
Developing medical devices from Abstract State
Machines to embedded systems:

a smart Pill Box case study

Andrea Bombarda1, Silvia Bonfanti1, and Angelo Gargantini1

Department of Economics and Technology Management,
Information Technology and Production

University of Bergamo, Italy
{andrea.bombarda,silvia.bonfanti,angelo.gargantini}@unibg.it

Abstract. The development of medical devices is a safety-critical pro-
cess, because a failure or a malfunction of the device can cause serious
injuries to the patients whom use it. The application of a rigorous pro-
cess for their development reduces the risk of failures since validation
and verification activities can be performed in a objective, reproducible,
and documentable manner. In this paper we present an approach based
on the Abstract State Machine (ASM) formal method. Starting from
the model, validation and verification (V&V) techniques can be applied.
Furthermore, by step-wise refinement, a final model can be obtained,
which can be automatically translated to C++ code. The process is ap-
plied to the smart pill box case study. Starting from the ASM model,
we generate C++ code for the Arduino platform after the application of
V&V activities. Furthermore, we introduce regulation (IEC62304) and
guidelines (FDA General Principles of Software Validation) that support
the developer in medical software development. In particular, we explain
how ASMs formal process can be compliant with them.

1 Introduction

Software is becoming an essential part of medical devices, so it is very important
that its development process adheres to certification standards. All the stan-
dards available provide only general description of common software engineering
activities, but nothing is said about the techniques that have to be used to guar-
antee the safety of the devices and the correctness of their software. The main
references concerning the regulation of medical software are the standard IEC
62304 (International Electrotechnical Commission) [12] (see Sect. 6.1) and the
FDA guidelines [15] in which several concepts that can be used as guidance for
software validation and verification are defined (see Sect. 6.2). The regulation
and the guideline aim for more rigorous approaches for software development and
validation, but neither of them recommend a particular method or technique.

In this paper we propose a formal approach that can be used to develop and
validate the software of an embedded medical device, in compliance with the
IEC regulation and FDA guidance for software validation as shown in Sect 6.

State0 State1 StatenTransition1 Transition2 Transitionn

Fig. 1. An ASM run with a sequences of states and state-transitions (steps)

Our formal approach is studied over a simple example of a smart portable pill
box, called e-Pix (electronic PIll boX), modelled with Abstract State Machines
(ASM) by using the Asmeta framework. We have applied several validation and
verification (V&V) techniques [13], such as model simulation (see Sect. 4.3),
scenario-based testing (see Sect. 4.4) using the Avalla language, and property
verification (see Sect. 4.5). As final step, we have used Asm2C++ to generate the
C++ code to be executed by Arduino.

The paper is organized as follows. Sect. 2 introduces the ASMs and all the
tools provided by the Asmeta framework. In Sect. 3 we explain the e-Pix case
study. Sect. 4 presents modelling by refinement, validation, testing and verifica-
tion procedures applied to the case study. Sect. 5 explains how we have built
the prototype of e-Pix and generated C++ code. Sect. 6 gives a comprehensive
review about how our approach can be used to comply the main regulations
concerning the development of medical software. Sect. 7 presents works related
to the use of rigorous approaches in medical software development, and Sect. 8
concludes the paper.

2 Abstract State Machines and Asmeta framework

Abstract State Machines (ASMs) [7] are an extension of Finite State Machines
(FSMs), where unstructured control states are replaced by states with arbitrarily
complex data. ASM states are mathematical structures, i.e., domains of objects
with functions and predicates defined on them. An ASM location - defined as
the pair (function-name, list-of-parameter-values) - represents the abstract ASM
concept of basic objects container. The ordered pair (location, value) represents
a machine memory unit.

Location values are changed by firing transition rules. They express the mod-
ification of functions interpretation from one state to the next one. Note that the
algebra signature is fixed and that functions are total (by interpreting undefined
locations f(x) with value undef). Location updates are given as assignments of
the form loc := v, where loc is a location and v is its new value. They are the
basic units of rule construction. There is a limited but powerful set of rule con-
structors to express: guarded actions, simultaneous parallel actions, sequential
actions, nondeterminism, and unrestricted synchronous parallelism.

An ASM computation or run is, therefore, defined as a finite or infinite se-
quence of states s1, s2, . . . , sn, . . . of the machine. s1 is an initial state and each
si+1 is obtained from si by firing the unique main rule, which could fire other
transitions rules (see Fig. 1).

Modelling

Editor AsmetaL - AsmEE

Visualizer AsmetaVis

Refinement prover
AsmRefProver

ASM 0 ASM 1
ASM
final

Validation and verification A
t

a
n

y
le

ve
l

Code Generator

Asm2C++ C++ Code

Abstract unit tests generator

Model-Based Testing
ATGT

Validation Property Verification

Model Checking
AsmetaSMV

Model Review
AsmetaMA

Simulation
AsmetaS

Scenarios
AsmetaV

C++ Unit test

Animator
AsmetaA

Fig. 2. The ASM development process powered by the Asmeta framework

During a machine computation, not all the locations can be updated. Func-
tions are classified as static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment) and controlled (read in the current state and up-
dated by the machine in the next state). A further classification is between basic
and derived functions, i.e., those coming with a specification or computation
mechanism given in terms of other functions.

An ASM can be nondeterministic due to the presence of monitored functions
(external nondeterminism) and of choose rules (internal nondeterminism).

Asmeta framework. The ASM method can facilitate the entire life cycle of
software development, i.e., from modeling to code generation. Fig. 2 shows the
development process based on ASMs. The process is supported by the Asmeta

(ASM mETAmodeling) framework1 [4] which provides a set of tools to help the
developer in various activities:

– modeling: the system is modeled using the language AsmetaL. The user
is supported by the editor AsmEE and by AsmetaVis, the ASMs visualizer which
transforms the textual model into a graphical representation. The user can di-
rectly define the last ASM model or s/he can reach it through refinement. The
refinement process is adopted in case the model is complex. In this case, the
designer can start from the first model (also called the ground model) and can
refine it through the refinement steps by adding details to the behavior of the
ASM. The AsmRefProver tool ensures whether the current ASM model is a
correct refinement of the previous ASM model.

– validation: the process is supported by the model simulator AsmetaS,
the animator AsmetaA, the scenarios executor AsmetaV, and the model reviewer
AsmetaMA. The simulator AsmetaS allows to perform two types of simulation:
interactive simulation and random simulation. The difference between the two

1 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/

types of simulation is the way in which the monitored functions are chosen. Dur-
ing interactive simulation the user inserts the value of functions, while in random
simulation the tool randomly chooses the value of functions among those avail-
able. AsmetaA allows the same operation of AsmetaS, but the states are shown
using tables which make the readability of the state easier. AsmetaV executes
scenarios written using the Avalla language. Each scenario contains the ex-
pected system behavior and the tool checks whether the machine runs correctly.
The model reviewer AsmetaMA performs static analysis in order to check quality
attributes like minimality, completeness, and consistency.

– verification: the properties derived from the requirements document are
verified to check whether the behavior of the model complies with the intended
behavior. The AsmetaSMV tool supports this process.

– testing: the tool ATGT generates abstract unit tests starting from the ASM
specification by exploiting the counterexamples generation of a model checker.

– code generation: given the final ASM specification, the Asm2C++ auto-
matically translates it into C++ code. Moreover, the abstract tests, generated
by the ATGT tool, are translated to C++ unit tests.

3 The e-Pix case study

Adherence to pharmacological therapy [8] is one of the most well-known problem
in medical field. Sometimes it happens that the patient is not adherent to the
therapy because he does not remember to take the medicine or he does not
remember if he has already taken it. For this reason the patients have the need to
adopt a system that can help them to follow the therapy. The device introduced
in the market is the pill box, where pills are inserted based on the scheduled doses
of medications. The first pill boxes were simply multicompartment boxes where
each compartment was filled with the corresponding medicine. The simplest
boxes have one section for each day, while the most complicated have multiple
sections corresponding to different times of the day. The box helps the user
to prevent/reduce medication errors because once the pills are in the correct
section the user has only to remember to take it at the right time. With the
introduction of technology in the medical field, even the pill boxes have evolved.
They are integrated with electronic components that provide alerts to patients
when the time of medicine comes. Usually the pill box is provided with a memory
where the list of pills with the therapy time are saved and at the right time the
box notifies to the user. The notifications can take place with a sound/light
signal or, for smarter pill boxes, they can be displayed on the smartphone. In
this paper, we consider a pill box developed using Arduino2, an open-source
electronic prototyping platform. We were asked by a local company to re-engineer
the software of an existing pocket portable pillbox called e-Pix, following the
guidelines discussed in Sect. 6. In particular, the company wants to certify its
product w.r.t. the FDA guidelines and IEC regulation and, because of that, needs

2 https://www.arduino.cc/

to be sure it works properly. Furthermore, they have provided some functional
requirements which the prototype has to satisfy, e.g. if the patient does not take
the pill in time the red light of the corresponding compartment has to blink.

Requirements. The existing e-Pix has an array of compartments each contain-
ing an unique type of unpackaged pills and having a sensor able to signal the
opening of the related window. Each compartment is provided with a red led,
used as output to indicate which pill has to be taken (red led turns on until
the patient opens the compartment) and if the pill has been taken. When the
pill time has passed and the set timeout expires the red led starts to blink for a
certain period of time to attract patient’s attention because he forgot the pill.

{ ‘‘patient” : ‘‘patient name”,
‘‘pills” : [
{ ‘‘compartment” : ‘‘

compartment number”,
‘‘name” : ‘‘pillName”,
‘‘time consumption” :

[‘‘t1”, ‘‘t2”, ...],
},
{...}

]
}

Code 1. Example of the JSON file
containing the prescriptions

After that the red led is turned off and a mes-
sage is shown on the e-Pix display. In case
the patient takes the pill but he forgot closing
the compartment window, the red led starts
to blink for a certain period of time. The pre-
scription file is generated by the user by in-
teracting with some buttons on the e-Pix and
stored inside e-Pix as JSON file (see Code 1).
It contains for each pill the compartment in
which it is contained, the name of the pill and
the time at which the pill has to be taken (ex-
pressed as the number of seconds passed since
01/01/1970). e-Pix loads the JSON file containing the times at which the pills
have to be taken during the initialization phase and, following the schedule,
indicates when the patient has to take the pill from the compartment.

4 Modeling and V&V

Starting from the informal requirements of the e-Pix, we have applied the process
described in Figure 2. Using the editor AsmEE we have implemented the AsmetaL
specifications3 with different refinement levels. Then validation and verification
tools have been used to validate and to verify the model.

Refinement Time management # Compart-
ments

controlled
functions

monitored
functions

Level 0 Monitored boolean function that indicates
the overpassing of the time threeshold

0 4 3

Level 1 Controlled by the system 0 8 1
Level 2 Controlled by the system 3 9 1
Level 3 Monitored function 3 8 2

Table 1. Refinement levels of e-Pix (0 ompartments means only one type of pills).

3 The specifications are available at https://foselab.unibg.it/asmeta/

PillboxASM.zip

https://foselab.unibg.it/asmeta/PillboxASM.zip
https://foselab.unibg.it/asmeta/PillboxASM.zip

4.1 Modeling by refinement

We have modeled e-Pix starting from a simple model and then applying step-
wise refinement. At each refinement step we have introduced some controlled
and monitored functions, we have gradually added compartments, and we have
managed the time differently - using some abstractions at level 0, having a
controlled time at levels 1 and 2, and as monitored value at the final level (see
Table 1).

In the following paragraphs we explain the main characteristics of each re-
finement level and we analyze how we have modeled the switching on of the red
led when the time of a pill comes.
Level 0. In the first model, i.e. the ground model, we have considered only one
pill and no compartments. Instead of using an actual timer, a boolean moni-
tored function takeThePill reports when the pill has to be taken. Similarly,
the overpassing of all the timeouts (used to switch from a state of the LED to
another state) is indicated by the boolean function timeDiffOver600. The red
led is switched on when a pill has to be taken and it is managed by the following
AsmetaL rules:

main rule r Main =
[...]
if redLed = OFF and takeThePill then

r pillToBeTaken[] endif
if redLed = ON and not timeDiffOver600 and
opened and not openSwitch then

r pillTaken compartmentOpened[] endif
[...]

rule r pillToBeTaken =
par

redLed := ON
outMess := TAKE PILL

endpar
rule r pillTaken compartmentOpened =
par

redLed := OFF
outMess := NONE

endpar

Level 1. At this refinement level, we have continued considering only one pill
and no compartments. The time management has been realized using the func-
tion systemTime as Natural, controlled by the system and increased at each
machine step. Also at this refinement level we have not considered the list of
prescriptions, but only a single deadline for the contemplated pill: we have used
a boolean function, requestSatisfied to check whether the pill has already
been taken or not. The possible output and log messages are taken from an
enumerative domain OutMessages. The condition according to which the red
led is switched on checks the value of the actual timer of e-Pix, whose value is
controlled by the system:

main rule r Main =
[...]
if redLed = OFF and (time consumption<=

systemTime and not requestSatisfied)
then r pillToBeTaken[]
endif
[...]

rule r pillToBeTaken =
par
if redLed != ON then
compartmentTimer := systemTime endif
redLed := ON
outMess := TAKE PILL
endpar

Level 2. The second refinement level introduces three compartments, each with
a single type of pill. Other features are similar to the previous level: we have used
a single deadline for each pill, the output and log messages come from the enu-
merative domain OutMessages, the timer systemTime is managed by the system

and takes value in a bounded range. Compared to the previous refinements, the
red led switch on condition is checked for each single compartment as follows:
main rule r Main =
[...]
if redLed($compartment) = OFF and

(time consumption($compartment)<=systemTime and not requestSatisfied($compartment)) then
r pillToBeTaken[$compartment]

endif
[...]

rule r pillToBeTaken($compartment in Compartment) =
par
if redLed($compartment) != ON then compartmentTimer($compartment) := systemTime endif
redLed($compartment) := ON
if ($compartment=compartment1) then

outMess($compartment) := TAKE TYLENOL
else if ($compartment=compartment2) then

outMess($compartment) := TAKE ASPIRINE
else

outMess($compartment) := TAKE MOMENT
endif endif

endpar

Level 3. The 3rd model we have considered has three compartments and we
have included all the features of the system:

– The systemTime is monitored from the machine and updated by the envi-
ronment.

– Every string can be used as output and log message.
– It is possible to assign a list of time prescriptions for each compartment,

stored in the function time consumption.

The guard that makes the red led switch on, when it is time to take the
pill, has been modified with respect to the previous levels, because we have to
manage more prescriptions for each pill. The correct item in the sequence con-
taining the prescription times, i.e. the current time threshold to be considered,
is selected by the function drugIndex. Therefore, for the compartment d, when
systemTime passes time consumption(d) at position drugIndex(d), then the
pill in d should be taken.
main rule r Main =
[...]
if redLed($compartment) = OFF and
(at(time consumption($compartment),drugIndex($compartment))<systemTime) then

r pillToBeTaken[$compartment]
endif
[...]

rule r pillToBeTaken($compartment in Compartment) =
par
if redLed($compartment) != ON then

compartmentTimer($compartment) := systemTime endif
redLed($compartment) := ON
outMess($compartment) := ”Take ” + name($compartment)

endpar

4.2 Automatic refinement proof

To automatically prove the correctness of the model refinement process, used in
our ASM formal approach, we have employed the tool AsmRefProver, which is

Fig. 3. Simulation steps with the animator AsmetaA at the last refinement level

based over the Satisfability Modulo Theories (SMT). With the execution of this
software, presented in [3], one can specify two refinement levels and ensure that
an ASM specification is a correct refinement of a more abstract one.

In our case study we have proven the correctness of the refinement process.
To make this possible, since AsmRefProver maps refined functions to abstract
ones with the same name, we had to introduce in the refined level, some derived
functions representing predicates over the abstract or refined states. For example,
in the first refinement level, to prove the correctness of the refinement process,
we have added two derived functions: takeThePill that indicates if the patient
has to take the pill and timeDiffOver600 to represent if the patient has forgot
taking the pill within a certain time.

function takeThePill = (time consumption<=systemTime)
function timeDiffOver600 = (systemTime−compartmentTimer>tenMinutes)

4.3 Validation

Validation activity consists in the execution of different tools. Initially we have
validated the specification using the simulator AsmetaS and the animator AsmetaA.
In particular we have intensively used the animator because it provides a graph-
ical interface which is more readable for the user during the model execution.

In Fig. 3 we have reported some simulation steps using the animator AsmetaA.
Specifically, after the system initialization, we have simulated the scenario in
which the time is controlled by the ASM and we have only a pill in the first
compartment. The red led goes ON when it is time to assume the pill (systemTime
> time consumption) and turns to BLINKING when the timeout has passed.
When the compartment is closed the red led turns OFF. Also the display message
(outMess) changes according to the state of e-Pix.

4.4 Scenario-based testing

In the scenario-based testing activity we have checked the behaviour of e-Pix
against the expected one by simulating all the possible states, and transitions
between them.

// Setting−up the initial state
set openSwitch(comp1) := false;
set openSwitch(comp2) := false;
set openSwitch(comp3) := false;

step

check redLed(comp1) = OFF;
check outMess(comp1) = NONE;
check logMess(comp1) = NONE;

// Time to take the pill in comp1
step until systemTime = 2;

check redLed(comp1) = ON;
check outMess(comp1) =

TAKE TYLENOL;
check logMess(comp1) = NONE;

Code 2. Example of an Avalla
scenario for the e-Pix

We have written our scenarios using the
Avalla language [9] and tested each scenario
with the validator AsmetaV, which checks if
the machine runs as expected. We have also

checked, with the coverage evaluation tool in-
cluded into AsmetaV, that our scenarios exe-
cute all the rules of the ASM model. An exam-
ple of the tested scenarios is shown in Code 2.
Initially all the compartments are closed and
after the ASM step the red led is off and no
messages are shown. When the time to take
the pill is reached (step until command) the
state changes, the red led turns on and the
message shows which pill the patient has to
take.

4.5 Property Verification:
AsmetaSMV

Once the modeler is confident enough that the model correctly reflects the in-
tended requirements, heavier techniques can be used for property verification.
In the proposed case study we have identified four CTL (Computational Tree
Logic) properties that we have tested in the refined models:

P1 If the pill has to be taken, red led must lights up.
P2 If the patient does not take the pill or the compartment has to be closed,

the red light has to blink.
P3 The red light has to change value after 10 minutes if the patient does not

take the pill.
P4 If the patient takes the pill and closes the compartment, red light becomes

off.

We have generated SMV models from the ASM specification using AsmetaSMV

and we have verified the properties by means of the model checker NuSMV4.
Table 2 reports the first property P1 verified in the models, all the others are
available online.

level CTLSPEC

0 ag((takeThePill and redLed = OFF)implies ax(redLed = ON))

1 ag((takeThePill and not requestSatisfied and redLed = OFF)implies ax(redLed = ON))

2 (forall $d in Compartment with ag((time consumption($d)<systemTime and not requestSatisfied

($d)and opened($d)and not(openSwitch($d))and not(redLed($d)= OFF)and not(systemTime−
compartmentTimer($d)>=tenMinutes))implies ax(redLed($d)= OFF)))

Table 2. The property P1 in different refinement levels

The property is different from one model to the other because we have man-
aged the time differently (initially it was a monitored function, then we have

4 http://nusmv.fbk.eu/

used the function systemTime controlled by the system and increased at each
machine step). Furthermore, in the last case we have added more than one com-
partment, for this reason the property has been verified over each compartment.
It is not possible to test the property on Level 3 because the model contains
unlimited domains (like natural numbers and strings) which are not supported
by our model checker.

5 From Asmeta specification to C++ code for Arduino

In addition to the validation and verification activities, we have created an hard-
ware prototype of e-Pix and we have automatically generated the C++ code. The
hardware used in our implementation is:

– Arduino Mega 2560
– 3 reed switches, used to signal the opening of each compartment
– 3 red LEDs to signal the state of each compartment
– 1 LCD (Liquid Crystal Display) to interact with the user
– 1 DS3231 module to get the current time
– Arduino SD card reader module, used to store the JSON prescription file

and the log ones
– Potentiometers and resistors

#include”pillbox.h”
void setup(){
}

pillbox pillbox;

void loop(){
pillbox.getInputs();
pillbox.r Main();
pillbox.fireUpdateSet();
pillbox.setOutputs();
}

Code 3. Example of the
ino file containing the im-
plementation of the ASM
execution

Using the Asm2C++ tool, we have generated from
the last ASM refinement level the following files: the
ino, wich contains the execution policy to run an ASM
on Arduino (see Code 3), the a2c and the hw.cpp files
that contain hardware information, the .h and .cpp

files, which contain the translation of the ASM model
into C++ code.

The a2c configuration file is automatically gener-
ated by the Asm2C++ tool to bind each ASM function to
an Arduino physical pin. The file must be completed
by the user who has to insert the correspondence be-
tween Arduino physical pins and functions defined in
the ASM model (see Code 4). Then the hw.cpp file,
which contains C++ code to load the inputs and set the outputs, is automati-
cally produced (see Code 5) to allow the interaction between the software and
Arduino physical pins.

6 IEC regulation and FDA guidance application

As reported in Sect. 1, the main references concerning the development of med-
ical software are the IEC 62304 regulation [12] and the FDA General Principles
of Software Validation [15]. Afterwards, we map the two documents in the ASM
process using the Asmeta framework.

{
”arduinoVersion”: ”

MEGA2560”,
”stepTime”: 0,
”bindings”: [
{ ”mode”: ”DIGITAL”,

”function”: ”redLed(
comp1)”,

”pin” : ”D1”
},
{ ”mode”: ”DIGITAL”,

”function”: ”redLed(
comp2)”,

”pin” : ”D2”
},
[...]

]
}

Code 4. Example of the
a2c configuration file

#include ”pillbox.h”
#include <Arduino.h>
void pillbox::getInputs(){

openSwitch[comp1] = (digitalRead(7) == HIGH);
[...]
systemTime = analogRead(A1)*(double)(1.0/1024.0);

}
void pillbox::setOutputs(){

if(redLed[1][comp1] == OFF)
digitalWrite(1, LOW);

else
digitalWrite(1, HIGH);

if(redLed[2][comp1] == OFF)
digitalWrite(2, LOW);

else
digitalWrite(2, HIGH);

[...]
}

Code 5. Example of the hw.cpp file

Fig. 4. IEC 62304 development process

6.1 IEC 62304 standard

The standard IEC 62304 [12] does not prescribe a specific life cycle model, it
defines process, activities and tasks that the life cycle model has to follow. In
particular, we will focus on the characteristics of the software development pro-
cess (Fig. 4) described in Section 5 of the standard. We have identified how
ASMs can be used to satisfy the process.

– Step (5.1) consists in defining a life cycle model and planning all proce-
dures. ASMs can supply a precise iterative and incremental life cycle model,
based on model refinement. With the ASMs, the developers can perform model-
ing, validation, verification and conformance checking, which we have performed
in Sect. 4 for the e-Pix.

– Step (5.2) consists in defining and documenting functional and non-functional
software requirements. ASMs can be used to define the system requirements with
a mathematical model that can be also analyzed and checked before the im-
plementation development. Informal requirements, which are the results of the
requirements gathering activity, are out of the scope of the ASM method. ASMs
do not deal natively with non-functional requirements like performance, fault
tolerance and reliability either. Thus complementary techniques should be used
for these purposes.

– Step (5.3) regards the specification of the software architecture from the
software requirements. In the e-Pix, the verification of software requirements is
executed along all the ASM development process using the property verifica-
tion tool AsmetaSMV (see Sect. 4.5). Risk control can be performed also during

this phase, by verifying the required functional safety properties and executing
critical scenario-based testing written in Avalla (see Sect. 4.4).

– Step (5.4) regards the refinement of the software architecture into software
units. The software refinement can be obtained by means of the model refine-
ment mechanism, typical of our ASM approach. We have applied the software
refinement to the e-Pix and we have checked the correctness of refinement using
the AsmRefProver tool (see Sect. 4.2).

– Steps (5.5)–(5.7) regard the refinement of the software architecture into
software units, software implementation and testing at unit, integration, and
system levels. With our ASM-based development process, the actual code can
be obtained by the automatic translator Asm2C++ as last model refinement step,
so if the model has been correctly tested, the developers can be sure about the
correctness of the C++ code. However the developer can change something in
the generated code, so the ASM process cannot fully cover these development
steps. For the e-Pix, in Sect. 5 we have automatically generated the Arduino
code that we have deployed on the real system.

– Step (5.8) includes the demonstration, by a device manufacturer, that soft-
ware has been validated and verified. If the development process adopts the
ASM process, demonstration that the software has been validated and verified
is straightforward, since V&V are continuous activities during all the process.

6.2 FDA General Principles of Software Validation

FDA accepts the standard IEC 62304 and pushes for an integration of software
life cycle management and risk management activities. The organization pro-
motes the use of formal approaches for software validation and verification, by
defining in [15] the list of general principles. For each FDA principle we have
identified how ASMs can be used to satisfy the requests.

– A documented software requirements specification should provide a baseline
for both V&V : in ASM it is provided by means of a chain of models (or single
model in case of simple specifications). The models are written using AsmetaL

language as partially reported in Sect. 4 for the e-Pix models.

– Developers should use a mixture of methods and techniques to prevent and
to detect software errors: in ASM safety properties are proved on models at each
modeling level. In particular Asmeta framework provides the AsmetaSMV tool
that verifies the properties defined by the developer showing if they are satisfied
or not. We have applied the property verification to the e-Pix models as reported
in Sect. 4.5.

– Software V&V should be planned early and conducted during all the soft-
ware life cycle; software V&V should take place within the environment of an
established software life cycle; software V&V process should be defined and con-
trolled through the use of a plan: as shown in Fig. 2 the V&V process can be
applied at each model. V&V activities can be integrated in the V model of
software development. In particular it is possible to insert them in the module
design, coding and unit testing phases.

– Software V&V process should be executed through the use of procedures:
V&V are supported by precise procedures defined for each tool which have been
followed during the application to the e-Pix.

– Software V&V should be re-established upon any software change: if soft-
ware changes do not affect the model, it is required to re-run unit tests on the
changed software and verify if the behavior has been modified or not. In case the
software changes have effects on the model V&V activities must be re-executed.

– Validation coverage should be based on the software complexity and safety
risks: during validation activity of an ASM model, it is possible to provide the
coverage report in terms of rules, which points out how many lines of code have
been covered. It can be used by the designer to estimate if the validation activity
is commensurate with the risk associated with the use of the software. The cov-
erage of e-Pix models was 100%, all rules have been covered using the validation
activity, in particular the scenario-based testing, as reported in Sect. 4.4.

– V&V activities should be conducted using the quality assurance precept of
“independence of review”: this can be obtained because V&V are performed by
exploiting unambiguous mathematical based techniques.

– Device manufacturer has flexibility in choosing how to apply these V&V
principles: all the presented V&V activities can be executed at the discretion
of the manufacturer because they can be executed independently of each other.
Even if the software has been developed by an external developer, the manufac-
turer can apply the activities presented to guarantee the correctness w.r.t the
verified model.

7 Related work

As shown by [6], formal methods are increasingly used in the development of
medical software and devices because human safety depends upon the correct
operation of the product. Even automatic code generation is already available
into commercial solutions (such as MATLAB/Simulink5) or UML-based solu-
tions but none of them is based on the ASM method and permits the verifi-
cation and validation of the written models. In [2], the ASM method has been
used to show how an hemodialysis machine can be designed providing a rigorous
approach for medical software validation and verification. Despite this, the code
to be executed by the final embedded system has not been produced.

The process that allows the automatic code generation has been described
into [5] where the car panel case study is analyzed.

Most of the other works related to the approach used into this paper are based
on Event-B [1]. These solutions use a multi-formal development paradigm: the
requirements are modeled by using UML-B [16] and then the verification is exe-
cuted into the framework of Event-B using theorems proving the model checking
or using model animation. This framework is used into [14] where a hemodialysis
machine is developed by specifying the requirements using a refinement-based

5 https://it.mathworks.com/products/simulink.html

modeling approach. Subsequently model checking and animation techniques are
applied to check the consistency and the conformance to the formal require-
ments. A code generator produces, at the end, the code from the model. The
major cons of this solution are that the tool is able to translate only a limited set
of the B syntax and it lacks of a formal proof that the produced code maintains
all the safety properties of the initial requirements.

There are several papers presenting the design and development of pill box
or smart pill dispenser for individual use. Some of them, such as [10], are also
Arduino-based. However, no one at the best of our knowledge has adopted a
rigorous approach like ours. In [17], the authors present the architecture and
the implementation of an automatic medication dispenser. Part of the system
is actually generated from models that define user behavior. They have tackled
the problem of validating such models mainly by simulation. During simula-
tion, events in interactions of the user, controller and scheduler are registered
in a database. They then check the correctness by processing and analyzing the
logged events to find errors. A formal modeling has been applied to the design of
a mobile prescription application [11]. However, the author has used only UML
for modeling of the mobile application.

8 Conclusion

The development of a safe and reliable medical device can be very challeng-
ing because it is a safety-critical process. To address the software development
in a safer manner, different regulations have been released. However, all these
documents are limited to describe only general software engineering activities
that have to be executed but they do not require the use of specific method or
technique.

In this paper, we have applied the ASM based development process to the
smart pill box e-Pix case study. The approach consists in an iterative life cycle
model realized by model refinement: starting from a ground model, which con-
siders only the simplest features of the system, the developer can release many
incremental models, considering step by step all the characteristics. Along this
process, different validation and verification activities (such as model animation,
scenario-based validation and property verification) can be performed over each
refinement step, to prove the correctness of each produced model compared to
the requirements. The final model of the system can be seen as the last refinement
step, from which one can obtain the C++ code to be used in the embedded sys-
tem, thanks to Asm2C++ tool. In addition, we have developed a simple hardware
prototype using Arduino on which we have loaded the generated C++ code, the
hardware configuration file and the main Arduino file (all of them automatically
generated using the Asm2C++ tool).

Finally, we have shown how the proposed process aims to guarantee safety
and reliability of the final product by remaining compliant with the IEC 62304
regulation and FDA General Principle of Software Validation guidelines.

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

2. Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini, Atif Mashkoor, and Elvinia
Riccobene. Integrating formal methods into medical software development: The
asm approach. Science of Computer Programming, 158:148–167, jun 2018.

3. Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. SMT-based automatic
proof of ASM model refinement. In Software Engineering and Formal Methods,
pages 253–269. Springer International Publishing, 2016.

4. Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A
model-driven process for engineering a toolset for a formal method. Software:
Practice and Experience, 41:155–166, 2011.

5. Silvia Bonfanti, Marco Carissoni, Angelo Gargantini, and Atif Mashkoor.
Asm2C++: A tool for code generation from abstract state machines to arduino.
In Lecture Notes in Computer Science, pages 295–301. Springer International Pub-
lishing, 2017.

6. Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor. A systematic literature
review of the use of formal methods in medical software systems. Journal of
Software: Evolution and Process, 30(5):e1943, feb 2018.

7. E. Börger and Robert F. Stark. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer-Verlag New York, Inc., 2003.

8. Marie T. Brown and Jennifer K. Bussell. Medication adherence: WHO cares? Mayo
Clinic Proceedings, 86(4):304–314, apr 2011.

9. Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra.
A Scenario-Based Validation Language for ASMs. In Lecture Notes in Computer
Science, pages 71–84. Springer Berlin Heidelberg.

10. Shih-Chang Huang, Hong-Yi Chang, Yu-Chen Jhu, and Guan-You Chen. The
intelligent pill box - design and implementation. In 2014 IEEE International Con-
ference on Consumer Electronics - Taiwan. IEEE, may 2014.

11. Nicholas Ikhu-Omoregbe. Formal modelling and design of mobile prescription
applications. Journal of Health Informatics in Developing Countries, 2(2), 2008.

12. P. Jordan. Standard iec 62304 - medical device software - software lifecycle pro-
cesses. In 2006 IET Seminar on Software for Medical devices, pages 41–47, Nov
2006.

13. R.A. Kemmerer. Testing formal specifications to detect design errors. IEEE Trans-
actions on Software Engineering, SE-11(1):32–43, jan 1985.

14. Atif Mashkoor and Miklos Biro. Towards the trustworthy development of active
medical devices: A hemodialysis case study. IEEE Embedded Systems Letters,
8(1):14–17, mar 2016.

15. A. Ohne Autor Fd. General Principles of Software Validation; Final Guidance for
Industry and FDA Staff, Version 2.0. FDA document formal, January 2002.

16. Colin Snook and Michael Butler. UML-b: Formal modeling and design aided by
uml. ACM Transactions on Software Engineering and Methodology, 15(1):92–122,
jan 2006.

17. Pei-Hsuan Tsai, Tsung-Yen Chen, Chi-Ren Yu, Chi-Sheng Shih, and Jane W. S.
Liu. Smart medication dispenser: Design, architecture and implementation. IEEE
Systems Journal, 5(1):99–110, mar 2011.

