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Abstract In the model-based development context, metamodel-based languages are
increasingly being defined and adopted either for general purposes or for spe-
cific domains of interest. However, meta-languages such as the MOF (Meta Ob-
ject Facility)—combined with the OCL (Object Constraint Language) for expressing
constraints—used to specify metamodels focus on structural and static semantics but
have no built-in support for specifying behavioral semantics. This paper introduces a
formal semantic framework for the definition of the semantics of metamodel-based
languages. Using metamodelling principles, we propose several techniques, some
based on the translational approach while others based on the weaving approach,
all showing how the Abstract State Machine formal method can be integrated with
current metamodel engineering environments to endow language metamodels with
precise and executable semantics.

We exemplify the use of our semantic framework by applying the proposed tech-
niques to the OMG metamodelling framework for the behaviour specification of the
Finite State Machines provided in terms of a metamodel.
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1 Introduction

Modelling is beginning to take a more prominent role in software develo-
pment. Recent initiatives such as the MDA (Model Driven Architecture)
(MDA Guide V1.0.1 2003) from the OMG (Object Management Group)—which
supports various standards including the UML (Unified Modeling Language) (UML
2.1.2 2009)—, MDE (Model-driven Engineering) (Bézivin 2005), MIC (Model-
integrated Computing) (Sztipanovits and Karsai 1997), Software Factories and the
Microsoft DSL tools (Microsoft DSL Tools 2005), etc., promote a model-based ap-
proach to software development where models are first-class entities that need to be
maintained, analysed, simulated and otherwise exercised, and mapped into programs
and/or other models by automatic model transformations. Modelling languages offer
designers modelling concepts and notations to capture structural and behavioural as-
pects of their applications. In contrast to general-purpose modelling languages (like
the UML) that are used for a wide range of domains, some modelling languages are
often tailored to a particular problem domain, and for this reason considered domain-
specific.

Modelling languages themselves can be seen as artifacts of the model-based ap-
proach to (software) language engineering. Indeed, in a model-based language de-
finition, the abstract syntax of a language is defined in terms of an object-oriented
model, called metamodel, that characterizes syntax elements and their relationships,
so separating the abstract syntax and semantics of the language constructs from their
different concrete notations.

The definition of a language abstract syntax by a metamodel is well mastered and
supported by many metamodelling environments (Eclipse/Ecore, GME/MetaGME,
AMMA/KM3, XMF-Mosaic/Xcore, etc.). However, the same cannot be said for the
semantics definition, which is the other important aspect in language design. Cur-
rently, metamodelling environments allow to cope with most syntactic and transfor-
mation definition issues, but they lack of any standard and rigorous support to provide
the semantics of metamodels, which is usually given in natural language.

The definition of a means for specifying rigorously the semantics of metamodels
is currently an open and crucial issue in the model-driven context. A presentation of
existing approaches and techniques is given in Sect. 2.

What is required is a metamodelling environment sufficiently rich to express all
syntactic and semantic aspects of a language. We believe this goal can be achieved by
integrating metamodelling techniques with formal methods providing the requested
and lacked rigour and preciseness. In general, metamodels semantics can be given
with different degrees of formality by a mapping to a sufficiently well-known do-
main or target platform (like the JVM). However, incomplete and informal specifica-
tion of a language makes precise understanding of its syntax and semantics difficult.
Moreover, the lack of formally specified language semantics can cause a semantic
mismatch between design models and tools supporting the analysis of models of the
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language (Chen et al. 2005). These shortcomings can be avoided by the use of formal
methods that can guarantee high formality and preciseness in semantics specification.
A reasonable and desirable formal method to use for this scope should have the fol-
lowing important features: (i) it should be powerful enough to capture the principal
models of computation and specification methods, (ii) it should be endowed with a
metamodel-based definition conforming to the underlying metamodelling framework
in order to allow automatic model transformation by model-based techniques, (iii) it
should be executable in order to validate metamodels semantics, (iv) it should be
able to work at different levels of abstraction, and (v) it should provide a refinement
mechanism so that one can focus on a few concepts at a time and (possibly) deliver
the language semantics specification at different refinement phases.

Currently, we have been studying the feasibility and the advantages of integrat-
ing metamodelling techniques and formal methods in the context of the ASM (Ab-
stract State Machine) formalism (Börger and Stärk 2003) which, according to the
requirements above and as better described in Sect. 5, seems to be a good can-
didate. We started by defining a metamodel for ASMs (Gargantini et al. 2006;
AsmM 2006), and we have developed the ASMETA framework (AsmM 2006;
Gargantini et al. 2007a) as an instantiation of the OMG metamodelling framework
for ASM related concepts, to create and handle ASM models exploiting the advan-
tages offered by the metamodelling approach and its facilities (derivatives, libraries,
APIs, etc.) for building and integrating ASM tools.

In this paper, we address the issue of defining a formal semantic framework to ex-
press the semantics (possibly executable) of metamodel-based languages. We propose
several techniques, some based on the translational approach while others based on
the weaving approach. All these techniques show how the ASM formal method can
be integrated, and in same cases promoted as a meta-language, with current meta-
model engineering environments to endow languages with precise and executable
semantics. These techniques imply a different level of automation, user freedom,
possible reuse, and user effort in defining semantics, but they all share a common
unifying formal framework.

As exemplification of the use of our semantic framework, we apply the proposed
techniques to the OMG metamodelling framework for the behaviour specification of
the Finite State Machines (FSMs) provided in terms of a metamodel. The choice of
this toy example is intentional and due to the fact that we prefer the reader to con-
centrate on understanding our semantic techniques rather than a complex application
case study. Note that the two main semantic techniques (meta-hooking and weav-
ing) have been applied to define a precise and executable semantics of the SystemC
UML profile (Gargantini et al. 2008; Scandurra 2005) —as part of the definition of a
model-based SoC (System-on-Chip) design flow for embedded systems.

The remainder of the paper is organized as follows. Section 2 provides a descrip-
tion of related work along the lines of our motivations. Some background on the
formal definition of a modelling language and the problem of defining a language
formal semantics is given in Sect. 3. Section 4 describes the OMG metamodelling
framework and the FSM metamodel that we used throughout the paper as case study.
Section 5 provides basic concepts concerning ASMs. Section 6 presents the proposed
ASM-based semantic framework to metamodel-based language definition, while the
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subsequent Sects. 7, 8, 9, and 10 provide a detailed description of the techniques
supported by the framework. Section 11 provides a comparison of the proposed tech-
niques in relation to the level of the metamodelling stack they are applied to and
shows how other related techniques existing in literature can be captured by those
proposed in our framework. Finally, Sect. 12 concludes the paper.

2 Related work and motivations

The formal specification of the semantics of a modelling language is a key current
issue for model-based engineering.

Initially, languages such as OCL (OCL 2006) (and its various extensions) allowed
to specify structural semantics (static semantics) through invariants defined over the
abstract syntax of the language. They are used to check whether a model conforms
to the modelling language (i.e. it is well-formed) or not. The OCL can also be used
to specify behavioural semantics through the definition of pre- and post-conditions
on operations; being side-effect free, the OCL does not allow the change of a model
state, but it allows describing it.

Some recent works have addressed the problem of providing executability into
current metamodelling frameworks like Eclipse/Ecore (EMF 2008), GME/MetaGME
(GME 2006), AMMA/KM3 (AMMA 2005), XMF-Mosaic/Xcore (XMF Mosaic
2007), etc., and thereby provided techniques for semantics specification natively with
metamodels. Different solutions have been proposed that may be classified into tree
main categories: (i) translational semantics, (ii) weaving behaviour, and (iii) seman-
tic domain modelling.

The first approach (translational semantics) consists in defining a mapping (en-
acted by the use of model transformation engines) from the abstract syntax of the
underlying language to the abstract syntax of another language which is supposed
to be formally defined (i.e., for which a mapping to a semantic domain is defined).
This translational semantics has been used, for example, in Chen et al. (2005, 2007)
where a semantic anchoring to well-established formal models of computation (such
as finite state machines, data flow, and discrete event systems) built upon AsmL
(ASML 2001) is proposed, by using the transformation language GME/GReAT (Gra-
ph Rewriting And Transformation language) (Balasubramanian et al. 2006). The so-
lution they propose to the semantic anchoring offers up predefined and well-defined
sets of semantic units for future (conventional) anchoring efforts. However, we see
two main disadvantages in this approach: first, it requires well understood and safe
behavioural language units and it is not clear how to specify the language semantics
from scratch when these language units do not yet exist; second, in heterogeneous
systems, specifying the language semantics as composition of some selected primary
semantic units for basic behavioural categories (Chen et al. 2007) is not always pos-
sible, since there may exist complex behaviours which are not easily reducible to a
combination of existing ones.

Still concerning the translational category, two other experiments have to be men-
tioned: the semantics of the AMMA/ATL transformation language (Di Ruscio et al.
2006b) and SPL, a DSL for telephony services, (Di Ruscio et al. 2006a) have been
specified in XASM (Anlauff 2000), an open source ASM dialect. A direct mapping
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from the AMMA meta-language KM3 to an XASM metamodel is used to represent
metamodels in terms of ASM universes and functions, and this ASM model is taken
as basis for the semantics specification of the ATL metamodelled language. However,
this mapping is neither formally defined nor the ATL transformation code which im-
plements it have been made available in the ATL transformations Zoo or as ATL use
case (Jouault et al. 2006); only the Atlantic XASM Zoo (XASM Zoo 2006), a mirror
of the Atlantic Zoo metamodels expressed in XASM (as a collection of universes and
functions), has been made available.

In Combemale et al. (2007), an attempt is given towards a generic framework
to specify and effectively check temporal properties over arbitrary models in SIM-
PLEPDL, a process modelling language. A way is proposed to use a temporal exten-
sion of OCL, TOCL, to express properties, and a model transformation to Petri Nets
and LTL formulae for both the process model and its associated temporal properties
are specified.

The Moses project (Esser and Janneck 2001) provides a framework for support-
ing various visual formalisms (time Petri nets, process networks, statecharts, etc.)
for modelling heterogeneous systems, and a simulation platform (made of built-in
or external simulators) to execute such a mixture of models, possibly in a distributed
fashion on several processing units. The Moses framework adopts a Graph Type Defi-
nition Language (GTDL) to define syntactical aspects of visual notations (vertex/edge
types, their attribute structure, syntactical predicates, etc.), while the semantics is de-
fined by pluggable user-defined interpreters/compilers. ASMs are also adopted as
abstract specification language for rapid prototyping of interpreters/compilers. The
goal is ambitious, but unfortunately the project seems out of date.

The second approach consists in (weaving behaviour) into metamodels, i.e. spec-
ifying an executable semantics directly on the abstract syntax of the language by
promoting meta-languages for the semantics specification. Meta-programming lan-
guages like Kermeta (Muller et al. 2005), xOCL (eXecutable OCL) of the XMF-
Mosaic metamodelling framework (XMF Mosaic 2007), or also the approach in
Scheidgen and Fischer (2007), belong to this category. Inspired from the UML ac-
tion semantics (AS 2001; UML 2.1.2 2009; fUML 2008), they all use a minimal
set of executable primitives (create/delete object, slot update, conditional operators,
loops, local variables declarations, call expressions, etc.) to define the behaviour of
metamodels by attaching behaviour to classes operations.1 Such action languages
can be imperative or object-oriented. Although, they aim to be pragmatic, extensi-
ble and modifiable, some of them suffer from the same shortcomings of traditional
UML-based action languages, i.e. they are a simplified version of real programming
languages, and therefore a description written in one of such action languages has
the same complexity of one (a program) written in a conventional programming lan-
guage. Action languages that fall in this category, such as the xOCL language in the
XMF toolkit (XMF Mosaic 2007) and the OMG QVT standard (QVT 2008), may be
efficiently employed (like ordinary programming languages) in model repositories

1The MOF, for example, allows the definition (inside classes of a metamodel) of the name and the type
signature of operations, but it does not allow the specification of the body counterpart which has to be
described in text using an external action language.
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and meta-programming environments for model management purposes to implement
and execute queries, views, transformations, etc., on and between models, rather than
used to specify the execution semantics of formalisms represented by metamodels.
The adoption of more abstract action languages is desirable to reduce model com-
plexity. Moreover, not all action semantics proposals are powerful enough to specify
the model of computation (MoC) underlying the language being modelled and to pro-
vide such a specification with a clear formal semantics. As shown in Sect. 10 when
we illustrate the weaving technique of our ASM-based framework, the ASMs formal-
ism itself can be also intended as an action language but with a concise and powerful
set of action schemes provided by different ASM rule constructors.

The third approach (semantic domain modelling) suggests defining a metamodel
even for the “semantic domain”—i.e. to express also concepts of the run-time exe-
cution environment—, and then using well-formedness OCL rules to map elements
of the language metamodel into elements of the semantic domain metamodel. It is
used, for example, by the OMG task forces for the CMOF Abstract Semantics—see
Chap. 15 in (MOF 2006)—and for the OCL (OCL 2006). A similar technique, also
used for the OCL semantics, involves set theory to formulate the semantic domain in
terms of an object model (a formalization of UML class diagrams, not of the OCL
metamodel) and system states for the evaluation of OCL expressions. This last was
originally proposed in Richters (2001), and then used also in Flake and Müller (2004)
where new components to the object model and system states have been introduced
and the ASM formalism was used to formalize the evaluation of OCL constraints.

We essentially investigate the two major approaches, translational semantics and
weaving behaviour, and for both categories, we propose some techniques show-
ing how the ASM formalism can be exploited as specification language to endow
metamodel-based languages with a rigorous and executable description of their se-
mantics.

Concerning the UML language, probably the most well-known example of meta-
model-based modelling language, many papers on the semantics of UML exist in
literature. However, specifying a formal semantics of UML is still an open problem
as demonstrated by the existence of the international UML 2 Semantics Project (Broy
et al. 2007), that has, among its several major objectives, that of specifying a defin-
itive and complete formal semantics foundation for the UML 2 standard. In fUML
(2008), an attempt can be found to define an executable subset of standard UML (the
Foundational UML Subset) that can be used to define the semantics of modelling
languages such as the standard UML or its subsets and extensions.

Through several case studies, ASMs have shown to be a formal method suitable for
system modelling and for describing the semantics of modelling/programming lan-
guages. Among successful applications of the ASMs in the field of language seman-
tics, we can cite UML and SDL-2000, programming languages such as Java, C/C++,
and hardware description languages (HDLs) such as SystemC, SpecC, and VHDL—
complete references can be found in Börger and Stärk (2003). Concerning the ASM
application to UML to provide precise and rigorous semantics of metamodel-based
languages, we can mention, to name a few, the work in Ober (2000), Börger et al.
(2000), Cavarra et al. (2004), Jürjens (2002), Compton et al. (2000). More or less, all
these approaches define an ASM model able to capture the semantics of a particular
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kind of UML graphical sub-language (statecharts, activity diagrams, etc.). It would be
desiderable to generalize the approach to any metamodel-based language by provid-
ing a general framework where ASMs can be completely integrated into a metamod-
elling environment to allow building well-formed and well-understood metamodels
in a uniform and systematic way. The only attempts in this direction are the work in
Chen et al. (2005, 2007), Di Ruscio et al. (2006a, 2006b) already discussed above.

The choice of ASM as formal support for metamodel-based language semantics
specification is intentional and due to the fact that this formalism owns all the charac-
teristics of preciseness, abstraction, refinement, executability, metamodel-based defi-
nition, that we identified in Sect. 1 as the desirable properties for this goal. Of course,
the proposed goal is achievable by any other formal language sharing the same char-
acteristics.

3 Model-based language specification

Regardless of their general or domain specific nature, modelling languages share a
common structure: they usually have a concrete syntax (textual, graphical, or mixed);
they have an abstract syntax; they have a semantics which can be implicitly or explic-
itly defined, and may be executable. Formally, a language L is defined (Chen et al.
2005; Clark et al. 2001) as a five-tuple L = 〈A,C,S,MC,MS〉, consisting of abstract
syntax A, concrete syntax C, semantic domain S, syntactic mapping MC and semantic
mapping MS .

The abstract syntax A defines the language concepts, their relationships, and well-
formedness rules available in the language. The concrete syntax C defines a specific
notation used to express models, which may be graphical, textual, or mixed. The syn-
tactic mapping, MC : C → A, assigns syntactic constructs to elements in the abstract
syntax.

The language semantics is defined (Harel and Rumpe 2004) by choosing a seman-
tic domain S and defining a semantic mapping MS : A → S which relates syntactic
concepts to those of the semantic domain. The semantic domain S and the mapping
MS can be described in varying degrees of formality, from natural language to rig-
orous mathematics. It is very important that both S and MS are defined in a precise,
clear, and readable way. The semantic domain S is usually defined in some formal,
mathematical framework (transition systems, pomsets, traces, the set of natural num-
bers with its underlying properties, are examples of semantic domains). The semantic
mapping MS is not so often given in a formal and precise way, possibly leaving some
doubts about the semantics of L. Section 6 presents our approach to the definition of
S and MS .

In a model-based approach, the abstract syntax A of L is described by a meta-
language ML, which itself has an abstract syntax AML. A is called the metamodel of
L, while AML is the meta-metamodel. In this paper, we focus on languages whose ab-
stract syntax is defined by in terms of a metamodel. The metamodel of a language
describes the vocabulary of concepts provided by the language, the relationships
existing among those concepts, and how they may be combined to create models.
A metamodel-based abstract syntax definition has the great advantage of being suit-
able to derive from the same metamodel (through mappings or projections) different
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alternative concrete notations Ci and their syntactic mappings MCi
, textual or graph-

ical or both, for various scopes like graphical rendering, model interchange, standard
encoding in programming languages, and so on, still maintaining the same seman-
tics MS . Therefore, a metamodel could be intended as a standard representation of
the language notation.

According to the definition in Kurtev et al. (2006), a terminal model m written in
a language L has the language metamodel A as its reference model. The reference
model of a metamodel A is the meta-metamodel AML. The relation between a model
and its reference model is called conformance, denoted in the sequel by ω.

4 Running case study

In this section, a running example is introduced. It is extensively used throughout
the next sections to illustrate the proposed semantics specification techniques. The
presentation of the case study includes an overview of the chosen metamodelling
framework, which in our case is the OMG/MOF (MOF 2006) framework, and a de-
scription of the metamodel of the language or formalism being specified, which in
our case is the Finite State Machines. Clearly, we are concerned here with issues
related to metamodels conforming to MOF, but the approach can be applied to any
other metamodelling framework.

4.1 The OMG metamodelling framework

In the OMG metamodelling stack—the OMG calls M0 the real world, M1 its models,
M2 the metamodels and M3 the self-defined meta-metamodel—, the MOF (Meta
Object Facility) is the meta-language to define metamodels, namely the ML, and it is
self-descriptive, i.e. the MOF metamodel is defined using concepts defined in MOF
(meta-circularity).

OMG offers several transformation languages, which take as input a model con-
forming to a given metamodel and produce as output another model conforming
to a given metamodel. Transformation processes can be completely automatized by
means of transformation engines for model-to-model transformation languages such
as those provided by the Eclipse Modeling Project (M2M project 2007), like the ATL
engine (Jouault et al. 2006), as implementation of the OMG Queries/Views/Transfor-
mations (QVT 2008) standard.

4.2 FSM case study

To show the application of our different techniques to provide semantics to a
metamodel-based language, we choose the Finite State Machines (FSMs) as simple
case study.

Figure 1 shows the metamodel of an FSM. The metamodel describes the modelling
elements for specifying a model of behaviour composed of a finite number of states,
transitions between those states, and events. The model of the state machine described
here is a Mealy machine which generates an output event based on its current state
and input. One of the states is chosen as initial state. Moreover, the metamodel allows
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Fig. 1 A class diagram for the FSM metamodel

Fig. 2 A Finite State Machine

the description of both deterministic and non-deterministic (for each pair of state and
input event there may be several possible next states) FSMs.

Figure 2 shows an FSM accepting binary strings. State S1 is designated as initial
state. The machine emits the output event 1 when it changes state, while it emits the
output event 0 when it remains in the current state as effect of firing a self-transition.

5 The Abstract State Machines and the ASMETA toolset

Abstract State Machines can be seen an extension of FSMs (Börger 2005), where
unstructured control states are replaced by states comprising arbitrary complex data.
The states of an ASM are multi-sorted first-order structures, i.e. domains of objects
with functions and predicates (boolean functions) defined on them, while the transi-
tion relation is specified by “rules” describing the modification of the functions from
one state to the next.

The notion of ASMs formalizes simultaneous parallel actions of a single agent, ei-
ther in an atomic way, Basic ASMs, or in a structured and recursive way, Structured or
Turbo ASMs. Furthermore, it supports a generalization where multiple agents interact
in parallel in a synchronous/asynchronous way, Synchronous/Asynchronous Multi-
agent ASMs. Appropriate rule constructors also allow non-determinism (choose or
existential quantification) and unrestricted synchronous parallelism (universal quan-
tification forall).

A complete mathematical definition of the ASM method can be found in Börger
and Stärk (2003), together with a presentation of the great variety of its success-
ful application in different fields such as: definition of industrial standards for pro-
gramming and modelling languages, design and re-engineering of industrial control
systems, modelling e-commerce and web services, design and analysis of protocols,
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architectural design, language design, verification of compilation schemas and com-
piler back-ends, etc.

A number of ASM tools have been developed for model simulation, model-based
testing, verification of model properties by proof techniques or model checkers—see
GASM (2008) for a list.

Although the ASM method comes with a rigorous scientific foundation, the prac-
titioner needs no special training to use it since it can be understood correctly as
pseudo-code or Virtual Machines working over abstract data structures. In Sect. 5.1
we quote this working definition of the ASMs, which is useful for our purposes.

In addition to its mathematical-based foundation, a metamodel-based definition
for ASMs is also available. An ASM metamodel called AsmM (Abstract State Ma-
chines Metamodel) (Riccobene and Scandurra 2004; Gargantini et al. 2006, 2007b;
AsmM 2006) provides an abstract syntax for an ASM language in terms of MOF
concepts. On the base of the AsmM and exploiting the advantages of the metamod-
elling techniques, a general framework, called ASMETA tool set (AsmM 2006), for a
wide inter-operability and integration of new and existing tools around ASMs (ASM
model editors, ASM model repositories, ASM model validators, ASM model veri-
fiers, ASM simulators, ASM-to-Any code generators, etc.) has been developed. The
AsmM and the ASMETA tool-set are presented in Sect. 5.2.

5.1 Abstract State Machines

Based on Sect. 2.2.4 of Börger and Stärk (2003), an ASM, viewed as pseudo-code
over abstract data structures, can be defined as the tuple (header, body, main rule,
initialization).

The header contains the name of the ASM and its signature,2 namely all domain,
function and predicate declarations (domain and function classification is described
in Sect. 5.2.1).

The body of an ASM consists of (static) domain and (static/derived) function de-
finitions according to domain and function declarations in the signature of the ASM.
It also contains declarations (definitions) of transition rules. Basically, a transition
rule has the form of guarded update “if Condition then Updates” where Updates
are a set of function updates of the form f (t1, . . . , tn) := t which are simultaneously
executed3 when Condition is true. An ASM M is therefore a finite set of rules for
such guarded multiple function updates. State transitions of M may be influenced in
two ways: internally, through the transition rules, or externally through the modifica-
tions of the environment. A computation of M is a finite or infinite sequence S0, S1,

. . . , Sn, . . . of states of M , where S0 is an initial state and each Sn+1 is obtained from
Sn by firing simultaneously all of the transition rules which are enabled in Sn. The

2For multi-agent ASM, the header contains also the machine import and export clauses, namely all names
for functions and rules which are, respectively, imported from another ASMs, and exported from the cur-
rent one. We assume that there are no name clashes in these signatures.
3f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms. To fire this rule to a state Si , i ≥ 0,
evaluate all terms t1, . . . , tn, t at Si and update the function f to t on parameters t1, . . . , tn. This produces
another state Si+1 which differs from Si only in the new interpretation of the function f .
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body of ASM may also contains definitions of axioms for invariants one wants to
assume for domains and functions of the ASM.

The (unique) main rule is a transition rule and represents the starting point of the
machine program (i.e. it calls all the other ASM transition rules defined in the body).
The main rule is closed (i.e. it does not have parameters) and since there are no free
global variables in the rule declarations of an ASM, the notion of a move does not
depend on a variable assignment, but only on the state of the machine.

The initialization of an ASM is a characterization of the initial states. An initial
state defines an initial value for domains and functions declared in the signature of
the ASM. Executing an ASM means executing its main rule from a specified initial
state.

The notion of module is also supported. An ASM module is an ASM without a
main rule and a characterization of the set of initial states.

5.2 The AsmM metamodel and the ASMETA toolset

The AsmM metamodel (Riccobene and Scandurra 2004; Gargantini et al. 2006,
2007b; AsmM 2006) is a complete meta-level representation of ASMs concepts based
on the OMG’s MOF 1.4 (MOF 2002). Metamodelling representation results in class
diagrams. Each class is also equipped with a set of relevant constraints, OCL invari-
ants written to fix how to meaningfully connect an instance of a construct to other
instances, whenever this cannot be directly derived from the class diagrams. AsmM
is also publicly available—see (AsmM 2006)—as expressed in the meta-languages
AMMA/KM3 (Jouault and Bézivin 2006) and in EMF/Ecore (EMF 2008) thanks to
the ATL-KM3 plugin (Jouault et al. 2006) which allows model transformations both
in the EMF and MOF modelling spaces.

The complete AsmM metamodel is organized in one package called ASMETA con-
taining 115 classes, 114 associations, and 150 OCL class invariants, approximatively.
The ASMETA package is further divided into four packages as shown in Fig. 3.

Fig. 3 Package structure of the AsmM metamodel
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Each package covers different aspects of the ASMs. The dashed gray ovals in
Fig. 3 denote packages representing the notions of State and Transition System, re-
spectively. The Structure package defines architectural constructs (modules and
machines) required to specify the backbone of an ASM model. The Definitions
package contains all basic constructs (functions, domains, constraints, rule declara-
tions, etc.) which characterize algebraic specifications. The Terms package provides
all kinds of syntactic expressions which can be evaluated in a state of an ASM. The
TransitionRules package contains all possible transition rules schemes of Basic
and Turbo ASMs. All derived transition rules4 are contained in the DerivedTran-
sitionRules package. All relations between packages are of type uses.

Figure 4 shows the backbone of an ASM according to the definition given in
Sect. 5.1. Further technical details on the AsmM can be found in the Sect. 5.2.1
below. We present here only a very small fragment of the AsmM whose complete
description can be found in Gargantini et al. (2006), AsmM (2006).

A general framework, called ASMETA tool set (Gargantini et al. 2007a; AsmM
2006) has been developed based on the AsmM and exploiting the advantages of the
metamodelling techniques. The ASMETA toolset essentially includes: a textual nota-
tion, AsmetaL, to write ASM models (conforming to the AsmM) in a textual and
human-comprehensible form; a text-to-model compiler, AsmetaLc, to parse ASM
models written in AsmetaL and check for their consistency with respect to the OCL
constraints of the metamodel; a simulator, AsmetaS, to execute ASM models (stored
in a model repository as instances of AsmM); the Avalla language for scenario-based
validation of ASM models, with its supporting tool, the AsmetaV validator; the ATGT
tool that is an ASM-based test case generator based upon the SPIN model checker; a
graphical front-end, called ASMEE (ASM Eclipse Environment), which acts as IDE
and it is an Eclipse plug-in.

5.2.1 Further AsmM concepts

This subsection presents further simplified fragments of the AsmM subset which will
be used in Sect. 9.1.1 to define a mapping from MOF to AsmM. These fragments are
reported in Fig. 5, 6, 7, 8 by the usual UML class diagram notation. They are related
to ASM domains and functions for representing the data structures derived from the
abstract syntax (metamodel) of a language expressed in MOF.

Axioms, domains, functions, and rule declarations are all represented by sub-
classes of the abstract class NamedElement (see Fig. 5). The expression of an
Axiom is given by a term, specified by the association end body, which yields a
boolean value when evaluated in a state of the ASM. An axiom must refer to at least
one function or one domain.

In order to represent domains and distinguish between user-defined sets and do-
mains with predefined types, in the AsmM we introduce the abstract class Type-
Domain (see Fig. 6) for type-domains and the class ConcreteDomain for sub-
domains of type-domains, which are provided by the user. The association end

4The AsmM metamodel in Fig. 3 includes other ASM transition rule schemes derived from the basic and
the turbo ones, respectively. Although they could be easily expressed at model level in terms of other
existing rule schemes, they are considered “syntactic sugar” and therefore they have been included in the
metamodel. Example of such rules are the case-rule and the (turbo) iterative/recursive while-rule.
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Fig. 4 Backbone

with role name subsetof between the classes Domain and ConcreteDomain
binds a concrete domain to its corresponding parent-domain. The class Type-
Domain is further classified in: BasicTypeDomain, for primitive data values;
StructuredTypeDomain (see Fig. 7), representing type-domain constructors for
structured data (like finite sets and tuples); AbstractTypeDomain, modelling
user named domains whose elements have no precise structure. For both abstract
and concrete domains, the boolean attribute isDynamic specifies if the domain is
static (never changes) or dynamic (its content can change during the computation
by effect of transition rules, typically by an extend rule which allows creating new
objects dynamically).
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Fig. 5 AsmM named elements: axioms, rule declarations, domains, functions

Fig. 6 AsmM domains

The abstract class Function and its hierarchy is detailed in Fig. 8. It models
the notion of function and function classification in ASMs. Derived functions are
functions coming with a specification or computation mechanism given in terms of
other functions. Basic functions are classified into static (never change during any run
of the machine) and dynamic ones (may change as a consequence of agent actions (or
updates). Dynamic functions are further classified into: monitored (only read),
controlled (read and write), shared and output (only write) functions.

ASM rule constructors are represented by subclasses of the class Rule. Figure 9
shows a subset of basic forms of a transition rule under the class hierarchy rooted by
the class BasicRule: update rule, conditional rule, skip, do in parallel (block rule),
extend, etc.
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Fig. 7 AsmM structured domains

Fig. 8 AsmM functions
classification

Fig. 9 Basic rule forms (a subset)
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6 A semantic framework for metamodel-based languages

Recall from Sect. 3 that a language L is defined as 〈A,C,S,MC,MS〉, where A

is the abstract syntax, S is the semantic domain, and MS the semantic mapping. In
this section we assume that A is defined by a metamodel and we introduce a way to
precisely define S and MS .

A language can be considered well-defined if its semantic mapping MS leads from
a clear and expressive syntax A to a well-defined and well-understood semantic do-
main S (Harel and Rumpe 2004). No other constraints over S and MS are given, as
long as they are clearly defined. The notion of semantic mapping is widely adopted
in the field of programming language semantics: “The general idea of semantics
through translation is an important and pervasive one in the study of programming
languages” (Gunter 1992). The way in which this mapping and the semantic domain
S are defined, differentiates the various kinds of semantics: operational, denotational,
axiomatic, and so on. The mapping MS must be intended with a broad meaning: in
operational semantics, for example, it is an abstract interpretation of the constructs
of L.

Sometimes, in order to give the semantics of a language L, another helper lan-
guage L′, whose semantics is clearly defined and well established, is introduced. The
helper language is defined itself as L′ = 〈A′,C′, S′,M ′

C,M ′
S〉 and we assume this

time that M ′
S and S′ are already well-defined.

In this case, L′ can be exploited to define the semantics of L by (1) taking S′
as semantic domain for L too, i.e. S′ = S, (2) by introducing a building function
M : A → A′ which associates an element of A′ to every construct of A, and (3) by
defining the semantic mapping MS : A → S which defines the semantics of A as
follows:

MS = M ′
S ◦ M

In this way, the semantics of L is given by translating terminal models m of L to
models of L′. Note that the function M can be applied to terminal models conform-
ing to A in order to obtain models conforming to A′, as shown in Fig. 10. In this
way, the semantic mapping MS : A → S associates a well-formed terminal model m

conforming to A with its semantic model MS(m), by first translating m to m′ con-
forming to A′ by means of the M function, and then applying the mapping M ′

S which
is already well-defined.

Fig. 10 The building
function M
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The M function hooks the semantics of L to the S′ semantic domain of the lan-
guage L′ and, therefore, the problem of giving a semantic mapping of L is reduced
to define the building function M .

The definition of M is accomplished by exploiting different techniques, some
based on the translational approach while another based on the weaving approach.

In the translational approach, the building function M is defined as

M : A → A′

and transforms an input model m conforming to A into a model conforming to A′.
There exist three different ways of defining M , depending on the abstraction level of
the metamodelling stack—see the MDE model organization in Kurtev et al. (2006)—
we are working at. We classify them as: semantic mapping, at model level; seman-
tic hooking, at metamodel level; semantic meta-hooking, at meta-metamodel level.
Going up through the metamodelling levels, the three techniques allow increasing
automation in defining the model transformation, and essentially differ in increasing
reuse and decreasing dependency of the final ASM with respect to the terminal model
which all techniques are, in the end, applied to.

In the weaving approach (Muller et al. 2005), L′ is promoted5 as meta-language
and integrated with the metamodel engineering environment to weave behavioral se-
mantics directly into metamodels. To this purpose, the current meta-metamodel AML

and the A′ are weaved together, by establishing precise join points to combine the
two metamodels into a new meta-metamodel AML+ which adds to AML the capability
of specifying behaviour by L′. Then, the metamodel A of L is weaved with the in-
tended behavioural semantics, by exploiting the join points established between AML

and A′. Let A+ be the new metamodel. The building function M is defined as

M : A+ → A′

which associates a model conforming to A′ to a terminal model conforming to A+.6

6.1 ASMs for the semantic framework

We investigate in this paper the use of the ASM language as helper language L′ and
we present how to define the building function M accordingly. The ASM language is
defined, in the ASMETA framework, by the tuple

〈AsmM, CAsmM, SAsmM, MSAsmM , MCAsmM 〉 (1)

where AsmM is the ASM metamodel presented in Sect. 5.2, CAsmM is intended as
AsmetaL (or also any other concrete notation associated to AsmM), SAsmM is the
first-order logic extended with a logic for function updates and for transition rule con-
structors formally defined in Börger and Stärk (2003), MCAsmM is the syntax mapping

5According to Thirioux et al. (2007), the promotion operation maps a model into a reference model, i.e. a
meta-model in turn is used as meta-metamodel to build metamodels conforming to it.
6Note that if a terminal model m conforms to a metamodel A, then m also conforms to the weaved meta-
model A+ .
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given by the AsmetaLc compiler, MSAsmM is the semantic mapping which associates
a theory conforming to the SAsmM logic to a model conforming to AsmM.

By instantiating A′ with AsmM, the translational techniques presented in the pre-
vious section consist in defining a building function M : A → AsmM and they are
described in more details in the following Sects. 7, 8, 9. The weaving technique con-
sists in (1) weaving the current meta-metamodel AML and the AsmM together into
a new meta-metamodel AML+ , (2) modifying the metamodel A to obtain the meta-
model A+ and (3) defining the building function M : A+ → AsmM. This technique
is presented in Sect. 10.

A concrete example is provided applying each technique to the metamodelling
framework OMG/MOF and to the FSM modelling language. The results of this ac-
tivity are FSM semantic models which can be made available in a model repository
either in textual form using AsmetaL or also in abstract form as instance model of the
AsmM metamodel.

7 Semantic mapping

By semantic mapping, a unique building function M : A → AsmM is manually defined
at will by the language designer by using a model transformation language. M maps
concepts of the A space into AsmMconcepts.

A transformation language must be provided with a suitable tool framework which
allows to automatically apply M to any model m conforming to A (see Fig. 11). The
aim of this transformation operation is to create an ASM (i.e. a model conforming to
the AsmM metamodel) on the base of the elements of the source model m and their
tying elements in the source metamodel A. Elements of m are mapped to abstract
data structures (signature, domain/function definitions, axioms), transition rules, and
initial state of the resulting machine. Given two different models m1 and m2 both
conforming to A, the resulting ASMs substantially differ in structure, rules and ini-
tial states, and the common parts are limited. We say the resulting ASM strongly
resembles the terminal model m.

Fig. 11 Semantic mapping
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Listing 1 Mapping FSM transitions into ASM conditional rules
lazy rule mapTrans{
from tr: FSM!Transition
to out: AsmM!RuleDeclaration

(name <− ’r_’+tr.source.name+"_"+tr.inputEvent.name,
ruleBody <− Sequence {createCondRule(tr)}) }

lazy rule createCondRule{
from tr: FSM!Transition
to out: AsmM!ConditionalRule(

guard <− createGuard(tr)
thenRule <− createAction(tr))

}
lazy rule createGuard {
// create the guard: currentState==tr.source.name and input==tr.inputEvent.name
...
}
lazy rule createAction {
// two update rules: currentState:= tr.target.name; output:= tr.outputEvent.name
...
}

No guidance on how to map static or behavioural parts of A into concepts of
AsmM is given. However, some patterns can be defined: one is to map behavioural
concepts of A into ASM rules. It is applied in the example below.

7.1 Semantic mapping for FSM

An example of semantic mapping M for the basic deterministic FSMs follows.
M maps each state and each event of a terminal FSM model into a String constant.
A controlled variable currentState of type String in the resulting ASM model takes
values among these constants. A monitored variable input of type String is added to
the ASM model to denote the current input. Each transition is mapped into a rule
declaration: the rule name is formed by the name of the source state followed by the
input, while the rule body is a conditional rule. This last has as guard a condition
to determine if the currentState is the source state of the underlying transition and
the input event of the transition matches the present input; if this guard is satisfied,
appropriate update rules allows setting the output to the output event and the current
state to the next state, accordingly.

M can be implemented as a model transformation using, for example, the ATL
language. Listing 1 shows a fragment of such ATL transformation relating to the map-
ping of FSM transitions into ASM conditional rules. The resulting ASM for the ter-
minal FSM model given in Fig. 2 is reported in Listing 2 using the AsmetaL notation.

For non-deterministic FSM, the semantic mapping M should be defined so to cap-
ture the non deterministic choice of all possible firing transitions. Therefore, the code
reported in Listing 2 should be modified accordingly.
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Listing 2 ASM for a terminal FSM model by mapping
asm FSM_mapping
import StandardLibrary
signature:

controlled currentState: String
monitored input: String
out output: String

definitions:
rule r_s1_1 = if currentState = "s1" and input = "1" then

par currentState:= "s1"
output:= "0"

endpar
endif

rule r_s1_0 = if currentState = "s1" and input = "0" then
...

rule r_s2_1 = ...
rule r_s2_0 = ...
//run all transition rules
main rule r_Main = par r_s1_1[] r_s1_0[] r_s2_1[] r_s2_0[] endpar

default init s0:
function currentState = "s1"

8 Semantic hooking

While in the semantic mapping the emphasis is on models, semantic hooking focus
on the language itself trying to endow L with a semantics by means of a unique ASM
for any model written in L. By using this technique, designers hook (or anchor) to the
language metamodel A an abstract state machine �A, which is an instance of AsmM
and contains all data structures modelling elements of A with their relationships, and
all transition rules representing behavioural aspects of L. �A does not contain the
initialization of functions and domains, which will depend on the particular instance
of A. The function which adds the initialization part is called ι (see Fig. 12). Formally,
the building function M is given by

M(m) = ιA(�A,m)

for all m conforming to A, where:

– �A: AsmM, is an abstract state machine which contains only declarations of func-
tions and domains (the signature) and the behavioural semantics of L in terms of
ASM transition rules;

– ιA: AsmM×A → AsmM, properly initializes the machine. ιA is defined on an ASM
a and a terminal model m instance of A; it navigates m and sets the initial values
for the functions and the initial elements in the domains declared in the signature
of a. The ιA function is applied to �A and to the terminal model m for which it
yields the final ASM.
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Fig. 12 Semantic hooking

8.1 Semantic hooking for FSM

The �FSM models the semantics for the FSM language presented in Sect. 4.2. List-
ing 3 reports a possible �FSM resembling that defined in Chen et al. (2005). It in-
troduces abstract domains for the FSMs themselves, transitions, states, and events.
Two controlled functions store the initial and current state of a FSM, while the output
function returns the output of a FSM. The behaviour of a generic FSM is given by
two rules r_doTransition and r_fsmReact. The main rule executes all machines in the
Fsm set.

One has also to define a function ιFSM which adds to �FSM the initialization nec-
essary to make the ASM model executable. Any model transformation tool can be
used to automatize the ιFSM mapping by retrieving data from m and creating the cor-
responding ASM initial state in the target ASM model. Listing 4 shows part of this
mapping using the ATL model transformation language, where m_FSM is �FSM , and
myFSM is any terminal FSM model m. Essentially, for each class instance of the ter-
minal model myFSM, a static 0-ary function is created in the signature of the ASM
model m_FSM in order to initialize the domain corresponding to the underlying class
(see the ATL rule initializeDomains). Moreover, class instances with their
properties values and links are inspected to initialize the ASM functions declared in
the ASM signature (see the ATL rule initializeFunctions). For example, for
the automaton shown in Fig. 2, the provided ιFSM mapping would automatically add
to the original �FSM the initial state partially shown in Listing 5. The initialization of
the abstract domains FSM, Transition, State and Event, and of all functions
defined over these domains, are added to the original �FSM .

9 Semantic meta-hooking

By semantic hooking, a language designer hooks to each language with abstract syn-
tax A its ASM �A modelling the language semantics. The semantic meta-hooking
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Listing 3 �FSM
asm FSM_hooking
signature:
abstract domain Fsm
abstract domain State
abstract domain Transition
abstract domain Event

//Functions on Fsm
controlled initialState: Fsm −> State
controlled currentState: Fsm −> State
monitored input: Fsm −> Event
out output: Fsm −> Event

//Functions on Transition
controlled source: Transition −> State
controlled target: Transition −> State
controlled inputEvent: Transition −> Event
controlled outputEvent: Transition −> Event

definitions:
rule r_doTransition($m in Fsm, $t in Transition) = par

output($m) := outputEvent($t)
currentState($m):= target($t)

endpar

rule r_fsmReact($m in Fsm, $e in Event) =
let ($s = currentState($m)) in

choose $pt in Transition with source($pt)= $s and inputEvent($pt)= $e do
r_doTransition[$m,$pt]

endlet

//run all Fsm machines
main rule r_Main = forall $fsm in Fsm do r_fsmReact[$fsm,input($fsm)]

technique aims at automatically deriving (part of) �A (and hence part of the mapping
M) by exploiting concepts in the source meta-model and in the meta-metamodel.

Essentially, signature, domain and function definitions, and axioms, which do not
depend on the terminal model, are induced by the source metamodel. This resulting
algebra is then endowed with (operational) semantics (i.e. ASM transition rules); this
requires a certain human effort in order to capture in terms of ASM transition rules
the behavioural aspects of the underlying language. Finally, by navigating a specific
terminal model m, the initial state (values for domains and functions of the signature)
is determined. Formally, we define the building function M : A → AsmM as

M(m) = ι(ω(m))(τA(γ (ω(m))),m)

for all m conforming to A, where:

– γ : AML → AsmM provides signature, domain and function definitions, and axioms
of the final machine M(m) from the metamodel ω(m),
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Listing 4 ιFSM mapping for the FSM
module FSM2AsmM_iota;
−− Metamodels: FSM.xmi (Ecore), AsmM.xmi(MDR)
−− Models: IN1 myFSM.xmi (Ecore), IN2 m_FSM.xmi (MDR)
create OUT:AsmM from IN1:FSM, IN2:AsmM;
−− This rule returns an AsmM!Asm along with its associated AsmM!Initialization
−− from a terminal model myFSM:FSM!Fsm and the original m_FSM:AsmM!Asm
rule Fsm2Asm {
from myFSM: FSM!Fsm, m_FSM: AsmM!Asm
to new_header: AsmM!Header (

importClause <− m_FSM.headerSection.importClause,
exportClause <− m_FSM.headerSection.exportClause,
signature <− thisModule.initializeDomains(myFSM,

m_FSM.headerSection.signature)),
out: AsmM!Asm (
name <− m_FSM.name,
headerSection <− new_header,
bodySection <− m_FSM.bodySection,
mainrule <− m_FSM.mainrule,
initialState <− thisModule.initializeFunctions(myFSM,new_header.signature))

}
−− This rule returns an AsmM!Signature from the original ASM signature m_FSM_s
−− with new function symbols for class instances of the terminal model myFSM
lazy rule initializeDomains {

from myFSM: FSM!Fsm, m_FSM_s: AsmM!Signature
to out: AsmM!Signature (
function <− Sequence{

FSM!Fsm−>allInstances()−>collect(e |
thisModule.createDomainElement(e,m_FSM_s)),

FSM!State−>allInstances()−>collect(e |
thisModule.createDomainElement(e,m_FSM_s)),

FSM!Transition−>allInstances()−>collect(e |
thisModule.createDomainElement(e,m_FSM_s)),

FSM!Event−>allInstances()−>collect(e |
thisModule.createDomainElement(e,m_FSM_s))} −>flatten() )

}
−− This rule generates an AsmM!Initialization from a terminal model myFSM
−− and the new ASM signature new_m_FSM_s
lazy rule initializeFunctions {

from myFSM: FSM!Fsm, new_m_FSM_s: AsmM!Signature
to out: AsmM!Initialization (

functionInitialization <− Sequence{
thisModule.initFunctOnFsm(myFSM,new_m_FSM_s),
thisModule.initFunctOnState(myFSM,new_m_FSM_s),
thisModule.initFunctOnTransition(myFSM,new_m_FSM_s)}−>flatten())

}
−− This rule generates a 0−ary AsmM!StaticFunction corresponding to
−− a class instance ’e’ of the terminal model myFSM
lazy rule createDomainElement {

from e: FSM!NamedElement, new_m_FSM_s : AsmM!Signature
to out: AsmM!StaticFunction (

name <− e.name,
arity <− 0,
codomain <− new_m_FSM_s.domain−>select(D| D.name = e.oclType().name))

}...
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Listing 5 ASM for a terminal FSM model by hooking
asm FSM_hooking
signature:

....
static myFsm: Fsm
static t1,t2,t3,t4: Transition
static s1,s2: State
static e1,e2: Event

....
default init s0:
//Functions on Fsm
function initialState($m in Fsm) = at({myFsm −> s1},$m)
function currentState($m in Fsm) = at({myFsm −> s1},$m)

//Functions on Transition
function source($t in Transition) = at({t1−>s1,t2−>s1,t3−>s2,t4−>s2},$t)
function target($t in Transition) = at({t1−>s1,t2−>s2,t3−>s2,t4−>s1},$t)
function inputEvent($t in Transition) = at({t1−>e1,t2−>e0,t3−>e0,t4−>e1},$t)
function outputEvent($t in Transition) = at({t1−>e0,t2−>e1,t3−>e0,t4−>e1},$t)

– τA : AsmM→ AsmM provides the definition of the semantics of L by adding to the
ASM the transition rules capturing the behavioural aspects of L,

– ι : AML → (AsmM × A → AsmM) is an HOT (High Order Transformation)7 and
establishes, for a metamodel A, the transformation ι(A) which computes the initial
state of the final machine M(m) by extracting initial values for data structures of
the machine from the source modelling elements in m.

The final ASM M(m) is built step by step by the mappings above. Note that map-
pings γ and ι are universal (independent from the language L), i.e. once defined for a
meta-language ML (which fixes the metamodelling environment) they are applicable
to all metamodels conforming to ML. τA is a refining transformation which can be
intended as a modelling activity carried out “once for all” for the metamodel A and
is reusable for all models m conforming to A. Moreover, the application of mappings
γ , τA, and ι can be automatized by writing them in terms of a model transformation
language and then executed by a model transformation engine. We present a con-
crete implementation of all these mappings in Sect. 9.1 for the OMG metamodelling
environment.

9.1 Meta-hooking in the OMG framework

We here show how to implement the meta-hooking technique in the context of the
OMG MOF.

7An HOT is a transformation taking as input or producing as output another transformation.
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First, step 0, the MOF core concepts (Essential MOF) used to define metamodels
are mapped into ASMs concepts by defining the function γ : AMOF → AsmM; γ may
be a partial function. In practice, this is effectively done by defining a set of mapping
rules between the MOF metamodel and the AsmM metamodel, as described in the
Sect. 9.1.1 below, where we introduce a suitable γAMOF function which can be reused
making this step optional.

In step 1, by applying these mapping rules γAMOF to a metamodel A conforming
to MOF, we obtain a model conforming to AsmM made of the signature symbols
(essentially domains and functions) representing classes and relations of the source A

metamodel, domain and function definitions, and possible axioms as direct encoding
of OCL constraints on A.

The next step 2 consists into defining the refining function τA, so endowing the
ASM obtained from the previous step 1 with the ASM transition rules capturing the
behavioural semantics of the given language L. The final result of this modelling
activity is the ASM machine τA(γ (ω(m))) capturing the complete operational se-
mantics of the language L.

Note that this step could require the refinement of the given ASM signature by
adding, for example, new functions necessary to describe behavioural facets within
the body of the transition rules. Moreover, for better readability and for facilitating
the navigation through modelling elements of the source metamodel, many other new
ASM (derived) functions may be introduced in terms of composition of ASM func-
tions already existing in the given signature. In order to guarantee the assumption that
the complete signature of the resulting ASM is generated by γ , while τA can define
only transition rules, we need to add these new functions to the original metamodel A

in terms of MOF constructs (essentially, class properties or association ends) or OCL
query/operations. In this way, the ASM generated at step 1 by applying γ to any ter-
minal model, will contain all the functions used by the transition rules introduced by
τA at step 2.

Note also that in order to guarantee the execution of each instance of the “concrete
root class”,8 here referred to as Cr , which may be created in any execution scenario
of the source metamodel, the τA activity implies also the introduction of a main rule
(the entry point for executing the target ASM model) which usually has the following
form:

main rule r_main = forall e in Cr do r_run(e)

where the rule named r_run is supposed to be the rule to invoke on each element of
Cr for “executing”.

Finally, step 3, to make the ASM machine executable for a specific terminal model
m conforming to A, an initial state of the ASM must be provided. To this aim, one
should (a) define an HOT ι, (b) apply ι to A = ω(m) in order to obtain the transforma-
tion ι(A), (c) apply ι(A) to the ASM obtained at step 2 and to the terminal model m

8At the top of the inheritance hierarchy of a metamodel structure there is usually an abstract class called
NamedElement which is the root of all modelling elements that have a name. We prefer the use of the
term “concrete root class” throughout the paper to denote, instead, a non abstract class (possibly direct or
non-direct sub-class of NamedElement) which may be used as starting point for exploring the whole
metamodel (see e.g. the Fsm class in the FSM metamodel in Fig. 1).
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Fig. 13 Semantic meta-hooking in the OMG framework

in order to map elements of m into initial values for the ASM domains and functions.
Figure 13 depicts the overall scenario. Step 3(a) can be done once for all and the HOT
ι can be reused for any metamodel conforming to MOF. Section 9.1.2 introduces a
suitable ι and Sect. 9.2 shows a concrete example of application of such mapping to
the FSM language.

9.1.1 From MOF to AsmM: γ mapping rules

The γ mapping rules are in Table 1. Essentially, a class C is mapped to a dynamic
abstract domain C. Each domain represents the set of objects that can be created by
the corresponding class. If the class is abstract, the corresponding abstract domain is
declared to be static.

Primitive types (Integer, String, Boolean, and UnlimitedNatural)
and enumerations are mapped respectively into the AsmM basic type domains they
represent.

Properties (either attributes or references) are mapped into ASM functions. The
multiplicity and the adornments ordered and unique are captured by the codomain
types of the corresponding functions. Moreover, although we assume that terminal
models are well-formed according to the OCL constraints defined on their meta-
model, additional ASM axioms may be added to ensure correct size of collections
corresponding to each instance of a class. All target ASM functions are supposed
to be controlled, unless a further adornment isReadOnly or isDerived is used
for the property; in this last case the corresponding ASM function is monitored or
derived, respectively. We do not take into account of other property adornments pro-
vided by MOF such as subsetting, derived union, redefinitions, specialization—see
(MOF 2006) for more details—as they are not present in other meta-languages and
imply complex semantic issues.

Navigable association ends are considered the same as attributes and refer-
ences. Therefore, they are mapped into two dynamic controlled ASM functions or
one dynamic controlled ASM function depending on whether the association is bi-
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Table 1 γ mapping: from MOF to AsmM

MOF AsmM

A non-abstract class C A dynamic AbstractTD domain C

An abstract class C A static AbstractTD domain C

An Enumeration An EnumTD domain

A primitive type A basic type domain

Boolean BooleanDomain

String StringDomain

Integer IntegerDomain

UnlimitedNatural NaturalDomain

An attribute a of a class C, type T and
multiplicity 1

A function a : C → T

An attribute a of a class C, type T, multiplicity
> 1, and ordered

A function a : C → T ∗ where T ∗ is the domain of all
finite sequences over T (SequenceDomain)

An attribute a of a class C, type T, multiplicity
> 1, unordered and unique

A function a : C → P (T ) where P (T ) is the
mathematical powerset of T (PowersetDomain)

An attribute a of a class C, type T, multiplicity
> 1, unordered and not unique

A function a : C → B(T ) where B(T ) is the domain
of all finite bags over T (BagDomain)

A reference or a navigable association end See attribute

A generalization between a child class C1 and a
parent class C2

A ConcreteDomain C1 subset of the
corresponding domain C2

OCL constraints Axioms (optional)

OCL operations/queries Static functions

directional navigable or not, respectively. The name of the functions must reflect the
role name of the corresponding ends.

A generalization between a class C1 that inherits from a class C2 is expressed by
declaring a concrete domain C1 (ConcreteDomain) as subset of the corresponding
domain C2. Currently, we put the restriction on the number of types a given object
type can be a subtype of; i.e. multiple inheritance is not supported.

Constraints representing further static information in the form of OCL well
formedness rules can be encoded in ASM axioms over the ASM domains corre-
sponding to the context classes;9 however, if not required, structural constraints can
remain expressed in OCL, as we assume that input models are well-formed. Similarly,
OCL operations/queries can be mapped into static ASM functions, as well.

Note that, here we choose not to model the MOF notion of Operation on classes
and of default value for a property. These notions are used in Sect. 10 in the
weaving approach.

9Both OCL and ASM can be used for writing static integrity constraints, since they employ first order
predicates to express logical conditions.
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Table 2 ι(A) mapping: from A to AsmM

A AsmM

An object obj instance of a class C A static 0-ary function declaration obj : C
A property value p = v (an attribute value or
reference value or link end) of an object obj with
type Type, and multiplicity mult

A pair term obj → v in a map term obji → vi used to
initialize the function p : C → Type where Type can
be a simple domain T or P (T ) or T ∗ or B(T )

depending on the multiplicity mult, ordering and
uniqueness

9.1.2 From A to AsmM: ι mapping rules

For any language metamodel A, the ι HOT returns a transformation ι(A) with the
mapping rules sketched in Table 2 to be used for any terminal model m conforming
to A. Essentially, for each class instance of the terminal model, a static 0-ary function
is added to the signature of the ASM model in order to initialize the domain corre-
sponding to the underlying class. Moreover, model objects with their property values
(attributes values ore reference values or links values) are inspected to initialize the
ASM functions declared in the ASM signature.

A model transformation engine (such as ATL) can be used to automatize the ι

HOT rules by retrieving data available at terminal model level and creating the cor-
responding initializing elements in the target ASM model.

9.2 Meta-hooking for FSM

According to the meta-hooking technique described before, the complete semantic
specification of the FSM formalism is provided in terms of an ASM model derived in
tree steps: (1) the γ mapping in Table 1 is applied to the FSM abstract syntax in Fig. 1
to express it in terms of an ASM signature; (2) the operational semantics of the FSM
formalism is then defined by ASM transition rules as form of pseudo-code operating
on the abstract data derived from step 1; finally, (3) the initial state of the semantic
model for a terminal FSM model m given in input is provided by the mapping ι(FSM)

in Table 2.

1. ASM signature for the FSM metamodel From the class diagram in Fig. 1,
classes Fsm, State, Transition, and Event are mapped into dynamic concrete
ASM domains as subsets of the abstract static domain NamedElement, together with
the (controlled) functions derived from their properties. This is done by applying the
function γ of Table 1. While γ is defined at MOF level and it does not depend on
the abstract syntax A which it is applied to, the result of applying γ strongly depends
on A and the obtained ASM signature contains functions induced by the specific lan-
guage. Listing 6 shows the ASM signature in AsmetaL resulting by applying γ to the
FSM metamodel.

2. ASM transition system for the FSM metamodel The second step consists into
defining the semantics of the FSM by means of the function τA which captures the
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Listing 6 Abstract syntax of the FSM in AsmetaL
asm FSM_meta_hooking
import StandardLibrary
signature:

abstract domain NamedElement
dynamic domain Fsm subsetof NamedElement
dynamic domain State subsetof NamedElement
dynamic domain Transition subsetof NamedElement
dynamic domain Event subsetof NamedElement

//Functions on NamedElement
controlled name:NamedElement−>String

//Functions on Fsm
controlled ownedState: Fsm −> Powerset(State)
controlled initialState: Fsm −> State

//Functions on State
controlled owningFsm: State −> Fsm
controlled incoming: State −> Powerset(Transition)
controlled outgoing: State −> Powerset(Transition)

//Functions on Transition
controlled source: Transition −> State
controlled target: Transition −> State
controlled inputEvent: Transition −> Event
controlled outputEvent: Transition −> Event

behavioural aspects in terms of ASMs transition rules. For this purpose, the ASM
signature obtained in the previous step 1 is further enriched of concepts relating to the
execution semantics: the current state, the input event to consume at each step, and the
output event fired by the machine. These concepts are back-annotated in the original
FSM metamodel by adding to the original Fsm class one readonly attribute input
of type Event, and two attributes currentState of type State and output of type
Event. The function γ must be applied again to obtain a signature which includes
these new functions.

We complete the specification with the following ASM transition rules which for-
malize the behaviour of any FSM terminal model m. The rule r_run is responsible for
the execution of transitions by invoking the r_fire rule. Non-deterministically, in each
step this machine: reads (consumes) an event of the input stream, produces an output
event, and then proceeds to the next control state. Note that both the non-deterministic
version and the deterministic version of FSMs can be simulated by the same rules.

Listing 7 shows the ASM transition rules written in AsmetaL for the FSM meta-
model, together with the new functions added to the signature by back-annotating
them in the source metamodel and applying again the γ mapping. The main rule
r_main guarantees the execution of each FSM instance (object of the concrete root
class Fsm).
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Listing 7 Transition rules for the FSM in AsmetaL
asm FSM_meta_hooking
import StandardLibrary
signature:

...
//Added functions
controlled currentState: Fsm −> State
monitored input: Fsm −> Event
controlled output: Fsm −> Event
...

definitions:
...
rule r_fire ($t in Transition) =
let ($m = owningFsm(source($t))) in

par
output($m) := outputEvent($t)
currentState($m):= target($t)

endpar
endlet

rule r_run ($m in Fsm)=
choose $t in outgoing(currentState($m))

with inputEvent($t)=input($m)
do r_fire[$t]

main rule r_main = forall $m in Fsm do r_run[$m]

3. ASM initial state for a terminal FSM model The final step consists in endowing
the ASM model shown in Listings 6 and 7 with an initial state for a specific automaton
(as model instance of the FSM metamodel).

This initial state is obtained as result of the mapping ι(FSM), defined by the HOT
ι (see Sect. 9.1.2), applied to a given FSM terminal model to define the initial values
of domains (including also the element myFsm of the Fsm domain for the underlying
FSM) and of (dynamic) controlled functions of the ASM signature. For the FSM
shown in Fig. 2, the provided ι(FSM) mapping would automatically produce the
initial state shown in part in Listing 8 using the AsmetaL notation.

10 Weaving behaviour

The aim of this technique is to weave the behavioural aspects of a modelling language
L into its language metamodel A.

Applying this technique demands the definition of a weaving function specifying
how the current meta-metamodel AML and the AsmM are weaved together into a new
meta-metamodel AML+ which adds to AML the capability of specifying behaviour by
ASM transition rules.

Adding behavioural constructs into a meta-language requires identifying how be-
haviour can be attached to the structural constructs of the meta-language, namely
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Listing 8 Initial state in AsmetaL for a terminal FSM model
asm FSM_meta_hooking
import StandardLibrary
signature:

...
//Initialize domains for a specific terminal model
static myFsm:Fsm
static s1:State
static s2:State

...
//Initialize functions for a specific terminal model
default init s0: //ASM initial state
function currentState($m in Fsm) = initialState($m)

//Functions on NamedElement
function name($e in NamedElement) = at({myFsm−>"myFsm",s1−>"s1",

s2−>"s2",t1−>"t1",t2−>"t2",t3−>"t3",t4−>"t4",e1−>"1",e0−>"0"},$e)

//Functions on Fsm
function ownedState($m in Fsm) = at({myFsm−>{s1,s2}},$m)
function initialState($m in Fsm) = at({myFsm −> s1},$m)

//Functions on State
...

precise join points10 between data and behaviour must be identified (Muller et al.
2005). In case AML is object-oriented, as for example MOF, it might be convenient to
use transition rules within meta-classes as class operations to hold their behavioural
specification. Therefore, a join point must be specified between the meta-class Op-
eration of MOF and the meta-class RuleDeclaration of the AsmM. The next
section exemplifies this approach.

Once a weaving function has been established between the AsmM and the
meta-metamodel by identifying suitable join points, the metamodel A of L can
be weaved with the intended behaviour of L. Let A+ be the resulting metamodel
(see Fig. 14). The building function M : A+ → AsmM is defined as M(m) =
ι(ω(m))(W(ω(m))),m) for all m conforming to A, where:

– W : AML+ → AsmM maps a weaved metamodel A+ into a metamodel conform-
ing to the AsmM and provides the abstract data structure (signature, domain and
function definitions, axioms) and the transition system of the final machine M(m),

– ι : AML+ → (AsmM × A+ → AsmM) is an HOT establishing, for a metamodel
A, the transformation ι(A) which computes the initial state of the final machine
M(m) by extracting initial values for data structures of the machine from the source
modelling elements in m.

10Inspired from the Aspect-oriented Programming (AOP) paradigm, join points are intended here and in
Muller et al. (2005) as places of the meta-metamodel where further (executability) aspects can be injected.
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Fig. 14 Weaving in the OMG framework

The function W can be specified (once for all) as extension/redefinition of the γ map-
ping in Sect. 9. On those elements of the meta-language involved in the join points
definition, the function W has to be defined in a way that associate them with the
corresponding elements of the AsmM involved in the join points definition. The sec-
tion below provides a concrete example of W . The HOT ι is similar to the ι operator
of the meta-hooking in Sect. 9, since it provides the initialization depending on the
terminal model given in input.

10.1 Weaving approach in the OMG framework

This section describes how the MOF meta-language can be enriched of behaviour
specification capability in terms of ASM transition rules to define an executable meta-
language, MOF+. The process described here is directly applicable to any object-
oriented meta-language, like the OMG MOFs (MOF 1.4, CMOF and EMOF), or
Eclipse/ECore, or AMMA/KM3, etc.

We choose as join point the MOF class Operation to attach behaviour to oper-
ations of classes of a metamodel. Figure 15 shows how simply the composition may
be carried out. The MOF Operation class resembles the AsmM RuleDeclara-
tion class. The name Operation has been kept instead of RuleDeclaration
to ensure MOF conformance, while the name Parameter changes in Variable-
Term. Finally, the new property isMain has been added in order to designate, when
set to true, a closed (i.e. without formal parameters) operation as (unique) main rule
for model execution. Moreover, we assume that an operation cannot raise exceptions
(i.e. the set of types provided by the association end raisedException is empty),
since ASM rules do not raise exceptions.

The function W is defined as extension of the γ mapping reported in Table 1. Ta-
ble 3 provides semantics to the Operation element of the weaved meta-language
MOF+, by associating it to the corresponding RuleDeclaration element of the
AsmM involved in the join point definition. We assume, similarly to the use of this
in the Java programming language, that in the definition of the rule body of an opera-
tion op, a special variable named $this is used to refer to the object that contains the
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Fig. 15 Using operation bodies as join points between data and behaviour

Table 3 W mapping for Operation: from MOF+ to AsmM

MOF+ AsmM

An operation op of a class C, rule body R,
arity n, and owned parameters xi : Di

A rule declaration op($this in C, x1 in D1, . . . , xn

in Dn) = R of rule body R, arity n + 1, and formal
parameters $this in C and xi in Di

A closed operation op of a class C, rule body R,
and with isMain set to true

The (unique) main rule declaration of form main
rule op = for all $this in C do R

operation. The W function shown in Table 3 automatically adds the variable $this as
formal parameter of the corresponding rule declaration.11

Since, the idea here is to extend the MOF to allow the definition of ASM transition
rules working as “pseudo-code over meta-classes”, a further join point is necessary in
order to adorn class’s properties (either attributes or references or association mem-
ber ends of the metamodel) to reflect the ASM function classification (see Fig. 8 in
Sect. 5.2.1). Figure 16 shows how this may be carried out. The MOF Property
class resembles the AsmM Function class. Box MOF+ presents the result of the
composition process. The MOF class Property has been merged with the class
Function. A further adornment kind:PropertyKind have been added to cap-
ture the complete ASM function classification. PropertyKind is an enumeration
of the following literal values: static, monitored, controlled, out, and shared. Two
OCL constraints have been also added stating, respectively, that a read-only (attribute
isReadOnly is set to true) property can be of kind static or monitored, and that if

11Since operations are intended as ASM transition rules, within the body of an operation op, if f is a prop-
erty (an attribute or a reference or an association end) in the same object, then f ($this) must be used as a
full name for that property. If anotherOp is another operation in the same object, then anotherOp($this,. . .)
must be used to call that operation.
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Fig. 16 Using properties as join point for ASM adornments

Table 4 W mapping for Property: from MOF+ to AsmM

MOF+ AsmM

A property p of a class C, kind k, type Type, and
multiplicity mult

A function p : C → Type of kind k and with Type a
simple domain T or P (T ) or T ∗ or B(T ) depending
on the multiplicity mult, ordering and uniqueness

a property is derived (attribute isDerived is set to true) then the attribute kind is
empty.

Moreover, in order to merge the two statically-typed systems of the MOF and the
AsmM, a MOF Type (a Class or a DataType) is merged with an ASM Domain
(see Figs. 6 and 7 in Sect. 5.2.1). Hence, as explained in Table 1 for the γ mapping,
the domain of the ASM function denoting a property has to be intended as the ASM
domain (usually an AbstractTD type-domain) induced from the exposing class of
the property, and the codomain as induced from the property’s type.

Table 4 shows the W function as redefinition of the γ mapping reported in Table 1
to provide semantics to the Property element (an attribute or a reference or an
association end) of the MOF+ meta-language by associating it to the corresponding
Function element of the AsmM involved in the join point definition.

10.2 Weaving for FSM

As an example, the ASM rules r_run (responsible for the FSM execution) and r_fire
(responsible for the firing of a transition) shown in Listing 7 can be weaved in the
FSM metamodel by attaching them as operations to the classes Fsm and Transi-
tion, respectively, as shown in Fig. 17. Moreover, the current state of the machine



Autom Softw Eng (2009) 16: 415–454 449

Fig. 17 FSM weaved metamodel

Table 5 Techniques comparison

User effort Technique provides

M Define a map Transformation language and engine

H Define �A and ι Language to write �A, transformation
language and engine for ι

MH Define τA γ to obtain the initial ASM, further enriched
by ι; transformation language and engine to
apply transformations and HOT

WG Weave A to obtain A+ as instance of AML+ Weaving operators with defined semantics to
write metamodels conforming to AML+ ; W to
obtain the initial ASM, further enriched by ι;
transformation language and engine to apply
transformations and HOT

and the input/output events to consume/produce at each step can be provided in the
metamodel as associations with appropriate ASM adornments. The notation {con-
trolled} denotes that the property kind is set to controlled.

The application of the mappings W and ι to the finite state machine of Fig. 2
results into an AsmetaL specification which is not shown here but it is similar to that
reported in Listings 6, 7 and 8 with all suitable adornments for functions.

11 A comparison among techniques

In this section, we compare our semantic techniques in relation to the level of au-
tomation each technique offers, to the degree of reuse and user effort required, and to
the dependency of the final ASM capturing a terminal model semantics with respect
to the terminal model itself. The availability of a common unifying framework makes
this comparison easier to perform and comprehend, and it helps a language designer
in choosing the best technique that fits his/her needs. Furthermore, all techniques are
compared with respect to the classical topology of programming language semantics.

A brief comparison of all presented techniques in terms of user effort and what
each technique provides to the user is reported in Table 5.

In the semantic mapping (M), the designer can map concepts of A to concepts of
AsmM with great freedom. He/she must master the transformation language to obtain
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an efficient (and sometimes complex) transformation and a well designed final ASM.
The resulting ASMs of two different terminal models may differ on structures, rules,
and initial states. Little guidance is given by the technique and the reuse is quite
limited. A framework supporting this technique provides only a language to write the
mapping and the engine running such transformation scripts.

The semantic hooking (H) tries to identify the common concepts of all models
conforming to A and builds an ASM (�A) which models the structural aspects of
the language. The semantics of the particular model m is added by ι which takes the
concrete specification as input data. The final ASM depends on the particular terminal
model only in its initialization parts (initial elements in the domains, initial values for
functions). This allows the language designer to reason about the language properties
regardless the terminal model by using the ASM validation/verification techniques
and tools.

With the meta-hooking (MH), most of the job is done automatically, having the
designer only to define the τA function. The function γ , defined at meta-metamodel
level, induces the right abstract data structure (signature, domain and function decla-
rations, and axioms) for the meta-model A. In this case, the freedom of the designer
is very limited as is the effort. When the user defines the transformation τA, he/she
must take into account the resulting abstract data structure from γ and define τA

accordingly.
In the weaving approach (WG), the user can work directly on the metamodel to

add the rules (as operations) and functions necessary to model the semantics of A.
However, when the designer adds properties and operations, he/she must be aware
of the definitions of W , since operations must use functions and symbols later intro-
duced by applying W (e.g. the symbol $this). The derivation of the final ASM for a
terminal model conforming to A+ is performed in a completely automatic way and
possibly supported in a transparent way by an execution engine for the executable
meta-language ML+. The application of the mappings W and ι in the weaving ap-
proach is similar to that of the mappings γ and ι in the meta-hooking technique. The
weaving technique has the great advantage of capturing both structural and behavioral
aspects of a language at metamodel level.

Note that intermediate approaches are possible with respect to parts of the lan-
guage. For example, the ι function of the hooking approach may introduce a new rule
depending on the terminal model m when m contains a particular construct of L: in
this case the approach would be a mix between mapping and hooking. The τA func-
tion may be defined to add functions to the signature obtained by γ (A) (to avoid the
back annotation of the metamodel A), making this approach a mix between hooking
and meta-hooking.

Our techniques can also be compared with respect to the classical topology of the
semantics for programming languages (Gunter 1992). The semantic mapping is sim-
ilar to a denotational technique since it translates the original model into another lan-
guage, in our case ASMs. The translation works as a compiler from L to AsmM. The
semantic hooking and semantic meta-hooking are similar to operational techniques,
since the model is here taken as data and interpreted by the machine (interpreter)
defined for the language. The interpreter for the language is given by the �A for the
hooking and the τA for the meta-hooking. Both the techniques are still translational



Autom Softw Eng (2009) 16: 415–454 451

since they translate the original model to a different representation in the target lan-
guage of the ASM. This translation can be defined on the base of the meta-model or
of the meta-metamodel making the difference between hooking and meta hooking.
Finally, semantic weaving is also an operational technique, but here the model is used
“as is”, i.e. no translation to the target domain is needed, since when it is written it
already contains the behavioral specification.

11.1 Classification of other approaches

The semantic anchoring approach proposed in Chen et al. (2005, 2007) clearly falls
into the hooking category of our translational techniques. Our techniques can be in-
tended as a means to specify the semantics from scratch for providing well understood
and safe behavioural language units when they do not yet exist, while the semantic
anchoring approach supposes to have in input a family of predefined semantic units.

The approach adopted in Di Ruscio et al. (2006a, 2006b), in the context of
the AMMA framework, can be intended as a partial exemplification of our meta-
hooking technique. Indeed, similar to our γ function, a direct mapping from the
meta-language KM3 to an XASM metamodel is used to represent metamodels in
terms of ASM universes and functions, and the semantics of the ATL transformation
between the two metamodels is given in terms of ASM rules written in XASM. How-
ever, the approach is little formal and it is incomplete. Only the problem of mapping
between metamodels to translate syntactic aspects of the terminal model is tackled,
but this mapping is neither formally defined nor the ATL transformation code which
implements it have been made available. Furthermore, a complete semantic defini-
tion of a language requires to reason about how to provide transition rules to capture
the operational semantics and how to initialize the resulting model to make it exe-
cutable, problems which are solved by our functions τA and ι, but are not taken in
consideration in Di Ruscio et al. (2006a, 2006b).

The approach in Muller et al. (2005) for defining the executable Kermeta meta-
language, is similar to our weaving approach. They also choose the class Opera-
tion as join point to attach behaviour (specified with an action language) to opera-
tions of classes of a metamodel. In our case, as action language we adopt the ASMs
and the ASM rule constructors, and therefore we compose the AsmM with the MOF
with all the advantages deriving from the use of a formal method able to capture
different various MOCs.

These observations provide evidence that the semantic framework proposed here
is general enough to capture other existing approaches to define the semantics of
metamodel-based languages which use as helper language L′ the Abstract State Ma-
chines or any other formalism that can be intended as pseudo code over abstract
data structures. Therefore, existing semantic techniques can be unified by our formal
framework in a unique environment, allowing to switch from one technique to an-
other with a possible reuse of model fragments (typically those involving transition
rules and describing behavior) and model transformations.
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12 Conclusions

In a language engineering process, which mainly uses metamodelling capabilities to
implement families of languages either in specific application domains or in gen-
eral purpose domains, the semantics specification is a necessary step for making lan-
guages semantically precise and of practical use in tool chains. Executability is an
important property of the (specification) language used as meta-language for defin-
ing the semantics of these languages. Indeed, executable specifications describe how
a system modelled by the executable specification language behaves without defining
the implementation of the system behaviour.12 Having formal operational specifica-
tions at a suitable level of abstraction would be useful for semantics prototyping:
one can examine the semantics of a particular behavioural feature of the modelled
language in an operational manner and with unnecessary details omitted.

In this paper, we explained how the Abstract State Machines (ASMs) (Börger
and Stärk 2003) can be exploited as an executable specification language to endow
metamodel-based languages with a rigourous and executable description of their se-
mantics. We have shown how the formal framework of ASMs can be smoothly inte-
grated with current metamodelling environments for language design by investigating
two approaches: semantic mapping, semantic hooking, and meta-hooking techniques
for the translational approach, and the weaving behaviour approach.

As future step, we plan to explore new techniques and evaluate the effectiveness
of their joint-use with the ASM formal method for the semantics specification of
metamodel-based languages. In particular, following the semantic domain modeling
approach sketched in Sect. 2 which implies also the modelling, at metamodel level, of
concepts of the semantic domain, we intend to extend the AsmM metamodel in order
to express the underlying ASM semantic domain, namely concepts like terms values,
locations, etc. of the run-time environment. This would lead to the specification of
the AsmM semantics in terms of itself.
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