et al. [14] developed a general framework for test generation for
Boolean expression testing with various coverage criteria, including MCDC. The
technique constructs an MCDC test suite with the basic approach of accumu-
lating an MCDC pair (a pair of test cases) for each condition in turn. Offutt
et al. [18], in developing a model-based testing technique with MCDC testing,
discuss a similar technique to construct an MCDC test suite. However, both
techniques require a test suite of size 2n for a predicate with n conditions, which
is usually larger than the test suites that our algorithm generates.

Bloem et al. [19] devised an algorithm to construct MCDC test suites, also
in developing their model-based testing technique using MCDC. The technique
is similar to those by Arcaini et al. [14] and Offutt et al. [18], in the respect
that its basic procedure is to accumulate an MCDC pair for each condition in
turn; however, they apply an improvement to this basic approach to reduce the
size of generated test suites. The improvement is that the algorithm, for every
condition, checks if the current test suite already includes an MCDC pair for the
condition, when adding an MCDC pair for each condition. If the MCDC pair
already exists in the test suite, the algorithm skips adding an MCDC pair for
that condition. They also use SAT-solving to realize the technique.

Our algorithm is inspired by the SAT-based test generation technique for
combinatorial interaction testing (CIT) by Hnich et al. [20]. The key of their
technique is a SAT-encoding of the problem of finding a CIT test suite with a
specified size. It is confirmed that the technique can construct CIT test suites
with reasonably small sizes, compared with other approaches. Due to the signif-
icance, this work is followed by a number of studies for extension or acceleration

9

Table 2: The benchmark set consists of 20 logical expressions, retrieved from “Traffic Collision Avoidance System (TCAS)“
of an avionics system [8]. The logical expressions in the benchmark set contain 5 to 15 (feasible and infeasible) conditions, as
indicated by #conds. The table also shows the infeasible conditions (I.C.) for each benchmark; ACC pairs cannot be made for
such infeasible conditions.

No Boolean expression #conds I.C.

1 a(!b+!c)d+ e 5
2 !(ab)(d!e!f+!de!f+!d!e!f)((ac(d+ e)h) + (a(d+ e)!h) + (b(e+ f))) 7
3 !(cd)(!ef !g!a(bc+!bd)) 7
4 ac(d+ e)h+ a(d+ e)!h+ b(e+ f) 7
5 !ef !g!a(bc+!bd) 7
6 (!ab+ a!b)!(cd)!(gh)((ac+ bd)e(fg+!fh)) 8 f
7 (ac+ bd)e(fg+!fh) 8
8 (a((c+d+e)g+af+c(f+g+h+ i))+(a+b)(c+d+e)i)!(ab)!(cd)!(ce)!(de)!(fg)!(fh)!(fi)!(gh)!(hi) 9
9 a(!b+!c+ bc!(!fgh!i+!ghi)!(!fglk+!g!ik)) + f 9

10 a((c+ d+ e)g + af + c(f + g + h+ i))(a+ b)(c+ d+ e)i 9 b, h
11 (ac+ bd)e(i+!g!k+!j(!h+!k)) 10
12 (ac+ bd)e(i+!g!k+!j(!h+!k))(ac+ bd)e(i+!g!k+!j(!h+!k)) 10
13 (!ab+ a!b)!(cd)(f !g!h+!fg!h+!f !g!h)!(jk)((ac+ bd)e(f + (i(gj + hk)))) 11
14 (ac+ bd)e(f + (i(gj + hk))) 11
15 (a(!d+!e+ de!(!fgh!i+!ghi)!(!fglk+!g!ik))+!(!fgh!i+!ghi)!(!fglk+!g!ik)(b+ c!m+

f))(a!b!c+!ab!c+!a!bc)
12

16 a+ b+ c+!c!def !g!h+ i(j + k)l 12
17 a(!d+!e+ de!(!fgh!i+!ghi)!(!fglk+!g!i!k))+!(fgh!i+!ghi)!(!fglk+!g!ik)(b+ c!m+ f) 12
18 a!b!c!d!ef(g+!g(h+ i))!(jk+!jl +m) 13
19 a!b!c(!f(g+!f(h+ i))) + f(g+!g(h+ i)!d!e)!(jk+!jl!m) 13
20 a!b!c(f(g+!g(h+ i)))(!e!n+ d)+!n(jk+!jl!m) 14

10

(e. g., [21]). Our work in this paper thus can be seen as a new application direc-
tion of the SAT-based test generation technique to MCDC testing, and also as
an import of new technical element to MCDC testing field.

5 Experimental Evaluation

In this section, we conduct experiments to evaluate our proposed technique. Due
to the space limitation, we only evaluate the proposed algorithm for the CACC
case, as it is the most basic, practical, and interesting case among ACC variants.
To clarify the purpose of the experiments and evaluation, we set the following
research questions:

– RQ1: Does our algorithm perform better than existing techniques, with re-
spect to the sizes of generated test suites and computation times?

– RQ2: Can our algorithm find minimal CACC test suites?

For investigating these RQs, we implemented our algorithm in Scala. Also
to conduct the experiments, we prepared a benchmark set of logical expressions
retrieved from “Traffic Collision Avoidance System (TCAS)“ of a real-world
avionics system [8]. The details about benchmark data are shown in Table 2.

For RQ1, we also implemented the MCDC test generation technique based
on the JH-algorithm and the technique by Bloem et al., as the the state-of-the-
art techniques by ourselves, since implementations of these techniques are not
available. Since JH-algorithm is an MCDC test reduction technique instead of
test generation, we complemented it with the function to randomly generate
MCDC test suites so that JH-algorithm can reduce them as initial test suites.
The function is realized to randomly generate m ACC pairs for each condition
of a given formula. Therefore, the most basic form of m = 1 means 2n test
cases, where n is the number of conditions in the given formula. We prepared
several variants that vary in the sizes of initial MCDC test suites, as follows:
m = 1, 50, 200, and 400, respectively denoted by JH 1, JH 50, JH 200, and JH 400.
Also for RQ1, the timeout is set to 60 seconds for our algorithm for a proper
comparison and evaluation.

For RQ2, we measure the time required for our algorithm to find minimal
test suites by finding UNSAT for the benchmark set, thus proving that no test
suite smaller than the previously found satisfiable assignment exists. For this,
the timeout is set to 1800 seconds for our algorithm.

Table 3 shows the experimental results. We answer the research questions,
by observing the experimental results, in the following.

Answer to RQ1. From the experimental results, we conclude that our algorithm
performs better than the state-of-the-art techniques in both the size of generated
test suites and computation times. First, our algorithm wins against the other
algorithms for all the benchmark data. On other hand, the algorithm variants
based on the JH-algorithm or the technique by Bloem et al., only perform equally
well to ours only in a couple of cases. Moreover, our algorithm can build such

11

Table 3: The results of our experiments. This table shows the sizes of the generated CACC test suites (‘#tests‘) and the
computation times in seconds (‘time’) of the algorithms (JH1, JH50, JH200, JH400, by Bloem et al., and our algorithm) for
the benchmark set in Table 2. To properly answer RQ1 and RQ2, we use two timeout settings for our algorithm, 60 seconds
(time<60), and 1800 seconds (time<1800). A ‘—’ in columns ‘time<1800’ means a minimum test suites is found within in 60
seconds, and the time is given in column ‘time<60’. The bold font in the columns for ‘#tests‘ denote instances in which the
test suite size is smaller than or equal to those found by other algorithms, while that in the columns for ‘time‘ means the
algorithms returned the test suite within 60 seconds. For columns of our algorithms, a ‘*’ denotes a minimal test suite is found
with the guarantee of finding ‘UNSAT‘ by the SAT solver. ‘#wins’ denotes the number of cases where the algorithm generates
the smallest test suite among all algorithms within 60 seconds; multiple winners may exist for each benchmark data. ‘impr(%)’
denotes the reduction rate on the test suite size by our algorithm compared with that by the corresponding algorithm of the
column; e.g., the test suite size by our algorithm is smaller than that by JH400 by 19.7% in total.
The experiments were performed on a machine with a Quad-Core Intel Xeon E5 3.7 GHz and 64 GB Memory running on Mac
OS High Sierra 10.13.3. For running the programs, Scala option “-Xmx8g -Xms1024m” is used. As the back-end SAT solver,
we used SMT solver Z3 [22].

JH1 JH50 JH200 JH400 Bloem et. al. our algorithm (2n for the initial size)
No #tests time #tests time #tests time #tests time #tests time #tests time<60 #tests time<1800

1 6 0.9 6 4.2 6 10.4 6 10.8 6 0.9 6* 0.5 —
2 9 1.7 8 11.1 8 11.3 8 12.1 8 1.5 7* 1.3 —
3 7 1.6 7 2.9 7 2.8 7 2.9 7 1.3 6* 1.0 —
4 12 1.7 7 18.1 6 52.5 6 98.4 9 1.4 6* 1.0 —
5 9 1.4 8 5.1 8 5.1 8 5.0 9 1.4 8* 0.9 —
6 9 1.8 8 13.7 7 49.5 7 118.6 9 1.7 6* 1.2 —
7 10 1.7 8 20.7 7 69.4 7 89.0 10 1.7 7* 1.0 —
8 15 2.7 12 24.7 12 96.9 10 208.6 11 2.5 5* 2.6 —
9 11 2.6 10 16.9 10 27.2 10 44.5 11 2.2 9* 3.0 —

10 9 2.1 8 18.8 7 71.7 7 138.1 9 1.8 7* 1.1 —
11 12 2.6 10 27.3 10 125.5 9 290.0 12 2.5 8* 1.8 —
12 12 2.6 10 27.4 10 126.7 9 289.1 12 2.5 8* 2.3 —
13 15 3.8 13 27.0 12 99.0 13 243.4 13 3.6 9* 4.0 —
14 12 3.3 13 30.8 12 148.7 12 369.9 13 3.0 9* 2.3 —
15 18 4.4 17 34.5 16 150.6 16 414.1 17 4.3 9* 6.7 —
16 13 3.5 13 35.4 12 142.8 11 304.3 13 3.2 11* 2.0 —
17 18 4.9 15 35.9 13 165.6 13 435.5 16 4.4 11 5.0 11* 86.0
18 15 4.1 13 37.9 13 127.4 13 286.7 14 3.8 13 2.5 13 >1800
19 20 4.2 18 38.2 16 175.0 16 481.1 14 4.0 12 3.3 12* 210.9
20 18 4.6 18 42.0 16 194.8 15 540.5 16 4.4 12 3.4 12* 160.5

#wins 2 3 4 3 2 20 —
impr(%) 32.0 23.4 18.2 16.2 25.7 — —

12

smaller test suites fairly quickly, i. e., within a few seconds for all the benchmark
data, which is much faster than the other techniques. The improvement rate
achieved by our algorithm is also significant; it can generate test suites that are
from 16.2% up to 32.0% smaller than the the other techniques.

Answer to RQ2. From the experiments, we confirm that the resulting test suite is
of size equal or less than n+1 in 17 out of 20 cases. We can also confirm that in 19
cases our algorithm can find the guaranteed minimum sizes by finding ‘UNSAT’
within 1800 seconds. For the case where the algorithm cannot guarantee the
minimum size of the test suite (i. e., for benchmark #18), there may exist a
smaller CACC test suite.

6 Conclusion and Future Work

We believe our algorithm to construct small or even the minimum MCDC test
suites will play a significant role broadly in the software testing field, since (1)
MCDC has become a de-facto standard coverage criterion in testing safety-
critical systems, and (2) the technique, as a basic testing technique, can be
used in combination with other testing techniques, such as model-based testing
and program-code-level testing.

Model-based testing, a sub-discipline of model-based development (MBD),
is another key technique in safety-critical domains such as in avionics and au-
tomotive. A number of studies have attempted to introduce MCDC testing in
model-based testing techniques, to enhance the accountability as well as its bug-
detecting ability [18,7,23,24]; also see Section 4. Generally, these techniques deal
with state transition systems as models, and regard a sequence of states as a test
case. To derive effective test cases, these techniques apply the MCDC criterion
to the transition guards, which specify as a logical formula the conditions for
transitions to take place. This approach is reasonable since real-world transition
systems often become complex and error-prone, however, their test generation
components are not efficient w.r.t. the test suite size and computation time. Our
algorithm can complement such model-based testing techniques.

Another application area of our algorithm is Coverage-Directed Test case
Generation (CDG/CDTG). CDTG is a white-box testing technique, working
at program code level to generate test cases, to achieve a higher code coverage.
CDTG and its adaptation for MCDC have been actively studied [25,26,27]. Such
CDTG techniques targeting MCDC analyze the structure of the given program,
especially logical formulas embedded in the program, and try to find test in-
puts that reach each logical formula in the program. Although these techniques
differ in several dimensions such as search techniques (e. g., dynamic symbolic
execution [25], model checking [26], search-based optimization [27]), they have
in common that they prepare MCDC test suites for embedded logical formulas
before starting the search. Similar to the situation of model-based testing, our
proposed algorithms can effectively complement such CDTG techniques.

We consider several directions for future work. One direction is to extend our
algorithm to deal with general logical formulas, e. g., x = 0 ∧ (x > 0 ∨ y = 0),

13

instead of their abstracted forms in Boolean expressions, i. e., s ∧ (t ∨ u). It is
since our algorithm may produce unusable tests for such an abstracted predicate.
For example, recall Table 1 is an MCDC test suite for s∧ (t∨u). Note, however,
that the first test case, i. e., {s = True, t = True, u = False}, is unusable if
s ∧ (t ∨ u) originates from x = 0 ∧ (x > 0 ∨ y = 0) by abstraction, since there is
no assignment that makes s = True (i. e., x = 0) and t = True (i. e., x > 0) at
the same time. One approach for this would be to impose additional constraints
among abstracted variables, to specify hidden relations between s and t. In the
example, a constraint like ¬(s ∧ t) would encode that. The PDC of s for this
predicate would be constructed as follows: φs=True⊕φs=False∧¬(s∧ t). We need
careful investigations on this approach including how to specify such additional
constraints automatically and how it affects the size of test suite.

Another direction is to further accelerate or scale our algorithm. Although
it was shown by the experiments that our algorithm works fairly well for a real-
world system in the avionics domain, it may need to be prepared for larger
and more complex systems. Toward this technical improvement, we think the
technique using incremental SAT solving [21] can be effectively applied. Thirdly,
we consider to apply our technique to other ACC variants explained in Section 2.
We are also interested in applying it to improve the testing technique for Deep
Neural Networks based on MCDC proposed by [12].

Acknowledgment We thank Hélène Waeselynck and anonymous reviewers
whose comments have greatly improved this paper.

References

1. RTCA: DO-178C: Software considerations in airborne systems and equipment
certification (2011)

2. ISO26262: Int. org. for standardization, road vehicles - functional safety - (2009)
3. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage

to software testing. Software Engineering Journal 9(5) (1994) 193–200
4. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University

Press (2008)
5. Kelly J., H., Dan S., V., John J., C., Leanna K., R.: A practical tutorial on

modified condition/decision coverage. Technical Report NASA/TM-2001-210876,
NASA (2001)

6. Felbinger, H., Pill, I., Wotawa, F.: Classifying test suite effectiveness via model
inference and ROBBDs. In: Proc. 10th Int. Conf. on Tests and Proofs (TAP 2016),
Vienna, Austria. (2016) 76–93

7. Bloem, R., Hein, D.M., Röck, F., Schumi, R.: Case study: Automatic test case
generation for a secure cache implementation. In: Proc. 9th Int. Conf. on Tests
and Proofs (TAP 2015), L’Aquila, Italy. (2015) 58–75

8. Weyuker, E.J., Goradia, T., Singh, A.: Automatically generating test data from a
boolean specification. IEEE Trans. Software Eng. 20(5) (1994) 353–363

9. Dupuy, A., Leveson, N.: An empirical evaluation of the MC/DC coverage criterion
on the HETE-2 satellite software. In: Proc. 19th Digital Avionics Systems Conf.
(DASC2000)

14

10. Vilkomir, S., Starov, O., Bhambroo, R.: Evaluation of t-wise approach for testing
logical expressions in software. In: Proc. Sixth IEEE Int. Conf. on Software Testing,
Verification and Validation, ICST 2013 Workshops, Luxembourg. (2013) 249–256

11. Kapoor, K., Bowen, J.P.: A formal analysis of MCDC and RCDC test criteria.
Softw. Test., Verif. Reliab. 15(1) (2005) 21–40

12. Sun, Y., Huang, X., Kroening, D.: Testing deep neural networks (2018)
arXiv:1803.04792.

13. Jones, J.A., Harrold, M.J.: Test-suite reduction and prioritization for modified
condition/decision coverage. IEEE Trans. Software Eng. 29(3) (2003) 195–209

14. Arcaini, P., Gargantini, A., Riccobene, E.: How to optimize the use of SAT and
SMT solvers for test generation of boolean expressions. Comput. J. 58(11) (2015)
2900–2920

15. Chilenski, J.J.: An investigation of three forms of the modified condition decision
coverage (MCDC) criterion. Technical Report DOT/FAA/AR-01/18, Office of
Aviation Research (2001)

16. Vilkomir, S.A., Bowen, J.P.: From MC/DC to RC/DC: formalization and analysis
of control-flow testing criteria. In: Formal Methods and Testing, An Outcome of
the FORTEST Network, Revised Selected Papers. (2008) 240–270

17. Whalen, M.W., Gay, G., You, D., Heimdahl, M.P.E., Staats, M.: Observable mod-
ified condition/decision coverage. In: 35th Int. Conf. on Software Engineering,
ICSE ’13, San Francisco, CA, USA. (2013) 102–111

18. Offutt, A.J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from
state-based specifications. Softw. Test., Verif. Reliab. 13(1) (2003) 25–53

19. Bloem, R., Greimel, K., Koenighofer, R., Roeck, F.: Model-based MCDC testing of
complex decisions for the java card applet firewall. In: Proc. of the Fifth Int. Conf.
on Advances in System Testing and Validation Lifecycle (VALID 2013). (2013) 1–6

20. Hnich, B., Prestwich, S., Selensky, E.: Constraint-based approaches to the covering
test problem. In: Proc. of CSCLP 2004. Volume 3419 of LNAI. (2005) 172–186

21. Yamada, A., Kitamura, T., Artho, C., Choi, E.H., Oiwa, Y., Biere, A.: Optimiza-
tion of combinatorial testing by incremental SAT solving. In: Proc. of 8th IEEE
Int. Conf. on Software Testing, Verification and Validation (ICST 2015). (2015)
1–10

22. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Proc. of 14th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems,
(TACAS 2008) Hungary. (2008) 337–340

23. Heimdahl, M.P.E., Devaraj, G.: On the effect of test-suite reduction on automati-
cally generated model-based tests. Autom. Softw. Eng. 14(1) (2007) 37–57

24. Gargantini, A., Heitmeyer, C.L.: Using model checking to generate tests from
requirements specifications. In: Proc. 7th European Conf. of Software Engineering,
Held Jointly with the 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, (ESEC/FSE’99). (1999) 146–162

25. Pandita, R., Xie, T., Tillmann, N., de Halleux, J.: Guided test generation for
coverage criteria. In: Proc. of 26th IEEE Int. Conf. on Software Maintenance
(ICSM 2010), Timisoara, Romania. (2010) 1–10

26. Bokil, P., Darke, P., Shrotri, U., Venkatesh, R.: Automatic test data generation
for C programs. In: Proc. of Third IEEE Int. Conf. on Secure Software Integration
and Reliability Improvement, SSIRI 2009. (2009) 359–368

27. Awedikian, Z., Ayari, K., Antoniol, G.: MC/DC automatic test input data gener-
ation. In: Proc. of Genetic and Evolutionary Computation Conf. (GECCO 2009),
Canada. (2009) 1657–1664

15

	Optimal Test Suite Generation for Modified Condition Decision Coverage using SAT solving
	Introduction
	Preliminaries
	Definitions and Problem Formulations
	Sizes of Minimum ACC Test Suites
	Boolean Satisfiability Problem (SAT) and SAT Solvers

	Algorithm for Optimal MCDC Test Generation
	Predicate Determining Condition (PDC)
	SAT-encoding
	Algorithm

	Related Work
	Experimental Evaluation
	Conclusion and Future Work

