
Modeling and Analyzing using ASMs: the
Landing Gear System case study

Paolo Arcaini1, Angelo Gargantini1, and Elvinia Riccobene2

1 Dipartimento di Ingegneria, Università degli Studi di Bergamo, Italy
{paolo.arcaini,angelo.gargantini}@unibg.it

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

Abstract. The paper presents an Abstract State Machine (ASM) spec-
ification of the Landing Gear System case study, and shows how the
ASMETA framework can be used to support the modeling and analysis
(validation and verification) activities for developing a rigorous and cor-
rect model in terms of ASMs. We exploit the two fundamental concepts
of the ASM method, i.e., the notion of ground model and the refinement
principle, and we achieve model development and model analysis by the
combined use of formal methods for specification and for verification.

1 Introduction

The Abstract State Machine (ASM) method is a system engineering method
that guides the development of software and embedded hardware-software sys-
tems seamlessly from requirements capture to their implementation. Within a
precise but simple conceptual framework, the ASM method allows a modeling
technique which integrates dynamic (operational) and static (declarative) de-
scriptions, and an analysis technique that combines validation (by simulation
and testing) and verification methods at any desired level of detail. The method
has been successfully applied in different fields as: definition of industrial stan-
dards for programming and modeling languages, design and re-engineering of
industrial control systems, modeling e-commerce and web services, design and
analysis of protocols, architectural design, language design, verification of com-
pilation schemes and compiler back-ends, etc.

ASMs are an extension of Finite State Machines, obtained by replacing un-
structured control states by states comprising arbitrarily complex data [7]. The
method has, therefore, a rigorous mathematical foundation [9], but a practitioner
needs no special training to use the method since ASMs can be correctly under-
stood as pseudo-code or virtual machines working over abstract data structures.

We here propose an ASM specification of the Landing Gear System (LGS),
proposed in the ABZ conference as a real-life case study [5] with the aim of
showing how different formal methods can be used for the specification, design
and development of a complex system.

The ASM modeling process is based on the concept of a ground model repre-
senting a precise but concise high-level formalization of the system, and on the

refinement principle that allows to capture all details of the system design by a
sequence of refined models till the desired level of detail.

After a brief introduction to ASMs in Section 2, Section 3 presents the mod-
eling approach, and it also overviews a variety of model analysis activities that
can be performed by using the ASMETA framework [4,12], a set of tools for the
ASMs.

Section 4 reports the results of the modeling activity, and of the model val-
idation and verification performed at each level of refinement. We start from a
ground model that is the description of the core system, namely one landing
set whose behavior is captured in terms of user input and doors’ and gears’ al-
leged state. Then we refine the model by adding the actuators’ behavior in terms
of electro-valves’ and cylinders’ operations; subsequently the sensors are added.
The system with one landing component is then generalized to a system with
three landing sets, and in the last refinement the health monitoring is included.

Section 5 discusses the strengths and the weaknesses of the approach, and
outlines some future research directions. Since no other solutions of modeling
and analysis of the LGS case study are available at the moment of writing this
paper, we are not able to report any related work. Of course, many successful
applications exist in literature regarding the use of the ASMs for complex system
modeling and analysis. Due to their multiplicity, we prefer to refer to [9] for a
complete introduction on the ASM method and the presentation of the great
variety of its successful applications.

2 Abstract State Machines

Abstract State Machines (ASMs), whose complete presentation can be found
in [9], are an extension of FSMs, where unstructured control states are replaced
by states with arbitrary complex data. The states of an ASM are multi-sorted
first-order structures, i.e., domains of objects with functions and predicates de-
fined on them. ASM states are modified by transition relations specified by
“rules” describing the modification of the function interpretations from one state
to the next one. There is a limited but powerful set of rule constructors that al-
low to express guarded actions (if-then), simultaneous parallel actions (par) or
sequential actions (seq). Appropriate rule constructors also allow nondetermin-
ism (existential quantification choose) and unrestricted synchronous parallelism
(universal quantification forall).

An ASM state s is represented by a set of couples (location, value). ASM
locations, namely pairs (function-name, list-of-parameter-values), represent the
abstract ASM concept of basic object containers (memory units). Location up-
dates represent the basic units of state change and they are given as assignments,
each of the form loc :� v, where loc is a location and v its new value.

Functions are classified as derived, i.e., those coming with a specification
or computation mechanism given in terms of other functions, and basic which
can be static (never change during any run of the machine) or dynamic (may
change as a consequence of agent actions or updates). Dynamic functions are

distinguished between monitored (only read by the machine and modified by
the environment), and controlled (read and written by the machine).

A computation of an ASM is a finite or infinite sequence s0, s1, . . . , sn, . . .
of states of the machine, where s0 is an initial state and each sn�1 is obtained
from sn by simultaneously firing all the transition rules which are enabled in sn.
The (unique) main rule is a transition rule and represents the starting point of
the computation. An ASM can have more than one initial state. It is possible to
specify state invariants.

3 Modeling process and supporting tools

The process of requirements capture results in constructing rigorous ground mod-
els which are precise but concise high-level system blueprints (“system con-
tracts”), formulated in domain-specific terms, using an application-oriented lan-
guage which can be understood by all stakeholders. The developer starts from
the textual description of the informal requirements, and an ASM model is de-
veloped simply translating the text in terms of transition rules capturing the
behavior of the system at a very high level of abstraction. This sketchy first
model is usually neither “correct” nor “complete”. Rather, it tries on purpose
to expose errors, ambiguities, or incompletenesses in the original text. Correct-
ness can be achieved through an iterative process reasoning on requirements till
producing a ground model.

From the ground model, by step-wise refined models, further details are added
to capture the major design decisions and provide descriptions of the complete
software architecture and component design of the system. In this way the com-
plexity of the system can be always taken under control, and it is possible to
bridge, in a seamless manner, the gap between specification and code.

Still from its ground level, a model can be validated and verified. Model vali-
dation should be applied at the early stages of the system development, in order
to ensure that the specification really reflects the user needs and statements
about the system, and to detect faults in the specification as early as possible
with limited effort. Validation should precede the application of more expen-
sive and accurate methods, like formal requirements analysis and verification of
properties, that should be applied only when a designer has enough confidence
that the specification captures all informal requirements.

Tools allowing different forms of model analysis can surely help the devel-
oper in reaching model correctness. For the ASM method, the ASMETA (ASM
mETAmodeling) framework3 [4,12] provides basic functionalities for ASM mod-
els creation and manipulation (as editing, storage, interchange, access, etc.), as
well as advanced model analysis techniques (as validation, verification, testing,
model review, requirements analysis, runtime monitoring, etc.). The tools are
strongly integrated in order to permit reusing information about models during
several development phases.

3 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/

The concrete syntax AsmetaL is available for model editing. Model simulation
is possible using AsmetaS [11]. The tool allows invariant checking to guarantee
that the executed model always satisfies given properties, consistent updates
checking for revealing inconsistent updates, random simulation where random
values for monitored functions are provided by the environment, and interactive
simulation when required inputs are provided interactively during simulation.

A more powerful validation approach is based on scenario construction by the
ASM validator AsmetaV [10]. The validator is based on the AsmetaS simulator
and on the Avalla modeling language. This last provides constructs to express
execution scenarios in an algorithmic way as interaction sequences consisting of
(a) actions committed by the user to set the environment, to check the machine
state, and to ask for the execution of certain transition rules, and (b) the reaction
of the machine to make one (or a sequence of) step(s) in response of the user
actions.

A further validation technique is model review which aims at determining if
a model not only fulfills the intended requirements, but it is of sufficient quality
to be easy to develop, maintain, and enhance. Model review allows to identify
defects early in the system development, reducing the cost of fixing them, so it
is useful to apply this technique on models just sketched. The AsmetaMA tool [2]
permits automatic review of ASMs. Typical vulnerabilities and defects a devel-
oper can introduce during the modeling activity using the ASMs are checked as
violations of suitable meta-properties. The violation of a meta-property means
that some attributes (minimality, completeness, redundancy, etc.) are not guar-
anteed and indicates the presence of actual faults, or only of potential faults.

Formal verification of ASMs is possible by means of AsmetaSMV [1]. This tool
takes in input models written in AsmetaL and maps them into specifications
for the model checker NuSMV. AsmetaSMV supports both the verification of
Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formulas.

Tools for model-based testing and runtime verification are available in the
ASMETA framework; we do not use them in this work, since we do not have any
implementation to test. However, such techniques are explained and used in a
separate paper regarding the sub-case study of the voting system of sensors [3],
for which a Java implementation was developed.

3.1 Model Refinement

For complex systems, the complete specification can be reached by step-wise
refinement, namely by a chain of models each of which is proved to be a correct
refinement of the previous one. According to the notion of ASM refinement
method presented in [6,8], to refine an ASM M to an ASM M�, the following
items must be defined:
– a notion of refined state;
– a notion of states of interest and of correspondence between M -states S and
M�-states S� of interest, i.e., the pairs of states in the runs one wants to
relate through the refinement, including usually the correspondence of initial
and (if there are any) of final states;

Fig. 1. Models chain

– a notion of abstract computation segments τ1, . . . , τm, where each τi repre-
sents a single M -step, and of corresponding refined computation segments
σ1, . . . , σn, of single M�-steps σj , which in given runs lead from correspond-
ing states of interest to (usually the next) corresponding states of interest;

– a notion of locations of interest and of corresponding locations, i.e., pairs of
(possibly sets of) locations one wants to relate in corresponding states;

– a notion of equivalence � of the data in the locations of interest; these
local data equivalences usually accumulate to a notion of equivalence of
corresponding states of interest.

According to this scheme, an ASM refinement allows one to combine a change
of the signature (data refinement) with a change of the control (operation refine-
ment), while many notions of refinement in the literature keep these two features
separated.

Once the notions of corresponding states and of their equivalence have been
determined, one can define that M� is a correct refinement of M as follows:

Definition 1. Fix a notion � of equivalence of states and of initial and final
states. An ASM M� is a correct refinement of an ASM M if and only if for
each M�-run s�1 , s

�

2 , . . . , there is an M -run s1, s2, . . . and sequences i0 i1
. . . , j0 j1 . . . such that i0 � j0 � 0 and Sik � S�jk for each k and either
– both runs terminate and their final states are the last pair of equivalent states;

or
– both runs and both sequences i0 i1 . . . , j0 j1 . . . are infinite.

The states Sik and S�jk are the corresponding states of interest. They rep-
resent the end points of the corresponding computation segments (those of in-
terest) for which the equivalence is defined in terms of a relation between their
corresponding locations (those of interest).

4 Models chain of the LGS

In the following sections we present the five steps of the refinement process for
modeling the case study4. Fig. 1 depicts the relationship existing between the
models and, for each model, the system elements introduced with respect to the
previous model. We start from the high level description (ground model) of the

4 All the models are available online at http://fmse.di.unimi.it/sw/

landingGearSystem.zip

http://fmse.di.unimi.it/sw/landingGearSystem.zip
http://fmse.di.unimi.it/sw/landingGearSystem.zip

asm LandingGearSystemGround

signature:
enum domain HandleStatus = {UP | DOWN}
enum domain DoorStatus = {CLOSED | OPENING | OPEN | CLOSING}
enum domain GearStatus = {RETRACTED | EXTENDING | EXTENDED |

RETRACTING}
dynamic monitored handle: HandleStatus
dynamic controlled doors: DoorStatus
dynamic controlled gears: GearStatus

definitions:
rule r closeDoor =

switch doors
case OPEN: doors := CLOSING
case CLOSING: doors := CLOSED
case OPENING: doors := CLOSING

endswitch

rule r retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED: doors := OPENING
case CLOSING: doors := OPENING
case OPENING: doors := OPEN
case OPEN:

switch gears
case EXTENDED: gears := RETRACTING
case RETRACTING: gears := RETRACTED
case EXTENDING: gears := RETRACTING

endswitch
endswitch

else
r closeDoor[]

endif

rule r outgoingSequence =
if gears != EXTENDED then

switch doors
case CLOSED: doors := OPENING
case OPENING: doors := OPEN
case OPEN:

switch gears
case RETRACTED: gears := EXTENDING
case EXTENDING: gears := EXTENDED
case RETRACTING: gears := EXTENDING

endswitch
endswitch

else
r closeDoor[]

endif

invariant over gears, doors:
(gears = EXTENDING or gears = RETRACTING) implies
doors = OPEN

invariant over gears, doors:
doors = CLOSED implies
(gears = EXTENDED or gears = RETRACTED)

main rule r Main =
if handle = UP then

r retractionSequence[]
else

r outgoingSequence[]
endif

default init s0:
function doors = CLOSED
function gears = EXTENDED
’

Code 1. Ground model

system core, i.e., one landing set whose behavior is captured in terms of user
input and doors’ and gears’ alleged state. Then we refine the model by adding
the behavior of the actuators: electro-valves and cylinders. In the third step the
sensors are added. The fourth refinement generalizes the system, moving from
one landing component to a system with three equal landing sets. In the last
refinement, the health monitoring is included.

For the first two refinement steps we prove that a model is a correct refine-
ment of the more abstract one. For the further levels, the proof technique is
similar and it has been skipped. On the ground model we apply different vali-
dation techniques (simulation, scenario construction, model review) that, due to
lack of space, are not repeated in the other levels. If a refinement step is proved
correct, all the properties already verified in the high-level model do not need
to be verified again in the refined model. However, since the refinement process
was guided by the requirements, and each refinement introduces new elements
in the model, new properties regarding the newly added requirements have been
added and verified at each suitable level.

4.1 Ground model

In the first model we have only modeled the doors and the gears and how their
status changes. The model does not contain valves, cylinders, sensors, and the
health monitoring. The complete ground model in shown in Code 1. Function
doors represents the status of the doors that can be OPEN, CLOSED, OPENING

rule r retractionSequence =
if gears != RETRACTED then

switch doors
...
case OPEN:

switch gears
case RETRACTING: gears := EXTENDED //error. It should be RETRACTED
...

Code 2. Wrong ground model – Error in r retractionSequence

or CLOSING. Function gears represents the status of the gears that can be
EXTENDED, RETRACTED, RETRACTING or EXTENDING.

The state transitions are driven by the value of the monitored function
handle. As long as the handle is UP, the retraction sequence [5] is executed,
and, instead, as long as the handle is DOWN, the outgoing sequence [5] is ex-
ecuted. Let’s see, as an example, how the retraction sequence works: so we
assume that, in each state, the handle is UP. In the initial state, the doors

are CLOSED and the gears are EXTENDED; then the doors start OPENING. When
the doors become OPEN, the gears start RETRACTING. When the gears become
RETRACTED, the doors start CLOSING. The retraction sequence terminates with
the doors CLOSED and the gears RETRACTED. The outgoing sequence behaves
similarly. Note that, a retraction (resp. an outgoing) sequence can be always in-
terrupted by switching the value of the handle; in this case, an outgoing (resp. a
retraction) sequence begins, starting from the status of the doors and the gears
reached in the previous sequence.

An invariant checks that, if the gears are moving (i.e., they are EXTENDING

or RETRACTING), the doors must be OPEN; another invariant checks that, if the
doors are CLOSED, then the gears must be stopped (i.e., they are EXTENDED or
RETRACTED).

Model review As first validation activity, we have checked the model with the
model advisor. The first model we wrote actually contained an error, as shown
in Code 2. Indeed, during a retraction sequence, the gears became EXTENDED

instead of RETRACTED. The model advisor has discovered two meta-property
violations (among the seven proposed in [2]):
– MP5 requires that, for every domain element e, there exists a location which

has value e. In the faulty model, MP5 is violated since element RETRACTED

of domain GearStatus is never used.
– MP6 requires that every controlled location can take any value in its codomain.

In the faulty model, MP6 is violated since function gears does not take the
value RETRACTED of its codomain.

Obviously, both meta-property violations are caused by the same error in the
model. Note that behavioral faults often reveal themselves as stylistic defects and
therefore they can be captured by the model advisor.

Simulation By simulation we were able to identify the state in which the erro-
neous rule was executed. Fig. 2 shows the simulation trace of the wrong ground

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 0 (monitored)>

handle=UP

</State 0 (monitored)>

<State 1 (controlled)>

doors=OPENING

gears=EXTENDED

</State 1 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 1 (monitored)>

handle=UP

</State 1 (monitored)>

<State 2 (controlled)>

doors=OPEN

gears=EXTENDED

</State 2 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 2 (monitored)>

handle=UP

</State 2 (monitored)>

<State 3 (controlled)>

doors=OPEN

gears=RETRACTING

</State 3 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 3 (monitored)>

handle=UP

</State 3 (monitored)>

<State 4 (controlled)>

doors=OPEN

gears=EXTENDED

</State 4 (controlled)>

Fig. 2. Simulation of the wrong ground model

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 0 (monitored)>

handle=UP

</State 0 (monitored)>

<State 1 (controlled)>

doors=OPENING

gears=EXTENDED

</State 1 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 1 (monitored)>

handle=UP

</State 1 (monitored)>

<State 2 (controlled)>

doors=OPEN

gears=EXTENDED

</State 2 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 2 (monitored)>

handle=UP

</State 2 (monitored)>

<State 3 (controlled)>

doors=OPEN

gears=RETRACTING

</State 3 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 3 (monitored)>

handle=UP

</State 3 (monitored)>

<State 4 (controlled)>

doors=OPEN

gears=RETRACTED

</State 4 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 4 (monitored)>

handle=UP

</State 4 (monitored)>

<State 5 (controlled)>

doors=CLOSING

gears=RETRACTED

</State 5 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 5 (monitored)>

handle=UP

</State 5 (monitored)>

<State 6 (controlled)>

doors=CLOSED

gears=RETRACTED

</State 6 (controlled)>

Fig. 3. Simulation of the correct ground model – Complete retraction sequence

scenario lgsGround1
load LandingGearSystemGround.asm

set handle := UP;
step
check doors = OPENING and gears = EXTENDED;
’

set handle := UP;
step
check doors = OPEN and gears = EXTENDED;

set handle := UP;
step
check doors = OPEN and gears = RETRACTING;

set handle := UP;
step
check doors = OPEN and gears = RETRACTED;
’
’
’
’

Code 3. Scenario reproducing the simulation that leads to the error

model. During an interactive simulation, at each step the user is asked for the
values of the monitored functions (in this case the function handle).

Fig. 3 shows the simulation, over the correct ground model, of the complete
retraction sequence described previously.

Scenario-based validation We have then built a scenario describing the simu-
lation that brings to the execution of the erroneous rule shown in Code 2; a
scenario permits to automatize the execution of a run that must be executed
more than once. Code 3 shows the scenario in which, before each step, the value
of the monitored function handle is set to UP, and, after the simulation step, the
values of functions doors and gears are checked. The scenario execution consists
in a simulation, similar to that seen in Fig. 2. However, the simulation is not
interactive, since the values of the monitored functions are set according to the
values specified in the scenario. Moreover, the scenario execution also checks for
the specified properties. Fig. 4 shows the output of the scenario execution over
the faulty ground model; we can notice that, in the fourth step, the specified

<State 1 (controlled)>

doors=OPENING

gears=EXTENDED

handle=UP

</State 1 (controlled)>

"check succeeded: doors = OPENING and gears = EXTENDED"

<State 2 (controlled)>

doors=OPEN

gears=EXTENDED

handle=UP

</State 2 (controlled)>

"check succeeded: doors = OPEN and gears = EXTENDED"

<State 3 (controlled)>

doors=OPEN

gears=RETRACTING

handle=UP

</State 3 (controlled)>

"check succeeded: doors = OPEN and gears = RETRACTING"

<State 4 (controlled)>

doors=OPEN

gears=EXTENDED

handle=UP

</State 4 (controlled)>

"CHECK FAILED: doors = OPEN and gears = RETRACTED at step 4"

Fig. 4. Execution of the scenario shown in Code 3 over the wrong ground model

property has been violated. We have later executed the scenario over the correct
model and all the checks have been successful. Scenarios may be thought as use
cases that drive the development of the model in a sort of Behaviour-Driven
Development: a model is enhanced and/or fixed until all the scenarios execute
without failures.

Model checking In the ground model we have been able to verify four normal
mode requirements among those reported in the case study: R11bis, R12bis, R21,
and R22. For example, requirement R11bis requires that, when the command line
is working (normal mode), if the landing gear command handle has been pushed
DOWN and stays DOWN, then eventually the gears will be locked down and the
doors will be seen closed.

We have verified the following four CTL properties:

ag(ag(handle = DOWN) implies af(gears = EXTENDED and doors = CLOSED)) //R11bis
ag(ag(handle = UP) implies af(gears = RETRACTED and doors = CLOSED)) //R12bis
ag(ag(handle = DOWN) implies ax(ag(gears != RETRACTING))) //R21

ag(ag(handle = UP) implies ax(ag(gears != EXTENDING))) //R22

4.2 First refinement: adding the electro-valves and the cylinders

In this model we have refined the ground model by adding the representation
of the electro-valves and of the cylinders. Code 4 shows the new elements intro-
duced in the model. We have added the functions for the general electro-valve
(generalEV) and the electro-valves related to the opening/closing of the doors
(openDoorsEV and closeDoorsEV) and the retracting/extending of the gears
(retractGearsEV and extendGearsEV), that represent the actuators of the sys-
tem. These functions have been declared controlled.

Functions cylindersDoors and cylindersGears represent the status of cylin-
ders that move the doors and the gears. The functions have been declared as
derived, since they can be defined in terms of the values of functions doors and
gears. For example, the cylinders of the doors are extended/retracted when the
doors are open/closed, and extending/retracting when the doors are opening/-
closing. A similar relation exists between the gears and their cylinders.

asm LandingGearSystemWithCylAndValves

signature:
...
enum domain CylinderStatus =
{CYL EXTENDING | CYL RETRACTING |
CYL RETRACTED | CYL EXTENDED}
derived cylindersDoors: CylinderStatus
derived cylindersGears: CylinderStatus
dynamic controlled generalEV: Boolean
dynamic controlled openDoorsEV: Boolean
dynamic controlled closeDoorsEV: Boolean
dynamic controlled retractGearsEV: Boolean
dynamic controlled extendGearsEV: Boolean

’
’
’
’
’

definitions:
function cylindersDoors =

switch doors
case OPEN: CYL EXTENDED
case OPENING: CYL EXTENDING
case CLOSING: CYL RETRACTING
case CLOSED: CYL RETRACTED

endswitch

function cylinderGearStatus = ...
’
’
’
’
’
’
’
’
’

rule r closeDoor =
switch doors

case OPEN:
par

closeDoorsEV := true
doors := CLOSING

endpar
...

rule r retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED:

par
generalEV := true
openDoorsEV := true
doors := OPENING

endpar
...

Code 4. Model with cylinders and electro-valves

Model review The model advisor signals that functions cylindersDoors and
cylindersGears are useless, since they are never used (never read). Indeed, we
have added the cylinders only for documentation purposes, but they could be
omitted from the model, since their status is given by a straightforward relation
with the status of the doors/gears.

Correctness of the model refinement Let us call M the ground model Landing-
GearSystemGround and M� the refined model LandingGearSystemWithCylAnd-
Valves. At M -level, the locations of interest are those for functions doors and
gears, which have corresponding locations for the same function names at level
M� (since the refinement simply extends the signature of machine M). Two
states s P S and s� P S� are equivalent, i.e., s � s�, iff vdoorsws � vdoorsws� ^
vgearsws � vgearsws� . In order to prove the correctness of the refinement, we
apply Def. 1.

Let s�0 , s
�

1 , . . . , s
�

n be anM� run. Let us consider the sequence t � pvhandlews�0
,

vhandlews�1
, . . . , vhandlews�n�1

q. If we apply sequence t to M , we obtain a run

s0, s1, . . . , sn such that si � s�i ,@i � 0, . . . , n.

Model checking In this model, we have been able to verify the normal mode
requirementsR31,R32,R41,R42, andR51. For example, requirementR31 requires
that, when the command line is working (normal mode), the stimulation of the
gears outgoing or the retraction electro-valves can only happen when the three
doors are locked open.

We have verified the following four CTL properties:

ag((extendGearsEV or retractGearsEV) implies doors = OPEN) //R31

ag((openDoorsEV or closeDoorsEV) implies
(gears = RETRACTED or gears = EXTENDED)) //R32

ag(not(openDoorsEV and closeDoorsEV)) //R41

ag(not(extendGearsEV and retractGearsEV)) //R42

ag((openDoorsEV or closeDoorsEV or extendGearsEV or retractGearsEV)
implies generalEV) //R51

asm LandingGearSystemWithCylValvesAndSensors

signature:
...
dynamic monitored gearsExtended: Boolean
dynamic monitored gearsRetracted: Boolean
dynamic monitored doorsClosed: Boolean
dynamic monitored doorsOpen: Boolean

definitions:

rule r closeDoor =
switch doors

case CLOSING:
if doorsClosed then

par
generalEV := false
closeDoorsEV := false
doors := CLOSED

endpar
endif

...

rule r retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED:

par
generalEV := true
openDoorsEV := true
doors := OPENING

endpar
case OPENING:

if doorsOpen then
par

openDoorsEV := false
doors := OPEN

endpar
endif

...

invariant over doorsClosed, doorsOpen: not(doorsClosed and doorsOpen)
invariant over gearsExtended, gearsRetracted: not(gearsExtended and gearsRetracted)
’
’

Code 5. Model with cylinders, electro-valves, and sensors

4.3 Second refinement: adding the sensors

The model presented in this section extends the model described in Section 4.2 by
adding the modeling of the sensors. Code 5 shows the new elements introduced
in the model. Four boolean monitored functions are used to indicate whether
the gears are extended (gearsExtended) or retracted (gearsRetracted), and
whether the doors are closed (doorsClosed) or open (doorsOpen). In ASMs,
monitored functions represent quantities that are not determined by the system,
but that come from the environment ; usually, they are used in transitions rules
(e.g., in the guard of a conditional rule or in the right part of an update rule) to
modify the state of the system. For this reason, we chose to model the sensors
as monitored functions, because, in the landing gear system, the sensors can be
seen as inputs that determine the status of the system: for example, whenever
the sensor gearsExtended is seen turned on, the gears are considered extended
by the system.

In this model, we have refined some rules by adding the reading of sensors.
Some update rules have been guarded by conditional rules checking the value of
the monitored functions; for example, we can see in Code 5 that, if the doors

are CLOSING, they become CLOSED only if the sensor doorsClosed is turned on
(i.e., the guard of conditional rule is true).

In this paper, we do not model the sensor voting module, that is modeled
and analysed in [3]. Moreover, we assume that impossible combinations of sen-
sor values (e.g., both sensors doorsClosed and doorsOpen turned on) cannot
appear. In order to check that only admissible combinations of sensor values
are provided by the environment, we add to the model two invariants specify-
ing that doorsClosed and doorsOpen cannot be turned on together, and that
gearsExtended and gearsRetracted cannot be turned on together (see Code 5).
An alternative solution could be to make the model more robust, by accepting
any combination of sensor values, but modifying the ASM state only upon the
observation of correct combinations: this would require to make the guards of
the transition rules more complex.

asm LandingGearSystemWithCylValvesAndSensors3LS

signature:
...
enum domain LS = {FRONT | LEFT | RIGHT}
dynamic monitored gearsExtended: LS �> Boolean
dynamic monitored gearsRetracted: LS �> Boolean
dynamic monitored doorsClosed: LS �> Boolean
dynamic monitored doorsOpen: LS �> Boolean
derived gearsExtended: Boolean
derived gearsRetracted: Boolean
derived doorsClosed: Boolean
derived doorsOpen: Boolean

definitions:
function gearsExtended =

(forall $s in LS with gearsExtended($s))

function gearsRetracted =
(forall $s in LS with gearsRetracted($s))

function doorsClosed =
(forall $s in LS with doorsClosed($s))

function doorsOpen =
(forall $s in LS with doorsOpen($s))

...

Code 6. Model with cylinders, electro-valves, and sensors – Three landing sets

Correctness of the model refinement Let us call M the model LandingGear-
SystemWithCylAndValves and M� the refined model LandingGearSystemWith-
CylValvesAndSensors. At M -level, the locations of interest are those as in
the previous refinement. Two states s and s� are equivalent, i.e., s � s�, iff
vdoorsws � vdoorsws� ^ vgearsws � vgearsws� . Let updLocsps�i q be the set of
locations that are non-trivially updated in state s�i (so having a different value in
state s�i�1). In order to prove the correctness of the refinement, we apply Def. 1.

Let s�0 , s
�

1 , . . . , s
�

n be an M� run; we say that a state s�i is of interest if
i � 0 _ doors P updLocsps�i�1q _ gears P updLocsps�i�1q. Given the sequence of
states of interest s�j0 , s

�

j1
, . . . , s�jm , such that j0 � 0 and j0 j1 . . . jm ¤ n,

we build the sequence t � pvhandlews�j1�1
, vhandlews�j2�1

, . . . , vhandlews�jm�1
q. If

we apply sequence t to M , we obtain a run s0, s1, . . . , sm such that si � s�ji ,@i �
0, . . . ,m.

Model checking The introduction of the sensors do not require to verify any
further requirement.

4.4 Third refinement: adding the three landing sets

The model presented in this section extends the model described in Section 4.3
by adding the modeling of the three landing sets. Code 6 shows the new el-
ements introduced in the model and how some functions have been modified.
The enumerative domain LS represents the three landing sets (FRONT, LEFT,
and RIGHT). The sensors have been refined by explicitly modeling, for each
sensor type, the sensor on each landing set; four new unary monitored func-
tions with domain LS have been added to the model. For example, the unary
monitored function gearsExtended represents the three sensors associated with
the three landing sets, that detect the extension of the gears: specifically, each
location of the function (gearsExtended(FRONT), gearsExtended(LEFT), and
gearsExtended(RIGHT)) is a sensor of a landing set.

The 0-ary functions that in the previous model (Section 4.3) are declared
as monitored, in this model are declared as derived, because now their value
depends on the value of the corresponding unary functions having the same
name. Indeed, each derived function describes if all the corresponding sensors
on the three landing sets are turned on, or if at least one is turned off.

asm LandingGearSystemWithHealthMon3LS

signature:
...
derived aGearExtended: Boolean
derived aGearRetracted: Boolean
derived aDoorClosed: Boolean
derived aDoorOpen: Boolean
derived greenLight: Boolean
derived orangeLight: Boolean
derived redLight: Boolean
dynamic monitored timeout: Boolean
dynamic controlled anomaly: Boolean

definitions:
function aGearExtended = (exist $s in LS with gearsExtended($s))
function aGearRetracted = (exist $s in LS with gearsRetracted($s))
function aDoorClosed = (exist $s in LS with doorsClosed($s))
function aDoorOpen = (exist $s in LS with doorsOpen($s))

function greenLight = (gears = EXTENDED)
function orangeLight = (gears = EXTENDING or gears = RETRACTING)
function redLight = anomaly
...

rule r healthMonitoring =
if timeout then

if (openDoorsEV and not(doorsOpen)) or
(closeDoorsEV and aDoorOpen) or
(retractGearsEV and aGearExtended) or ...
anomaly := true

endif
endif

main rule r Main =
if not(anomaly) then

par
if handle = UP then

r retractionSequence[]
else

r outgoingSequence[]
endif
r healthMonitoring[]

endpar
endif

default init s0:
function anomaly = false
...

Code 7. Model with cylinders, electro-valves, and sensors – With failure mode

Note that AsmetaL permits function overloading, i.e., having different func-
tions with the same name, but a different arity and/or a different domain.

Correctness of the model refinement The proof of the correctness of the model
refinement is straightforward, and it should be done as seen for the two previous
models.

Model checking The introduction of the three landing sets do not require to
verify any further requirement.

4.5 Fourth refinement: adding the health monitoring system

The model presented in this section extends the model described in Section 4.4,
by adding the modeling of the health monitoring system (Section 4.3 of the case
study in [5]). We only consider the doors motion monitoring and the gears motion
monitoring. A possible way to model the monitoring of the sensors is described
in [3]. Since the analogical switch and the pressure sensor are not considered in
this work, we do not model their monitoring.

Code 7 shows the new elements introduced in the model. The health mon-
itoring is executed by rule r healthMonitoring that, whenever a timeout has
occurred, checks that the values of the sensors are as expected. The detection of
an anomaly in the system is modeled by the update to true of the boolean func-
tion anomaly; in the main rule, the system is executed only if there is no anomaly
(i.e., anomaly is false). The timeout is modeled through the boolean monitored
function timeout. Note that, at this level of abstraction, we do not need to explic-
itly handle the time, neither to distinguish between different time intervals: it is
sufficient to know if, in a given system configuration, the maximum allowed time
interval, after which the system configuration should be observed changed, has
elapsed. For example, if the electro-valve responsible for the opening of the doors

is turned on and the doors are not open (openDoorsEV and not(doorsOpen)), if
the timeout has elapsed, then an anomaly has been detected5.

In the monitoring rules, sometimes we need to know if, given a sensor type, at
least one single sensor is turned on. For example, one monitoring rule states that
if the control software does not see the value door openrxs � false for all x �
tfront, left, rightu . . . ; in order to implement this rule, we must check if at least
one door is open, but this can not be inferred through function doorsOpen. In
order to model this kind of rules, we have introduced in this model the functions
aDoorOpen, aDoorClosed, aGearExtended, and aGearRetracted that signal if
there is at least one of the corresponding sensors turned on.

Correctness of the model refinement The proof of the correctness of the model
refinement is straightforward.

Model checking In this model, we have been able to verify the failure mode
requirements R61, R62, R63, R64, R71, R72, R73, and R74. For example, require-
ment R61 requires that, if one of the three doors is still seen locked in the closed
position more than 7 seconds after stimulating the opening electro-valve, then the
boolean output normal mode is set to false.

We have verified the following eight CTL properties:

ag((openDoorsEV and aDoorClosed and timeout) implies ax(ag(anomaly))) //R61

ag((closeDoorsEV and aDoorOpen and timeout) implies ax(ag(anomaly))) //R62

ag((retractGearsEV and aGearExtended and timeout) implies ax(ag(anomaly))) //R63

ag((extendGearsEV and aGearRetracted and timeout) implies ax(ag(anomaly))) //R64

ag((openDoorsEV and not(doorsOpen) and timeout) implies ax(ag(anomaly))) //R71

ag((closeDoorsEV and not(doorsClosed) and timeout) implies ax(ag(anomaly))) //R72

ag((retractGearsEV and not(gearsRetracted) and timeout) implies ax(ag(anomaly))) //R73

ag((extendGearsEV and not(gearsExtended) and timeout) implies ax(ag(anomaly))) //R74

5 Discussion and conclusion

The paper presents an ASM specification of the Landing Gear System case
study [5]. The modeling process exploits the two fundamental concepts of the
ASM method, i.e., the concept of ground model and the refinement principle.

The use of the refinement approach helped us to manage the complexity of
the case study and to achieve the verification of the given requirements. Actually
the refinement was guided by the requirements to be verified, since they gave
the hint on how to proceed in adding details at each refinement step. Indeed,
every refinement step came with a set of suitable novel properties to be verified.
Even though, thanks to the proof of refinement correctness, properties already

5 In the case study, this behavior is described as follows: if the control software does not
see the value door closedrxs � false for all x P tfront, left, rightu 7 seconds after
stimulation of the opening electro-valve, then the doors are considered as blocked and
an anomaly is detected.

verified at a given step were guaranteed in the refined steps, we have kept the
whole set of properties and verified them by model checking at each step.

Among the possible views proposed in the informal requirements – functional,
architectural, real time, reliability, etc. – we do not cover real time aspects.
Although reactive timed ASMs [13] have been proposed for dealing with time in
ASMs, they are not supported by our tools for model analysis. This is the reason
why, for properties R1 (see Section 5.1 in [5]), we verified the weaker version.
We modeled the time passing by means of a suitable monitored function timeout
which was enough for achieving the automatic verification of all the properties
regarding failure mode requirements (see Section 5.2 of [5]).

From the functional view, we abstracted from the analogical switch and the
pressure sensor, while, from the architecture view, we simplified the digital ar-
chitecture by only considering one computing module. Both abstractions are
not due to limitations of the method, but simply to the lack of space. Both
these functional and architectural abstractions are, however, straightforward to
detail. Abstracting from the analogical switch and the pressure sensor also in-
fluenced the modeling of the health monitoring. Therefore, regarding the system
reliability, we did not deal with scenarios involving these two devices.

In the specification presented here, also the model of the sensor voting is
missing. Indeed it has been considered as case study in a separate paper [3] to
present two approaches for checking the implementation conformance: an offline
model-based testing approach and an online runtime monitoring approach.

By using the simulator and the validator for scenarios construction, we were
able to reproduce the expected scenarios of the LGS operating in normal mode
(see Section 4.1 in [5]), even if this simulation is not reported here.

The model development and the model analysis have been made possible by
the combined use of formal methods for modeling and for verification. In fact,
the behavioral specification is expressed in terms of ASMs, while the verification
of the properties, as well as other forms of model analysis (e.g., model review),
is conducted by the use of the NuSMV model checker. The advantage, in our
case, is that all methods are integrated in the same framework, ASMETA, so
the user does not need to worry about translating the ASM specification into
the language of the model checker. The mapping from an ASM model into a
NuSMV model is automatic and the CTL properties can be directly expressed
as part of the ASM model itself.

What is missing in the method, apart from the real time aspects, is a mechan-
ical support by theorem provers for verifying the refinement correctness, and the
definition of refinement patterns that could be useful to guide the refinement
process. For this case study, the refinement steps were suggested by the proper-
ties to verify and the refinement correctness was proved by hand. These topics
will be arguments for future research, as well as the possibility to integrate the
ASM method with other approaches, as the Event-B, that are better structured
in this respect.

References

1. P. Arcaini, A. Gargantini, and E. Riccobene. AsmetaSMV: a way to link high-
level ASM models to low-level NuSMV specifications. In Proceedings of the 2nd
International Conference on Abstract State Machines, Alloy, B and Z (ABZ 2010),
volume 5977 of Lecture Notes in Computer Science, pages 61–74. Springer, 2010.

2. P. Arcaini, A. Gargantini, and E. Riccobene. Automatic Review of Abstract State
Machines by Meta Property Verification. In C. Muñoz, editor, Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010), pages 4–13. NASA, 2010.

3. P. Arcaini, A. Gargantini, and E. Riccobene. Offline model-based testing and
runtime monitoring of the sensor voting module. In ABZ Case Study, volume 433
of Communications in Computer Information Science. Springer, 2014.

4. P. Arcaini, A. Gargantini, E. Riccobene, and P. Scandurra. A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience,
41:155–166, 2011.

5. F. Boniol and V. Wiels. The Landing Gear System Case Study. In ABZ Case Study,
volume 433 of Communications in Computer Information Science. Springer, 2014.

6. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–
257, 2003.

7. E. Börger. The ASM method for system design and analysis. A tutorial introduc-
tion. In B. Gramlich, editor, Proc. of FroCoS 2005, volume 3717 of Lecture Notes
in Computer Science, pages 264–283. Springer, 2005.

8. E. Börger. Construction and analysis of ground models and their refinements as a
foundation for validating computer based systems. Formal Aspects of Computing,
19:225–241, 2007.

9. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

10. A. Carioni, A. Gargantini, E. Riccobene, and P. Scandurra. A Scenario-Based
Validation Language for ASMs. In Proceedings of the 1st International Conference
on Abstract State Machines, B and Z (ABZ 2008), volume 5238 of Lecture Notes
in Computer Science, pages 71–84. Springer-Verlag, 2008.

11. A. Gargantini, E. Riccobene, and P. Scandurra. A Metamodel-based Language and
a Simulation Engine for Abstract State Machines. J. Universal Computer Science,
14(12):1949–1983, 2008.

12. A. Gargantini, E. Riccobene, and P. Scandurra. Model-Driven Language Engineer-
ing: The ASMETA Case Study. In Int. Conf. on Software Engineering Advances,
ICSEA, pages 373–378, 2008.

13. A. Slissenko and P. Vasilyev. Simulation of Timed Abstract State Machines with
predicate logic model-checking. J.UCS, 14(12):1984–2006, 2008.

	Modeling and Analyzing using ASMs: the Landing Gear System case study

