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Abstract—Combinatorial testing is a widely applied black-box
testing technique, which is used to detect failures caused by
parameter interactions (we call them failure-inducing combina-
tions). Traditional combinatorial testing techniques provide fault
detection, but most of them have weak fault diagnosis. In this
paper, we propose a new fault characterization method called
MIXTGTE to locate all the failure-inducing combinations in a
system under test, up to an interaction size decided by the user.
Our method is based on adaptive black-box testing, in which test
cases are generated based on outcomes of previous tests. We show
that our method performs better than existing strategies that
explore all the faults first, and then obtain the failure-inducing
combination(s) for each failure.

Index Terms—Combinatorial testing, failure-inducing combi-
nation, failure diagnosis, test generation

I. INTRODUCTION

Experiments and industrial evidence suggest that software
failures are usually caused by interactions among inputs or
parameters of the system [12]. For this reason, combinatorial
interaction testing (CIT), which consists in testing all the
interactions of a given strength, is widely used and efficient
in detecting bugs. By testing all the interactions till a given
strength t, we can validate the system or discover if it contains
parameter combinations that cause failure. An interaction of
size t (or t-way interaction) is an assignment of a specific
value to each of the selected t parameters. Although the size
of combinations causing faults is almost always unknown, ex-
periments show that generally even a low degree of interaction
is enough to discover faults [13]. One of the main goal of CIT
research is to find techniques that are able to cover all the
interactions of a given strength with as few tests as possible.
In this way, the faults can be found by running only a possibly
small number of tests.

While test generation for CIT is a well-studied topic, fault
detection and localization is still an open problem, although
there are now some works targeting diagnosis and bug charac-
terization [10]. When a failing test has been found, it remains
unclear which combination in the failing test is responsible
for the failure, since a test contains many combinations of
different sizes. Knowing the interaction (and, therefore, also
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all the input configurations) that trigger failures is of help not
only in correcting bugs, but also in understanding the impact
of them. The particular interacting configuration that induces
a failure, often directly reflects a use case scenario, which can
be traced back from the input configuration. Knowing only the
test that causes a fault, instead, often makes it impossible to
trace back to the general use-case scenario (maybe involving
several other input configurations) that caused the fault.

The problem is how to locate the combination that causes a
failure when a fault is discovered [16], [17]. Indeed, in case of
failure, there is a masking effect among the interactions [16]
that makes hard the precise localization of the right combi-
nation. In order to avoid this masking effect, new tests are
needed besides those necessary to cover all the interactions
as required by CIT. Moreover, the test suite size optimization
can play against fault localization: having each test to cover
as many interactions as possible reduces the size of the test
suite, but it may make the fault localization harder.

Classically, test generation and fault localization are done
sequentially. First, a combinatorial test suite is generated and
then executed against the real system. Then, if a fault has been
found, new tests are built to try to locate the faulty combina-
tions. This process is not very efficient (no information about
failures is used during generation) and it generally does not
guarantee to discover all the faulty combinations. Lately, there
have been some approaches that interleave test generation, test
execution, and fault localization [17]. Our approach follows
this new trend and tries to efficiently build test suites taking
into account possible test failures during test execution.

Most works do not guarantee to detect the real failure in-
ducing combinations. Most approaches show that they are able
to identify very suspicious combinations that are likely to be
failure inducing [7], but no guarantee is given. However, under
some precise assumptions, also testing can locate bugs. For
instance, if one knows the maximum number and maximum
strength of failure inducing interactions in advance [2], also
particular combinatorial test suites statically generated (called
locating arrays) can be used to identify those interactions. Our
approach follows this trend as well: under some rather general
assumptions, we are able to (dynamically) generate test suites
that guarantee the detection of failure-inducing combinations.

The contribution of this paper is therefore twofold:



Model totinfo

Parameters:
tables: {t0, t1, t2}
row: {r0, r1, r2}
column: {c0, c1, c2}
table attribute: {ta0, ta1, ta2, ta3, ta4, ta5}
input attribute: {i0, i1, i2, i3, i4}
maxline: {m1, m2, m3, m4, m5}

Code 1: A combinatorial model of the input of totinfo program,
in CTWedge

1) detect and identify all the failure-inducing interactions in
a system, up to a certain size t, if they exist;

2) doing it with a smaller test suite (compared to other
techniques) by exploiting information coming during test
execution about possible failure of tests.

During test generation, our approach collects tuples that
seem to cause failures and tries to isolate them by finding those
tuples that instead are passing. By using this information, tests
are generated and immediately executed, and the knowledge
base of the system updated accordingly.

The paper is structured as follows. Sect. II introduces the
necessary background and Sect. III explains the definitions
we need in our approach. Then, Sect. IV presents the iter-
ative process we propose that combines test generation, test
execution, and identification of failure inducing combinations.
Sect. V discusses about the assumptions of the process and in-
troduces some theorems about its capabilities. Finally, Sect. VI
describes some experiments we performed to evaluate the
process, Sect. VII reviews some related work, and Sect. VIII
concludes the paper.

II. BACKGROUND

We assume that the software under test (SUT) has m
input parameters that are described by a combinatorial model
defined as follows.

Definition 1 (Combinatorial Model). Let P = {p1, . . . , pm}
be the set of parameters. Every parameter pi assumes values
in the domain Di = {vi1, . . . , vioi}.

In order to model and manipulate combinatorial models, we
use the tool CTWedge [6]. Note that a combinatorial model
may also contain constraints that, however, are not considered
in this work.

Example 1. Let’s consider the combinatorial model (originally
proposed by Ghandehari et al. [9]) of the totinfo program from
the Siemens Suite in the Software Infrastructure Repository
(SIR) [3]; the model has m=6 parameters, namely P={tables,
row, column, table attribute, input attribute, maxline}, having
enumerative values. Code 1 shows the representation of such
model in CTWedge. In the following, for presentation pur-
poses, we consider as running example a simpler combinatorial
model M having 3 boolean parameters P={A,B,C}.

Definition 2 (Test case). Given a combinatorial model M ,
a test case is an assignment of values to every parameter
{p1, . . . , pm} of M . Formally, a test f is an m-tuple f
= (p1=v1, p2=v2, . . ., pm=vm), where vi ∈ Di, for i ∈
{1, . . . ,m}. We identify with f(pi) the value vi of parameter
pi in test f . We use the function result(f) to indicate whether
a test in a test suite TS passes or fails on a system SUT :

result : TS → {pass, fail}

i.e., result(f) is fail if and only if the test f fails, for example,
because the SUT executed with f produces a wrong value or
because an error or an exception occurs; result(f) is pass
otherwise.

Note that other approaches [16] assume that different tests
can fail in a different way, i.e., they can be distinguished by
exception traces, state conditions, etc. In our setting, all the
failing tests fail in the same way.

Example 2. Given the model M in Ex. 1, a possible test case
is f=(A=0, B=1, C=0). When a parameter is boolean, it can
be denoted just with its name if its value is true (1), and with
a bar above its name if its value is false (0). The example then
becomes f=ĀBC̄.

Definition 3 (Combination). A combination (or partial test,
or tuple or schema) c is an assignment to a subset Dom(c) of
all the possible parameters P , formally Dom(c) ⊆ P . A test
is thus a particular combination in which Dom(c) = P . We
identify with Ct the set of all the combinations of size t for
a given set of parameters P .

Example 3. For the model M introduced in Ex. 1, a possible
combination is c=ĀB.

Definition 4 (Combination Containment). A combination
c1 contains a combination c2 if all the parameters of c2 are
also parameters of c1, and their values are the same. Formally:
Dom(c2) ⊆ Dom(c1) ∧ (∀pi ∈ Dom(c2): c1(pi) = c2(pi)).

Example 4. For instance, for the running example M , the test
f=ĀBC̄ contains the combination c=ĀB.

Definition 5 (Test Suite). A test suite TS is a set of
test cases. We denote with ETS the Exhaustive Test Suite
that contains all the possible tests that can be formed from
the specified combinatorial model; with CTS t, instead, we
identify a Combinatorial Test Suite of strength (at least) t,
i.e., a test suite in which all the possible t-way interactions
are covered by at least one test.

Definition 6 (Failure-inducing combination). A combination
c is a failure-inducing combination (fic) for a test suite TS if
each test that contains c fails. Formally, ∀f ∈ TS : c ⊆ f →
result(f )=fail. We identify with isFic(c,TS ) the predicate
that tells whether the combination c is a failure inducing
combination for a certain test suite TS .

We call c a true-failure-inducing combination if we con-
sider all the tests in the exhaustive test suite ETS , i.e., if



TABLE I: Test suites for running example

(a) ETS

test A B C result

1 0 0 0 pass
2 0 0 1 pass
3 0 1 0 fail
4 0 1 1 pass
5 1 0 0 fail
6 1 0 1 fail
7 1 1 0 fail
8 1 1 1 fail

(b) CTS2

test A B C result

7 1 1 0 fail
6 1 0 1 fail
4 0 1 1 pass
1 0 0 0 pass

isFic(c,ETS ) holds. We call c a t-failure-inducing combi-
nation (fict), if we consider all the tests in a CTS t, i.e., if
isFic(c,CTS t) holds.

Observation 1. From Def. 6, we observe that a combination
c is guaranteed not to be failure-inducing if there exists a test
that contains it and does not fail.
Example 5. Let’s consider the model M introduced in Ex. 1
and the test suite shown in Table Ia. By definition, all
the failing tests (# 3, 5, 6, 7, and 8) are failure-inducing
combinations. In addition, we can notice that also the 2-
way combinations AB, AB̄, AC, AC̄, and BC̄ are failure-
inducing combinations, since all the tests containing them fail.
Moreover, also the 1-way combination A is failure-inducing.
In this example, the test suite is an exhaustive test suite,
therefore these combinations are also true-failure-inducing
combinations.

Definition 7 (Minimal failure-inducing combination). A
failure-inducing combination c is minimal (mfic) if and only
if all the combinations in c (except c itself) are not failure
inducing in the test suite TS . Formally, isMfic(c,TS ) if
and only if isFic(c,TS ) ∧ (∀c′ ⊂ c:¬isFic(c′,TS )). If we
consider a combinatorial test suite CTS t, we call c a t-
minimal-failure-inducing combination (mfict).

Example 6. In the test suite shown in Table Ia, the combina-
tions c1=A and c2=BC̄ are both minimal.

III. DEFINITIONS

First we want to define when a failure-inducing combination
has been located and isolated by a suitable test suite TS .

Definition 8 (Isolated mfic). An mfic c is isolated by a test
f of a test suite TS if and only if c is the only fic in f , i.e.,

isIsoMfic(c, f,TS ) ≡
isMfic(c,TS ) ∧ c ⊆ f ∧ (∀(c′ 6= c) ⊂ f :¬isMfic(c′,TS ))

We say that a test suite TS isolates an mfic c iff

isIsoMfic(c,TS ) ≡ (∃f ∈ TS : isIsoMfic(c, f,TS ))

Note that being able to isolate an mfic is particularly im-
portant for fault localization (that should follow our process);
indeed, if two or more mfics are present in each failing test,
it is more difficult to localize the fault as the mfics mask
each other [16]. However, it is not always possible to isolate

Fig. 1: Overview of the user-driven iterations of the process
alternating test generation and detection of isolated mfics

mfics. Consider, for example, a SUT with boolean parameters
{A,B,C}, whose true-mfics are AB, AC, and BC̄: AB
cannot be isolated in this case.

Theorem 1. If the SUT has a true-mfic of strength t, in any
combinatorial test suite CTS t there exists a failing test case.

Proof. By definition of combinatorial test suite.

A consequence of the theorem is the next corollary.

Corollary 1. If there is no failing test in a combinatorial test
suite CTS t, then there is no true-mfic of size t.

However, this property is not sufficient to isolate mfics of
size t, as stated by the following theorem.

Theorem 2 (Insufficient accuracy of CTS t). A CTS t does
not guarantee to isolate mfics of size t.

Proof. Consider the running example whose true-mfics are A
and BC̄. The combinatorial test suite of strength t=2 shown
in Table Ib only has ABC̄ and AB̄C as failing tests. The
detected mfics are A, BC̄, and B̄C. We would need at least
one more passing test containing B̄C to correctly classify it
(test #2 in Table Ia). Moreover, in order to isolate BC̄, we
would need one more test in which it fails alone (tests #3 in
Table Ia).

IV. THE MIXTGTE METHOD

Finding true-mfics can only be obtained using the exhaus-
tive test suite ETS . However, exhaustive testing is in general
not possible; therefore, we propose the approach MIXTGTE
(Mix Test Generation and Test Execution) that tries to identify
and isolate mfics up to a given strength t. In order to do this,
it uses combinatorial test suites CTS t.

MIXTGTE is an iterative process, as shown in Fig. 1 and
Alg. 1. It starts from identifying combinations of size t=1
using the procedure MIXTGTEt, and progressively repeats the
search algorithm to combinations with higher size, until the
user (who, at every iteration, can inspect the set ISOMFICS
of discovered isolated mfics of size less or equal to t) decides
to stop the process, or t reaches the number of parameters
|P | of the system under test. The latter condition, however,
is equivalent to exercising the exhaustive test suite, and it is
normally infeasible in practice, except for trivial systems.



Algorithm 1 MIXTGTE

1: ISOMFICS ← ∅
2: FT ← ∅
3: TS ← ∅
4: t← 1
5: while t ≤ |P |∧ User decides to continue do
6: MIXTGTEt(t, ISOMFICS ,TS )
7: t← t+ 1
8: end while

Fig. 2: MIXTGTEt process to find and isolate mfics up to
accuracy of strength t

Algorithm 2 MIXTGTEt

Require: t: strength
Require: ISOMFICS : isolated mfics computed at step t-1 (empty if t=1)
Require: FT : failing tuples found at step t-1 (empty if t=1)
Require: TS : test suite computed at step t-1 (empty if t=1)

1: PT ← {c ⊆ f |f ∈ TS ∧ result(f ) = pass ∧ c ∈ Ct}
2: FT ← FT ∪ {c ⊆ f |f ∈ TS ∧ result(f ) = fail ∧ c ∈ Ct} \ PT
3: UT ← Ct \ (PT ∪ FT )
4: while ¬(UT = ∅∧ (FT = ∅∨ (∀c ∈ FT : isExplained(c,TS)))) do
5: f ← buildTest(UT ,FT )
6: TS ← TS ∪ {f}
7: UPDATETUPLESETS(f,PT ,FT ,UT , ISOMFICS )
8: UPDATEMFICS(TS ,FT , ISOMFICS )
9: end while

At each step, to keep limited the number of tests to execute
on the SUT, the minimal strength of the test suite used is
equal to the size t of the detected combinations. Indeed, by
Thm. 1, we can observe that this guarantees to have in the test
suite all the mfics of size t. However, it could be some mfics
are not isolated; therefore, at each iteration, we also generate
additional tests to isolate all the discovered mfics.

At each step, the user checks the returned sets of
ISOMFICS to determine if it is the case to continue to search
for mfics of higher strength. The choice to continue or not is
based on the available budget, but may also depend on the
returned mfics in ISOMFICS and the test suite TS .

A. MIXTGTEt

Fig. 2 depicts the procedure MIXTGTEt that, given a certain
combination size t, and a set of previously executed tests,
produces a combinatorial test suite of strength t able to detect
and isolate mfics of strength up to t. The process is described
in detail in Alg. 2 and in the rest of the section.

MIXTGTEt works on the following sets of combinations:
• UT (Unknown Tuples): the combinations of size t not

appeared yet in any test during the process;
• PT (Passing Tuples): the combinations of size ≤ t that

were contained in at least one passing test executed so
far in the process;

• FT (Failing Tuples): the combinations of size ≤ t that
were contained only by failing tests, among all the tests
executed so far in the process, excluding the isolated
mfics.

• ISOMFICS : the set of isolated mfics detected so far (of
size ≤ t).

In addition, the process keeps track of the set of tests already
run in the test suite TS , together with the value of their result
(either pass or fail).

We give a further definition that is used in the process.

Definition 9 (Explained fic). Given the set ISOMFICS and
a fic c ∈ FT , c is said to be explained if it implies one or
more isolated mfics, i.e.,

isExplained(c, ISOMFICS ) ≡
∃S ∈ P(ISOMFICS ): c→

∧
m∈S

m

The rationale is that if a fic c contains1 one or more
iso-mfics, the failure of the tests Tc in which c fails can be
explained. Of course, this is just a heuristic, and some other
test could show that actually c is the true mfic. The definition
of explained fic will be used in the process to balance between
exploitation at strength t and exploration of higher strengths.

1) Tuple sets initialization: Initially, PT contains all the
tuples of size t that are contained in a passing test of TS
(line 1); FT , instead, inherits the failing tuples from previous
iteration, and is enriched with t-tuples that are contained in a
failing test, but not in a passing test (line 2). UT is initialized
with the remaining tuples of size t (line 3). ISOMFICS is
kept from the previous step.

2) Exit condition: The process exits as soon as no unknown
tuples UT are present, and either there are no failing tuples
or all the failing tuples are explained (see Def. 9), i.e.,

UT = ∅ ∧ (FT = ∅ ∨ (∀c ∈ FT : isExplained(c,TS ))) (1)

3) Test case generation: If the exit condition is not met
(i.e., there is at least an unknown tuple (UT ) or a failing tuple
(FT ) that is not explained), the function buildTest generates a
test f that contains at least one tuple belonging to either UT ,
or to FT without being explained by any subset of mfics in
ISOMFICS . The generation works as shown in Alg. 3 and
described as follows:
• if UT is not empty, we merge together as many tuples
c ∈ UT as possible (lines 3-12). Two tuples c and c′

cannot be merged if, for a given parameter pi, pi has
different values in c and in c′ (this is captured by predicate
compatible at line 4). If after this phase some parameters

1Note that, for conciseness, in the definition we use the propositional
representation of tuples.



Algorithm 3 BUILDTEST: Test case generation
Require: TS : the tests generated so far
Require: UT : unknown tuples
Require: FT : failing tuples

1: f ← ∅
2: if UT 6= ∅ then
3: for c ∈ UT do
4: if compatible(c, f) then
5: f ← f ∪ c
6: end if
7: if isCompleteTest(f ) then
8: return f
9: end if

10: end for
11: f ← completeRnd(f)
12: return f
13: else
14: cne ← pickRnd({c ∈ FT |¬isExplained(c,TS)})
15: φ← cne ∧

∧
{f∈TS|cne⊆f}¬f

16: return getModel(φ) . A test is a satisfying assignment
17: end if

Algorithm 4 UPDATETUPLESETS: Tuple sets update
Require: f : a test

1: if result(f ) = fail then
2: MOVE(f , UT , FT )
3: else
4: MOVE(f , UT , PT )
5: MOVE(f , FT , PT )
6: MOVE(f , ISOMFICS , PT )
7: end if

8: procedure MOVE(f , sourceSet , destSet)
9: toMove ← {(c ∈ sourceSet)|c ⊆ f}

10: sourceSet ← sourceSet \ toMove
11: destSet ← destSet ∪ toMove
12: end procedure

have no associated value, we randomly generate values
for them (line 11);

• if instead UT is empty, we randomly select a not-
explained failing tuple c (line 14); then, in lines 15-16
we ask the SMT solver to find a test that contains c, but
it is different from previous tests in TS (this is guaranteed
to exist, as shown in Thm. 3).

4) Test execution and tuple sets update: After each test f
is generated, it is immediately executed, and, depending on
the result (pass/fail), the tuple sets are updated as described
in Alg. 4:

1) If the test f fails, all combinations that are contained both
in f and in the set UT , are moved from UT to FT ;

2) If the test passes, we can exploit Obs. 1 and modify the
sets as follows:
a) all combinations that are contained both in f and in

the set UT , are moved from UT to PT (line 4);
b) all combinations that are contained both in f and in

the set FT , are moved from FT to PT (line 5);
c) all combinations that are contained both in f and in

the set ISOMFICS , are moved from ISOMFICS to
PT (line 6).

At this point, we can evaluate whether there are new isolated
mfics, with the procedure shown in Alg. 5. If a tuple c ∈ FT
turns out to be the only one (amongst all the possible tuples) to

Algorithm 5 UPDATEMFICS: ISOMFICS set update
Require: TS : the tests generated so far
Require: ISOMFICS : isolated mfics
Require: FT : failing tuples

1: for c ∈ FT do
2: if isIsoMfic(c,TS) then
3: FT ← FT \ {c}
4: ISOMFICS ← ISOMFICS ∪ {c}
5: end if
6: end for

UT PT

FT ISOMFICS

pass

fail
pass

pass

isIsoMfic(c,TS )

Fig. 3: Status evolution of a tuple c throughout the process

explain the failure of a test f (i.e., it is isolated in f according
to Def. 8), it is added to ISOMFICS .

In summary, the status evolution of a combination c is
depicted in the state machine shown in Fig. 3.

Example 7. On model M presented in Ex. 1, if the true-mfics
were A and BC̄, a possible trace table of the process, with
tests separated by the incremental maximum strength t, would
be the one presented in Table II (the scenario with test 8a).
We observe that the true-mfics have been correctly identified
with the first two executions of MIXTGTEt (till test 6), i.e.,
tests 7 and 8a (for strength t=3) are not necessary, since the
maximum strength of the true-mfics is 2.

Instead, if the true mfics were AB̄, AC, and ĀBC̄, the
process should be run three times for correctly identifying
them (using test 8b), since there is a true-mfic of size 3.

V. PROPERTIES OF THE MIXTGTE PROCESS

In this section, we introduce some theorems assessing the
capabilities of the proposed process.

We first make an assumption that is needed for our process.

Assumption 1. All true-mfics can be isolated.

Theorem 3 (Test case generation). In the test case generation
(see Sect. IV-A3), it is always possible to generate a test case.

Proof. When UT is not empty, the test f is generated by
merging compatible tuples from UT and then randomly se-
lecting values for other parameters; since tuples in UT are
those that have never been observed in any test, the new test
f is guaranteed to exist. When UT is empty, the generated
test must be an assignment satisfying formula φ at line 15 of
Alg. 3. Let’s assume that such test does not exist; it would
mean that all the possible tests Tcne containing cne have
already been generated; there would be two cases:



TABLE II: Example of MIXTGTE for detecting mfics of different sizes with a strength up to t = 3

# A B C result ISOMFICS FT PT UT

t
=

1

Fill FT-PT-UT {} {} {} {A,B,C, Ā, B̄, C̄}
1 0 0 0 pass {} {} {Ā, B̄, C̄} {A,B,C}
2 1 1 1 fail {} {A,B,C} {Ā, B̄, C̄} {}
3 0 1 1 pass {} {A} {Ā, B̄, C̄, B,C} {}
updatedMfics {A} {} {Ā, B̄, C̄, B,C} {}

t
=

2

Fill FT-PT-UT {A} {AB,AC} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC,BC} {AB̄,AC̄, B̄C,BC̄}
4 1 0 0 fail {A} {AB,AC,AB̄,AC̄} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC,BC} {BC̄, B̄C}
5 0 1 0 fail {A} {AB,AC,AB̄,AC̄,BC̄} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC,BC} {B̄C}
updatedMfics {A,BC̄} {AB,AC,AB̄,AC̄} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC,BC} {B̄C}
6 0 0 1 pass {A,BC̄} {AB,AC,AB̄,AC̄} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC,BC, B̄C} {}

t
=

3

Fill FT-PT-UT {A,BC̄} {AB,AC,AB̄,AC̄,ABC, ĀBC̄,AB̄C̄} {ĀB̄C̄, ĀBC, ĀB̄C} {AB̄C,ABC̄}
7 1 0 1 fail {A,BC̄} {AB,AC,AB̄,AC̄,AB̄C,AB̄C̄, ABC, ĀBC̄} {ĀB̄C̄, ĀBC, ĀB̄C} {ABC̄}

a) Scenario in which test 8 fails

8a 1 1 0 fail {A,BC̄} {AB,AC,AB̄,AC̄,AB̄C,AB̄C̄, ABC, ĀBC̄,ABC̄} {ĀB̄C̄, ĀBC, ĀB̄C} {}
b) Scenario in which test 8 passes

8b 1 1 0 pass {} {AB̄,AC,AB̄C,AB̄C̄, ABC, ĀBC̄} {A,BC̄,AB,AC̄, ĀB̄C̄, ĀBC, ĀB̄C,ABC̄} {}
updatedMfics {AB̄,AC, ĀBC̄} {AB̄C,AB̄C̄, ABC} {A,BC̄,AB,AC̄, ĀB̄C̄, ĀBC, ĀB̄C,ABC̄} {}

• at least one of the tests in Tcne passes; this is not possible,
as, in this case, cne would be in PT ;

• all the tests in Tcne fail; also this is not possible, as, in this
case, cne would be either in ISOMFICS or explained by
a subset of tuples in ISOMFICS .

Theorem 4 (Termination). The process is guaranteed to
terminate.

Proof. The outer process MIXTGTE terminates when the user
(i.e., the test engineer) decides not to continue it, or when
t = |P |.

The inner process MIXTGTEt terminates when the exit
condition (see Eq. 1) is met. The test generation phase (see
Sect. IV-A3) directly aims at emptying UT and explaining
all the not explained tuples in FT . Since, by Thm. 3, the
generation is always possible, the exit condition will be
eventually met.

We want to prove that, under the assumption that the SUT
has only true mfics of limited strength, by running the process
till that strength, we will find them.

Assumption 2. Each true-mfic has maximum strength t.

Theorem 5 (True-mfics found). If TRUE MFICS is the set
of true mfics and each c in TRUE MFICS has maximum
strength t, then by running the process with strength equal or
greater than t, ISOMFICS is equal to TRUE MFICS .

Proof. Under the stated assumption, the property is twofold: if
c is a true-mfic, the MIXTGTE will find it and if the MIXTGTE
finds a c as mfic, then c is a true-mfic.

1) If c is a true-mfic then ISOMFICS will contain c. Let’s
assume that c is a true-mfic but ISOMFICS does not
contain it at the end. By Thm. 1, c is contained in a failing

test of TS and so it is in FT at a given point. When the
process terminates, FT is either empty (and so c is in
ISOMFICS ), or all the tuples in FT are explained (by
Def. 9), i.e., they contain one or more iso-mfic. However,
the latter case is not possible, as c would not be minimal.

2) If c is in ISOMFICS , it is a true-mfic. Let’s assume that
c is in ISOMFICS , but it’s not a true-mfic. If c is in
ISOMFICS , all tests containing it fail, and there exists
a test in which it is the only mfic; if it is not a true-mfic,
it means that in each test containing c there must be a
combination c′ such that c ⊂ c′ and c′ is a true-mfic and,
therefore, added to ISOMFICS by point 1: in this case,
c′ would violate the minimality requirement. Note that,
if c has size t, there cannot be a true-mfic c′ of higher
strength containing c by Assumption 2.

VI. EVALUATION

In this section, we evaluate the process and we compare it
with other techniques for fault interaction detection.

A. Benchmarks
For the experiments, we selected some benchmarks, each

one constituted by a faulty version of the SUT Sf and an oracle
O. The assessment of the execution of a test f (i.e., result in
Def. 2) is performed by comparing the evaluations of f over
Sf and O. For practicality, we build a combinatorial model M
having the same parameters of Sf

2 and constraints that accept
only the tests for which Sf and O agree (the constraints are the
negation of the true-mfics).3 Therefore, for each benchmark,
we also know the true-mfics in Sf .

2Note that Sf and O have the same parameters and they only differ on the
behaviour.

3Note that these constraints are not related to the combinatorial problem
that, as stated in Sect. II, is unconstrained in our setting.



TABLE III: Benchmark properties

name |P | size TRUE MFICS
(size (#))

B
E
N
C
H
A
R
T

runExA 3 23 1(1), 2(1)
runExB 3 23 2(2), 3(1)
art1 3 23 2(1)
art2 3 23 2(2)
art3 3 23 1(1), 2(1)
art4 7 27 2(1), 3(1)
art5 7 27 2(1)
art6 5 233151 3(1)

B
E
N
C
H
R
E
A
L aircraft 8 2731 3(1), 4(1)

tomcat 12 283141 1(1), 2(2)
hsqldb 10 2961 1(1), 3(2)
gcc 10 283141 3(4)
jflex 13 2103241 2(1)

We used two sets of benchmarks described in Table III. The
first benchmark set, BENCHART, is constituted by artificial mod-
els of systems; we generated some of these models with one
true-mfic (art1, art5, and art6), and others with multiple
true-mfics. BENCHART also contains the running example, in its
two versions shown in Table II. The second benchmark set,
BENCHREAL, represents real systems: aircraft is a Software
Product Line model presented in [19] and taken from the
SPLOT repository4, and the others four are benchmarks used
in Niu et al. [17].

In Table III, column size reports the size of model M , pre-
sented in the abbreviated form k#paramsk× . . ., where k∈N+

and paramsk are the parameters having k values; for example,
283141 indicates that the SUT has 8 parameters that can take
2 values, one parameter taking 3 values, and one parameter
taking 4 values. Column TRUE MFICS reports the number
and size of true-mfics in Mf ; we report each possible size with
the number of mfics of that size in parentheses. We also mark
in bold face the maximum strength of the true-mfic; in the
experiments, we assume Assumption 2, and so we apply the
approach only up to the known maximal strength (according
to Thm. 5, this guarantees to find all the mfics).

B. Compared approaches

We compare our approach with some existing methods from
literature, namely:

BEN: a process based on the first phase of the BEN
tool proposed by Ghandehari et al. [7]. The process consists
in calling BEN for failure-inducing combination detection,
by providing an initial combinatorial test suite of a certain
strength t, and iterating over the size of the failure-inducing
combinations to try to detect them. This process has already
been used for constraints validation and repair [4], [5]. The
BEN tool is included in our experimental process as a jar file.

SOFOT: the Simplified One Factor One Time method to
infer the Minimal Failure-causing Schema (MFS) from a given
failing test case, from Nie et al. [15]. This method takes as
input a set of failing tests, and tries to reduce each test to an

4http://www.splot-research.org/

mfic. For each failing test f , it generates new tests by changing
the value of each parameter in f one by one. Note that the
source code of this method is available in Python from a later
work by Zhang and Zhang [23]. As our automated evaluation
script is written in Java, we program it so that it calls Python
via command line. This causes some overhead which affects
the total execution time in the experiments.

FIC: the Faulty Interaction Characterization method pro-
posed by Zhang et al. [23]. It is similar to SOFOT, in the sense
that it accepts in input a set of tests known to be failing, and
it tries to isolate the minimal failure-inducing combination(s)
from it. It proceeds by considering one failing test a time,
and changing the value of a parameter at a time, but, unlike
SOFOT, it keeps the value changed. Furthermore, it performs
a few iterations until the original failing test, with the value of
the detected minimal failure-inducing combinations changed,
passes. If there are two different failure-inducing combinations
in the same tests, it may find them, but without a guarantee to
be correct. We made a Java implementation of the algorithm
described in the paper [23].

ICT: the Interleaving CT approach proposed by Niu et
al. [17]. It is a significant improvement of SOFOT that alle-
viates its three main problems: redundant test cases, multiple
mfics, and masking effects (where multiple mfics are present
in the same test). Like SOFOT, it is composed of two phases,
generation and identification. Test generation is here made
adaptive, one test at a time, in a similar way as the one
of our approach. This reduces the amount of tests needed,
by forbidding the generation of new tests containing already
discovered failure-inducing combinations. The identification
phase has a novel feedback checking mechanism (based on
information coming from the execution of a few new proposed
test cases), which can check, up to a certain extent, whether
the identified mfic is a true-mfic or not; and it significantly
improves the accuracy of the results w.r.t. SOFOT. The method
is very recent, and, although we could not manage to re-
run the tool on new benchmarks, we compared the results
of MIXTGTE with the results of ICT reported in that paper
for a common set of benchmarks.

Since FIC and SOFOT require failing tests as input, but do
not say how to find such failing tests, we need to build a test
suite to find such failing tests. In order to try to make the com-
parison fair, we use, for all the methods5, an initial combina-
torial test suite CTS t of strength t= max

c∈TRUE MFICS
|size(c)|,

being TRUE MFICS the set of true-mfics (as shown in
Table III). CTS t is generated using ACTS6 for FIC, BEN,
and SOFOT. MIXTGTE, instead, generates tests in an adaptive
way, as described in Sect. IV-A3. ICT, instead, uses AETG [1].

In the following, DET MFICS denotes the set of mfics re-
turned by a method; in our case, it corresponds to ISOMFICS .

5Note that MIXTGTE, BEN, and ICT already require a combinatorial test
suite.

6https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software



TABLE IV: Experimental results (P: precision, R: recall, F: F-score, time is in ms)

model MIXTGTE FIC BEN SOFOT ICT
tests P R F time tests P R F time tests P R F time tests P R F time tests P R F time

B
E
N
C
H
A
R
T

runExA 7.6 1 1 1 15.9 8 1.00 1.00 1.00 0.4 7 0.20 0.50 0.29 53.2 8 0.75 0.50 0.58 518 – – – – –
runExB 8.0 1 1 1 4.9 8 0.75 1.00 0.86 0.6 8 0.25 0.33 0.29 9.4 8 0.75 1.00 0.86 735 – – – – –
art1 6.6 1 1 1 3.2 5 1.00 1.00 1.00 0.5 7 1.00 1.00 1.00 13.0 7 1.00 1.00 1.00 269 – – – – –
art2 8.0 1 1 1 5.4 7 1.00 1.00 1.00 0.6 7 0.50 0.50 0.50 13.8 8 0.50 0.50 0.50 396 – – – – –
art3 7.6 1 1 1 2.7 8 1.00 1.00 1.00 0.7 7 0.00 0.00 – 15.1 8 1.00 0.50 0.67 403 – – – – –
art4 36.9 1 1 1 79.7 29 0.67 1.00 0.80 1.8 26 0.00 0.00 – 64.8 61 1.00 1.00 1.00 2772 – – – – –
art5 14.7 1 1 1 5.0 12 1.00 1.00 1.00 0.5 18 1.00 1.00 1.00 14.1 20 1.00 1.00 1.00 769 – – – – –
art6 45.4 1 1 1 17.1 35 0.50 1.00 0.67 3.2 38 1.00 1.00 1.00 21.1 52 1.00 1.00 1.00 1830 – – – – –

B
E
N
C
H
R
E
A
L aircraft 89.8 1 1 1 156.5 71 1.00 1.00 1.00 18.4 62 0.00 0.00 – 56.4 115 1.00 1.00 1.00 4157 – – – – –

gcc 88.5 1 1 1 134.5 64 0.50 0.50 0.50 8.9 60 1.00 0.50 0.67 56.1 142 0.75 0.75 0.75 4934 89.0 0.77 0.65 0.70 1118
hsqldb 169.8 1 1 1 3752.8 97 1.00 1.00 1.00 36.6 55 0.00 0.00 – 532.2 443 1.00 0.67 0.80 19612 88.3 1.00 1.00 1.00 2094
jflex 22.9 1 1 1 9.1 15 1.00 1.00 1.00 1.6 23 1.00 1.00 1.00 15.2 31 1.00 1.00 1.00 978 31.6 1.00 1.00 1.00 187
tomcat 65.9 1 1 1 111.9 28 0.67 0.67 0.67 4.1 23 0.00 0.00 – 31.5 128 1.00 1.00 1.00 5675 128 1.00 1.00 1.00 5671

Average 44.0 1 1 1 331 29.8 0.85 0.94 0.88 5.99 26.2 0.46 0.45 0.44 68.9 79.3 0.90 0.84 0.86 3311 67.4 0.94 0.91 0.92 988

C. Results

We run our method and the compared 4 methods 10 times
for each benchmark; results are the average across the runs.
Experiments have been executed on a Mac OS X 10.14, Intel
Core i3, with 4GB of RAM. Code was written in Java, using
CTWedge libraries for combinatorial modeling, test genera-
tion, and test execution [6]. The code and all the benchmarks
are available online at https://github.com/fmselab/mixtgte.

Table IV shows the results of the experiments. For each
method, it reports the total number of different tests required
to complete the detection7, and the execution time in millisec-
onds. Moreover, in order to measure the quality of the returned
mfics, we use classical measures as precision (P), recall (R),
and F-score (F). Precision is defined as:

precision =
|DET MFICS ∩ TRUE MFICS |

|DET MFICS |

Precision measures the percentage of found mfics that are true-
mfics. If precision is not 1, the developer will spend some time
in doing fault localization for a fic that is not a true-mfic (those
in DET MFICS \ TRUE MFICS ).

Recall is defined as:

recall =
|DET MFICS ∩ TRUE MFICS |

|TRUE MFICS |

It measures how many true-mfics are actually identified. If the
recall is not 1, the developer is not aware of a true-mfic that
causes a fault (those in TRUE MFICS \DET MFICS ).

The F-measure is the combination of precision and recall,
defined as follows:

F-score =
2× precision × recall

precision + recall

We now evaluate the approach answering the following
three research questions.
RQ1: How is the effectiveness (in terms of precision and

recall) of MIXTGTE w.r.t. other techniques?

7If a test is generated twice by a method, we count it only once.

From the results presented in Table IV, we observe that
MIXTGTE always achieves maximum precision and recall;
this is expected, as Thm. 5 guarantees that, under the as-
sumption that we know the maximum strength t, executing
MIXTGTE till strength t produces an ISOMFICS set (i.e.,
DET MFICS ) equal to TRUE MFICS . All the other tech-
niques do not provide this theoretical guarantee.

Among the other methods, ICT has the highest values for
precision, recall, and F-score (92% on average) on the 4
available benchmarks [17]. For 3 benchmarks, ICT correctly
identified all the TRUE MFICS ; only for gcc, some are
wrongly identified (precision 77%) and some are not found
(recall 65%).

Also FIC and SOFOT showed to be able to correctly identify
the true-mfics in many occasions, although not with the same
overall accuracy as ICT in terms of F-score (88% and 86%).
We believe that this is due not only to the fixed amount of
tests asked for the identification phase of those methods (they
change always one parameter at a time, and only once), but
also to the masking effect, i.e., when there are two mfics
present in a same test. This effect may happen in general,
as explained in Thm. 2. As an example of this fact, consider
the running example described in Ex. 1 and the test suite
generated by SOFOT shown in Table V. Let’s recall that the
SUT is made of three binary parameters {A, B, C}, with two
true-mfics, A and BC̄. By providing to SOFOT the faulty test
cases observed with a combinatorial test suite of strength t = 2
(that it is also the maximum strength of the true-mfics, so the
correct settings for the experiments) generated with ACTS,
the SOFOT method is able to correctly identify only the mfic
A. Table V reports, at the beginning, the CTS 2 generated by
ACTS; it contains two failing tests for which SOFOT tries
to find the mfic. In test ¬, both true-mfics A and BC̄ are
contained; all the additional tests generated by SOFOT for
this test (obtained by changing one parameter at a time) fail.
Therefore, for test ¬, SOFOT does not find any mfic, i.e., it
does not find A nor BC̄. This is due to the masking effect in
test ¬ between A and BC̄. The tests generated for the failing
test ­, instead, correctly identifies A as mfic.



TABLE V: Execution trace of SOFOT on example SUT

Generation of CTS2 with ACTS (to have some failing test)

# A B C result
1 1 1 0 failing test ¬
2 1 0 1 failing test ­
3 0 1 1 pass
4 0 0 0 pass

Identification by SOFOT (tests added to find mfics)

additional tests for failing test ¬

# A B C result
5 0 1 0 fail
6 1 0 0 fail
7 1 1 1 fail

No mfic found

additional tests for failing test ­

# A B C result
8 0 0 1 pass
– 1 1 1 fail
– 1 0 0 fail

A identified as mfic

BEN is the method with the lowest F-score; this is because
BEN is configured to produce few additional tests and uses
heuristics to measure the suspiciousness of a failing tuple, and
this may lead to wrong results.
RQ2: How does our approach compare with the others in

terms of number of tests?
Overall, the number of tests required by MIXTGTE is

comparable to ICT. On the four real benchmarks in common,
MIXTGTE requires slightly fewer tests for gcc and jflex,
but more tests for the other two benchmarks. For hsqldb,
MIXTGTE requires almost the double of the tests. This is
due to the fact that ICT applies efficient heuristics to limit
the number of tests that are asked in addition to the initial
combinatorial test suite; MIXTGTE, instead, does not have
such strong optimizations, that we plan to investigate as future
work. For this particular benchmark hsqldb, ICT is better
(or equal) than our approach on any aspect (it also achieves
100% F-score); however, it does not provide any particular
correctness guarantee.

SOFOT requires the highest amount of tests, and it obtains
a lower recall, but a higher precision than FIC. The other two
analyzed methods (FIC and BEN) require fewer tests (almost
half of the test of MIXTGTE on average), but, as described
in RQ1, they also achieve less precision and recall than both
MIXTGTE and ICT.
RQ3: How does our approach compare with the others in

terms of time?
All the reported times (for all the approaches) do not include

the time for actually exercising the real system to determine
the result (pass/fail) of the test. Indeed, the real system has
been mocked by a model, since we know the true-mfics
beforehand.

We cannot directly compare the execution time of ICT
and SOFOT. Indeed, we were not able to rerun ICT on our

machine (we report the results of the original paper [17]).
For SOFOT, instead, we need to perform calls to an external
Python program from Java, that introduce a big overhead.

The execution time for our process varies a lot depending
on the number of generated tests, and the maximum strength
achieved. It is less than 20ms for more than half of the
benchmarks; however, it takes around 3.8 secs for hsqldb,
which has two true-mfics of size 3, and one of size 1. The
mfic of size 1 causes several tests to fail, masking the effect
of the 3-way mfics. Note that, although gcc has four 3-way
true-mfics, it takes less computation time because less tests
are needed to isolate the mfics from the other failing tuples,
as more tests are passing.

Generally, BEN is quite fast as it does not produce too many
tests, and the time is not affected too much by the model size;
in our case, instead, time is more dependent on the benchmark
characteristics (model size, number of true-mfics, presence of
masking effect, etc.).

FIC is the fastest method, as it only requires, on average,
around 6ms per benchmark, with a maximum time of 36.6ms
for hsqldb.

VII. RELATED WORK

Identifying the real failure inducing combinations is an area
of active research in combinational testing [11], [15].

Previous works in detecting failure-inducing interactions
are based on post-analysis of the test results of covering
arrays (CAs), or on adaptive or non-adaptive test generation
techniques. Yilmaz et al. [21] applied a post-analysis classi-
fication tree technique to analyze the result of CAs to find
the differences between passing and failing tests. However,
CA is not suitable to detect mfics precisely. Among non-
adaptive methods, there is an approach based on pseudo-
Boolean constraint solving and optimization, but its accuracy
is highly affected by the chosen test suite [22]. Locating
and detecting arrays (LDAs) [2], and error locating arrays
(ELAs) [14] are other non-adaptive approaches: they require a
given strength t and a maximum number of faulty interactions
d, and they can detect and locate at most d faulty interactions
of size up to t. However, the size of the test suite often
becomes very large. That is why, recently, adaptive methods
appear to be more studied in literature. They include Wang’s
IterAIFL method [20], which is based on AIFL by Shi et
al. [18], two adaptive algorithms proposed by Martinez et
al. [14], and all the methods used to compare our process in
the experiments: FIC (and also the variant FIC BS) by Zhang
et al. [23], BEN [8], SOFOT [15], and ICT [17].

While InterAIFL, FIC and SOFOT may not correctly iden-
tify multiple mfics in a system, since they may be overlapping
or there is a masking effect, the two adaptive algorithms of
Martinez work better but they can only locate mfics up to
size 2. The ICT approach by Niu et al. [17], still derived
from SOFOT, overcomes its limitations, making a significant
improvement in the accuracy of the detected combinations.
BEN [8] is tailored to locate faults in the code, but in the first



phase it provides an algorithm to detect suspicious combina-
tions and, with some heuristics, failure-inducing combinations.
However, as implemented so far, it is not very accurate with the
initial test suites provided as input: an initial test suite of higher
strength could improve accuracy of the detected mfics. Unlike
the other methods, MIXTGTE does not distinguish between the
two phases of the input test generation and additional adaptive
test, but it merges those phases into one single process, that
keeps track of the status of all the possible t-way tuples
throughout the process. This way, MIXTGTE has shown to
correctly detect all the mfics of a system, up to a certain
strength t decided by the user, and it guarantees them to be
correct under the assumption that there are no faults caused
by an interaction of strength higher than t.

VIII. CONCLUSIONS

The paper proposes an approach for finding minimal failure-
inducing combinations (mfics), that alternates test generation
and test execution. Under the assumption that the maximum
strength of true-mfics is limited to t, running the process
till strength t guarantees to find all and only the true-mfics;
experimental comparison with state of the art approaches
confirmed this fact. Achieving this total correctness does not
affect too much the test suite size and the execution time:
w.r.t. the second best approach (ICT) in terms of accuracy,
MIXTGTE produces slightly fewer tests in reasonable time.

The current work does not support constraints in the com-
binatorial model; their handling is planned as future work.
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