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Abstract Combinatorial testing is as an e�ective testing technique to reveal failures in

a given system, based on input combinations coverage and combinatorial optimization.

Combinatorial testing of strength t (t ≥ 2) requires that each t-wise tuple of values of

the di�erent system input parameters is covered by at least one test case. Combinatorial

test suite generation algorithms aim at producing a test suite covering all the required

tuples in a small (possibly minimal) number of test cases, in order to reduce the cost

of testing. The most used combinatorial technique is the pairwise testing (t = 2) which

requires coverage of all pairs of input values. Constrained combinatorial testing takes

also into account constraints over the system parameters, for instance forbidden tuples

of inputs, modeling invalid or not realizable input values combinations. In this paper

a new approach to combinatorial testing, tightly integrated with formal logic, is pre-

sented. In this approach, test predicates are used to formalize combinatorial testing as

a logical problem, and an external formal logic tool is applied to solve it. Constraints

over the input domain are expressed as logical predicates too, and e�ectively handled

by the same tool. Moreover, inclusion or exclusion of select tuples is supported, allow-

ing the user to customize the test suite layout. The proposed approach is supported

by a prototype tool implementation and results of experimental assessment are also

presented.

Keywords model-based testing; combinatorial testing; test generation

1 Introduction

Veri�cation and validation of highly-con�gurable software systems, such as those sup-

porting many input parameters or customizable options, is a challenging activity. In
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fact, due to its intrinsic complexity, formal speci�cation of the whole system may re-

quire a great e�ort. Modeling activities may become extremely expensive and time

consuming, and the tester may decide to model (at least initially) only the inputs and

require they are su�ciently covered by tests. On the other hand, unintended interaction

between input parameters can lead to incorrect behaviors which may not be detected

by traditional testing [39,50].

To this aim, combinatorial interaction testing (CIT) techniques [17,28,39] can be

e�ectively applied in practice [5,46,38]. CIT consists of employing combination strate-

gies to select values for inputs and combine them to form test cases. The tests can

then be used to check how the interaction among the inputs in�uences the behavior

of the original system under test. The most used combinatorial testing approach is to

systematically sample the set of inputs in such a way that all t-way combinations of in-

puts are included. This approach exhaustively explores t-strength interaction between

input parameters, generally in the smallest possible test executions.

For instance, pairwise interaction testing aims at generating a reduced size test

suite which covers all pairs of input values. Signi�cant time savings can be achieved by

implementing this kind of approach, as well as in general with t-wise interaction testing.

As an example, exhaustive testing of a system with a hundred boolean con�guration

options would require 2100 test cases, while pairwise coverage for it can be accomplished

with only 10 test cases. Similarly, pairwise coverage of a system with twenty ten-valued

inputs (1020 distinct input assignments possible) requires a test suite sized less than 200

tests cases only. Also, it has been experimentally shown that CIT is really e�ective in

revealing software defects [37]. A test set that covers all possible pairs of variable values

can typically detect 50% to 75% of the faults in a program [47,18]. Other experimental

works have shown that usually 100% of faults are already triggered by a relatively

low degree of interaction, typically 4-way to 6-way combinations [39], and that the

testing of all pairwise interactions in a software system �nds a signi�cant percentage

of the existing faults [18]. Dunietz et al. [20] compare t-wise coverage to random input

testing with respect to structural (block) coverage achieved, with results showing higher

reliability of the former in achieving block coverage if compared to random test suites

of the same size. Burr and Young [7] report 93% code coverage as a result from applying

pairwise testing of a commercial software system. For this reason combinatorial testing

is used in practice and supported by many tools [44].

Combinatorial testing is applied to a wide variety of problems: highly-con�gurable

software systems, software product lines which de�ne a family of software, hardware

systems, and so on. As an example, Table 1 reports the input domain of a simple

telephone switch billing system [40], which processes telephone call data with four call

properties, each of which has three possible values: the access parameter tells how

the calling party's phone is connected to the switch, the billing parameter says who

pays for the call, the calltype parameter tells the type of call, and the last parameter,

status, tells whether or not the call was successful or failed either because the calling

party's phone was busy or the call was blocked in the phone network.

While covering all the possible combinations for the BBS inputs shown in Table 1

would require 34 = 81 tests, the pairwise coverage of the BBS can be obtained by the

test suite reported in Table 2 which contains only 11 tests.

From a mathematical point of view, the problem of generating a minimal set of

test cases covering all pairs of input values is equivalent to �nding a covering array

(CA) of strength 2 over a heterogeneous alphabet [3,32]. Covering arrays are combi-

natorial structures which extend the notion of orthogonal arrays [4]. A covering array
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Table 1 Input domain of a basic billing system (BBS) for phone calls

access billing calltype status

LOOP CALLER LOCALCALL SUCCESS
ISDN COLLECT LONGDISTANCE BUSY
PBX EIGHT_HUNDRED INTERNATIONAL BLOCKED

Table 2 A test suite for pairwise coverage of BBS

# billing calltype status access

1 EIGHT_HUNDRED LOCALCALL BLOCKED PBX
2 CALLER LONGDISTANCE BUSY PBX
3 EIGHT_HUNDRED INTERNATIONAL BUSY LOOP
4 COLLECT LOCALCALL BUSY ISDN
5 COLLECT LONGDISTANCE SUCCESS PBX
6 COLLECT INTERNATIONAL BLOCKED PBX
7 CALLER INTERNATIONAL SUCCESS ISDN
8 CALLER LOCALCALL BLOCKED LOOP
9 EIGHT_HUNDRED LONGDISTANCE BLOCKED ISDN
10 COLLECT LOCALCALL SUCCESS LOOP
11 EIGHT_HUNDRED LONGDISTANCE SUCCESS LOOP

CAλ(N ; t, k,g) is an N ×k array with the property that in every N × t sub-array, each
t-tuple occurs at least λ times, where t is the strength of the coverage of interactions,

k is the number of components (degree), and g = (g1, g2, ...gk) is a vector of positive

integers de�ning the number of symbols for each component. When applied to combi-

natorial system testing only the case when λ = 1 is of interest, that is, where every

t-tuple is covered at least once.

In most cases, constraints or dependencies exist between the system inputs. They

normally model assumptions about the environment or about the system components

or about the system interface and they are normally described in natural language. If

constraints are considered, then the combinatorial testing becomes constrained combi-

natorial interaction testing (CCIT). However, as explained in sections 2 and 7, most

combinatorial testing techniques either ignore the constraints which the environment

may impose on the inputs or require the user to modify the original speci�cations and

add extra information to take into account the constraints.

In this paper, we describe a new approach to CCIT in which constraint support

is not implemented in a pre/post-processing stage, but it is embedded in the test

suite generation process. This approach is based on formal logic, since it uses logical

predicates to formalize combinatorial testing as a formal logical problem. Coverage

requirements, that is the tuples to be covered, are modeled as predicate expressions,

called test predicates. This way, generating a test case covering a given tuple reduces to

the problem of �nding a model of the corresponding predicate expression, which can be

solved by a great variety of formal-analysis tools and techniques. Also constraints can

be modeled as further testing requirements by logical expressions, so that they can be

seamlessly processed together with the test predicates. Moreover, using a formal logic

notation to express constraints allows the user to easily specify complex and/or large

set of constraints with a compact syntax.
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Moreover, since the set of combinatorial requirements grows exponentially with

the size of the system, combinatorial test suites generated with naive techniques can

be too large to be useful in practice. As a consequence, the e�ectiveness of the test

suite generation process is an issue of major importance. In the proposed approach,

test suites are built incrementally, one test case at a time, and several optimization

techniques are inserted in the process in order to reduce the number of iterations and

build smaller test suites. A monitoring technique is applied, consisting in keeping track

of the coverage provided by each built test case, and skipping the test generation for

test predicates already covered. Di�erent strategies can be selected to determine the

order in which test predicates are processed. A collecting technique has been devised to

maximize the number of uncovered test predicates which will be covered by the next

test case. Finally, a post-processing reduction algorithm tries to further reduce the �nal

test suite size by removing test cases which are redundant.

This paper is the extended version of our paper [8] to which it adds several original

new contributions, including the ability to tackle t-wise coverage, a novel way to col-

lect test predicates in the presence of constraints, and more detailed experiments and

comparison with other techniques.

The paper is organized as follows: section 2 gives some insights into the topic of

combinatorial testing and states the main goals of our work. Section 3 presents our

approach and an overview of the tool we implemented, while section 4 explains how we

deal with constraints over the inputs. Section 5 explains how user requests can be easily

integrated. Section 6 presents results of experiments carried out in order to assess the

validity of the proposed approach. Section 7 presents recently published related works.

Finally, section 8 draws our conclusions and points out some ideas for future extension

of this work.

2 Combinatorial coverage strategies

Many algorithms and tools for combinatorial interaction testing already exist in the

literature. Grindal et al. count more than 40 papers and 10 strategies in their recent

survey [28]. There is also a web site [44] devoted to this subject and several automatic

tools are commercially [11] or freely available [47]. We can classify them according to

Cohen et al. [14], as follows:

a) algebraic when the Covering Array (CA) is given by a mathematical construction,

as in [36]. These approaches usually lead to optimal results, that is minimally sized

CAs. Unfortunately, no mathematical solution to the covering array generation

problem exists which is generally applicable. Note that the general problem of

�nding a minimal set of test cases that satis�es t-wise coverage is NP-complete [49,

45]. Thus, heuristic approaches, producing sub-optimal results are widely used in

practice.

b) greedy when some search heuristic is used to incrementally build up the CA, as done

by AETG [11] or by the In Parameter Order (IPO) [47]. This approach is always

applicable but leads to sub-optimal results. Typically, only an upper bound on the

size of constructed CA can be guaranteed. The majority of existing solutions fall

into this category, including the one we are proposing here.

c) meta-heuristic when genetic-algorithms or other less traditional, bio-inspired search

techniques are used to converge to a near-optimal solution after an acceptable
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number of iterations. Only few examples of this applications are available, to the

best of our knowledge [13,43].

Beyond this classi�cations, it must be observed that most of the currently avail-

able methods and tools are strictly focused on providing an algorithmic solution to

the mathematical problem of covering array generation only, while very few of them

account also for other complementary features, which are rather important in order

to make these tools really useful in practice (like i.e. the ability to handle constraints

on the input domains). We have identi�ed the following requirements for an e�ective

combinatorial testing tool, extending previous work on this topic by Lott et al. [40]:

A. Ability to deal with user speci�c requirements on the test suite The user

may require the explicit exclusion or inclusion of speci�c test cases, e.g. those generated

by previous executions of the used tool or by any other means, in order to customize

the resulting test suite. The tool could also let the user interactively guide the on-going

test case selection process, step by step. Moreover the user may require the inclusion or

exclusion of sets of test cases which refer to a particular critical scenario or combination

of inputs. In this case the set is better described symbolically, for example by a predicate

expression over the inputs. Note that instant [28] strategies, like algebraic constructions

of orthogonal arrays and/or covering arrays, and parameter-based, iterative strategies,

like IPO, do not allow this kind of interaction.

B. Integration with other testing techniques Combinatorial testing is just one

testing technique. The user may be interested to integrate results from many testing

techniques, including those requiring the complete model of the system to derive test

cases (as in [26,25,24,23]). This shall not be limited to having a common user-interface

for many tools. Instead, it should go in the direction of generating a unique test-suite

which simultaneously accounts for multiple kinds of coverages (e.g., combinatorial,

state, branch, faults, and so on). Our method, supported by a prototype tool, aims at

bridging the gap between the need to formally prove any speci�c properties of a system,

relying on a formal model for its description, and the need to also perform functional

testing of its usage con�gurations, with a more accessible black-box approach based on

e�cient combinatorial test design. Integrating the use of a convenient model checker

within a framework for combinatorial interaction testing, our approach gives to the

user the easy of having just one convenient and powerful formal approach for both

uses.

C. Integration with the entire system development process Combinatorial

testing should be only one part of the entire system development process, which should

include other veri�cation and validation techniques. Both testing and formal analysis

should be used in conjunction, in order to balance the required e�orts over time. Specif-

ically, in our approach, formal modeling of a system's input/output domains and of

its state space (behavior), is not required all at once but can be done in successive

stages, respectively. Initially, formal modeling of the input domain only is su�cient to

enable the use of combinatorial testing to explore input interactions, with relatively

little e�ort. If constraints over the inputs have to be taken into account, then thay are

added now to the input domain model. Meanwhile, or later in time, the same model

can be extended to include the actual system's behavioral description too. Rules to
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compute the expected outputs can be added to the formal model, enabling its confor-

mance testing, i.e. to automatically check that the implemented system produces the

expected outputs, and the ability to apply other testing techniques based on structural

and fault-based coverage criteria. This lets the user achieve a high degree of con�dence

on the system correctness. Only in the end, safety properties of the system can be

added too, in order to check them during testing, thus still improving the signi�cance

of the test process, or to apply formal veri�cation techniques, as model checking or

theorem proving.

D. Constraints support A fourth desired requirement of a combinatorial testing

strategy is the ability to deal with complex constraints. This issue has been recently

investigated by Cohen et al. [14] and recognized as a highly desirable feature of a

testing method. Although the presence of constraints reduces the size of combinatorial

test suites, it also makes the test generation more challenging. Note that the general

problem of �nding a minimal set of test cases that satis�es t-wise coverage is NP-

complete [49,45]. If constraints on the input domain are to be taken into account, even

�nding a single test or con�guration that satis�es the constraints is NP-complete [6],

since it can be reduced in the most general case to a satis�ability problem.

There are already a few approaches dealing with the constraints over the inputs.

In order to deal with constraints, some methods require to remodel the original speci-

�cation, very few directly support CCIT. Others simply ignore constraints or propose

to post process the test suites, in order to delete combinations of inputs which do not

satisfy the constraints. An overview of existing methods is presented in section 7.

In this paper we address CCIT in the presence of constraints as suggested in [14],

but we keep also in mind the goals of allowing user speci�c requirements and a better

integration with other existing techniques for veri�cation and validation and for system

development.

3 A logic approach to combinatorial testing

In this section, we describe our approach to combinatorial testing, which we can clas-

sify as logic-based, since it formalizes the combinatorial coverage by means of logical

predicates and applies techniques normally used for solving logical problems. The pre-

liminary de�nitions of test and test suite in the context of combinatorial testing follow.

De�nition 1 Given m input variables, each ranging in its own �nite domain, a test

is an assignment of values to each of the m variables: p1 = v1, p2 = v2, . . . , pm = vm
or 〈pi = vi〉.

De�nition 2 A test suite is a �nite set of tests. The size of a test suite is simply the

number of tests in it.

To formalize pairwise testing, since it aims at validating each possible pair of input

values for a given system under test, we can formally express each pair as a correspond-

ing logical expression, a test predicate (or test goal), e.g.:

p1 = v1 ∧ p2 = v2
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where p1 and p2 are two inputs or monitored variables of enumeration or boolean

domain and v1 and v2 are two possible values of p1 and p2 respectively. Similarly,

t-wise coverage can be modeled by a set of test predicates, each of the type:

p1 = v1 ∧ p2 = v2 ∧ . . . ∧ pt = vt ≡ ∧ti=1pi = vi

where p1, p2 . . . pt are t inputs and v1, v2 . . . vt are their possible values. The t-wise

coverage is represented by the set of test predicates that contains every possible com-

bination of the t input variables with their values. Please note that to reach complete

t-wise coverage this has to be true for each t-tuple of input parameters of the considered

system.

To build the complete set of test predicates required for t-wise coverage of a model,

we employ a combinatorial enumeration algorithm, which simply takes every possible

combination of t input variables and it assigns every possible value to them. In order

to generate the test predicates, we assume the availability of a formal description of

the system under test. This description should include at least the input parameters

together with their domains1.

In order to achieve the goals B and C stated in section 2, we choose as description

language the Abstract State Machine notation in its variant of the AsmetaL language

[27]2. As an example, Listing 1 reports the AsmetaL speci�cation of a Cruise Control

System (CC) as proposed by [1]. Note that although only monitored variables are

considered in combinatorial testing, AsmetaL speci�cations could contain also rules,

modeling system behavior, and controlled variables, modeling the outputs. Rules and

controlled variables are ignored for combinatorial test generation but can be useful if

the speci�cation is used as oracle, to compute the expected outputs in correspondence

of a test. The same speci�cation may be reused for other validation & veri�cation

activities.

The CC example has 4 boolean and one 3-valued monitored variables, thus the

collection of test predicate for its pairwise coverage counts 48 predicates. These are the

combinatorial explosion of all assignments for each of the �ve possible pairs of distinct

parameters of CC. Table 3 shows an example of combinatorial test suite achieving such

pairwise coverage in just six test cases. The four-wise coverage set for CC counts 112

test predicates. They can be obtained by enumerating all the possible assignments for

all the combinations of four out of �ve parameters.

Table 3 Pairwise test suite for Cruise Control.

# engRun brake fast igOn lever

1 true false true false RESUME
2 false true false true RESUME
3 false false true true ACTIVATE
4 true true false false ACTIVATE
5 true true true true DEACTIVATE
6 false false false false DEACTIVATE

The activity of generating the test predicates (step 1) is carried out by the test

predicate generator of Figure 1, which shows the process proposed by our method

1 Currently, only �nite, discrete enumerable domains are supported.
2 AsmetaL is available at http://asmeta.sourceforge.net.
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asm cruiseControl
import StandardLibrary
//UNIVERSES and FUNCTIONS
signature:
enum domain CCMode = {OFF| INACTIVE|CRUISE|OVERRIDE}
enum domain CCLever = {DEACTIVATE| ACTIVATE|RESUME}
dynamic monitored lever : CCLever
dynamic monitored igOn : Boolean
dynamic monitored engRun : Boolean
dynamic monitored brake : Boolean
dynamic monitored fast : Boolean
dynamic controlled mode : CCMode

de�nitions:
// AXIOMS: ADDED LATER
// RULES:
main rule r_CruiseControl = ...
// SKIPPED

Listing 1 AsmetaL speci�cation of Cruise Control

and implemented by the ASM Test Generation Tool (ATGT)3. ATGT was originally

developed to support structural [26] and fault based testing [23] of Abstract State

Machines (ASMs), and it has been extended to support also combinatorial testing.

We say that a test ts covers a test predicate tp if and only if it is a model of tp. Note

that while a test binds every variable to one of its possible values, a test predicate binds

only t (with t ≤ m) variables. We say that a test suite achieves the t-wise combinatorial

coverage if all the test predicates for the t-wise coverage are covered by at least one

test in the suite. The main goal of combinatorial testing is to �nd a small test suite

able to achieve the t-wise coverage.

To generate the complete test suite, one could choose one test predicate at a time

and try to generate a test that covers it. By formalizing the t-wise testing by means

of logical predicates, �nding a test that satis�es a given predicate reduces to a logical

problem of �nding a complete4 model for a logical formula. To this aim, many tech-

niques like constraint solvers and model checkers can be applied. The complete process

of generating the �nal test suite depicted in Figure 1 contains several optimizations

and it is explained in the following sections.

3.1 Tests generation

The actual test generation (stage 4 in Figure 1) consists of �nding a test that covers a

given test predicate, i.e. that is a model for it. As long as constraints are not taken into

account, since a test predicate is just a conjunction of atoms of the form v = x, �nding

a model is trivial and even a simple ad-hoc algorithm could be used. However, in order

to support contraints many logical solvers tools that are already available can better

suit this task, like e.g. constraint solvers, SAT algorithms, SMT (Satis�ability Modulo

Theories) solvers, and even model checkers. Our approach exploits the well known SAL

(Symbolic Analysis Laboratory) [19] model checker tool. The SAL framework aims at

3 ATGT is available at http://cs.unibg.it/gargantini/software/atgt/.
4 We say that a model is complete if it assigns a value to every input variable.
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Figure 1 Generation process of a combinatorial test suite

combining di�erent tools for abstraction, program analysis, theorem proving, SMT

solving, and model checking. Even though it is mainly used for formal veri�cation, it

has been successfully used also for test generation already [29].

SAL o�ers a bounded (BMC) and a symbolic model checker (SMC). Bounded model

checkers [2] are specialized to the generation of counterexamples. A BMC transforms

the model checking problem into a constraint satisfaction problem: for �nite state

systems, this can be represented as a propositional satis�ability problem which contains

the unfolded transition relation and the negation of the property up to a certain bound

(depth) and this problem is given to a SMT or SAT solver. Modern SMT solvers

can handle problems with many thousands of variables and constraints. A symbolic

model checker [42] uses binary decision diagrams (BDDs) to e�ciently represent states,

transition relations and constraints among them and then it can apply a variety of

search strategies to explore the state space and to prove a system property or to �nd

a counter example of it.

In order to generate a test which covers a given combinatorial test predicate tp,

SAL is asked to verify a trap property [24] in a model which contains only the monitored

variables. The trap property states that tp is never true, or never(tp), which in LTL, the

language of SAL, becomes G(¬tp). The trap property is not a real system property, but

enforces the generation of a counter example, that is an assignment of values falsifying

the trap property and satisfying our test predicate. The counter example will contain

bindings for all the inputs, including those missing (free) in the predicate, thus de�ning

the test we were looking for. The SAL translation of CC for a generic test predicate

< tp > is shown in Listing 2, in which the monitored module represents the monitored

variables.

Since we do not consider any state transition information in our models, a simple

constraint or satis�ability solver could be used instead of a model checker. However, not

all the constraint and SMT solvers are able to �nd a complete model: some simply say

that a model exists without showing it, others print the model but it is not complete

(i.e. it does not bind all the variables). Even a simple SAT solver could be used.

However, there are several ways to encode a constrained problem directly into a SAT

solver, but the choice of which encoding to use is critical and it requires expertise in

SAT algorithms, since some encodings may provide better performance than others.

Moreover, we designed our approach in order to be able to deal also with temporal
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cruiseControl: CONTEXT = BEGIN

CCLever : TYPE = {DEACTIVATE, ACTIVATE, RESUME};

monitored : MODULE = BEGIN

OUTPUT igOn, fast, engRun, brake: BOOLEAN, lever: CCLever

END;

% trap property
tc_92668c : THEOREM monitored |− G(NOT <tp>);

END

Listing 2 SAL speci�cation of Cruise Control

constraints and to be able to include state transition information, which cannot be

directly represented in satis�ability solvers. Work on this topic is currently ongoing,

and some preliminary results are presented in [9]. Note that the use of BMC with depth

= 1 is equivalent in most aspects (as number of variables, for example) to apply the

underlying SMT or SAT solver directly.

A �rst basic way to generate a suitable test suite for the t-wise coverage, consists in

collecting all the test predicates in a list of candidates, extracting from the set one test

predicate at a time, generating the test case for it by executing a SAL model checker,

removing it from the candidates set, and repeating until the candidates set is empty.

This activity would be performed by the test suite generator (stage 2 in Figure 1) for

each test predicate. This approach can be classi�ed as iterative according to [28] and

allows the user to pause, postpone, and resume the test generation. However, it is not

very e�cient since it would require a model checker run and would produce a test for

every test predicate; it can be improved as follows.

3.2 Monitoring

Every time a new test ts is added to the test suite, ts always covers as many as (mt )

t-wise test predicates, where m is the number of a system's input parameters and t

is the strength of the covering array (t = 2 for pairwise interaction testing). Checking

which test predicates are covered by ts and remove them from the candidates leads

to fewer calls to the model checker and possibly to smaller test suites [21]. To enable

monitoring, the tool detects if any additional test predicate tp in the candidates is

covered by ts by checking whether ts is a model of tp (i.e. it satis�es tp) or not, and in

the positive case it removes tp from the candidates. Checking if a test is a model for

a test predicate requires very limited computational e�ort. This activity is performed

by the Coverage Evaluator (stage 5 in Figure 1), which also computes the expected

outputs as values for controlled variables, if any.
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3.3 Reduction

Monitoring can signi�cantly reduce the size of a test suite, but a resulting test suite

could still contain redundant tests. For example, the last generated test might also cover

several other test predicates previously covered by tests which may become useless. A

smallest test suite is that in which each test predicate is covered by exactly one test

case, but this very seldom happens: in most cases a test predicate will be covered by

many tests creating possible redundancies. For this reason the analysis of the �nal test

suite is useful to further reduce it.

Test suite reduction (also known as test suite minimization) is often applied in the

context of regression testing, when one wants to �nd a subset of the tests that still

satis�es given test goals. The problem of �nding the minimal test suite that satis�es

a set of test goals can be reduced to the minimum set covering problem which is NP-

hard. A simple greedy heuristic for the minimum set covering problem de�ned in [10]

can be adapted to the test suite minimization.

We say that a test case is required if it covers at least a test predicate not already

covered by other test cases in the test suite. In order to obtain a �nal test suite with

fewer test cases, we try to build the reduced test suite by gathering only all the test

cases which are required. Note, however, that a required test case may become no

longer required after adding a test case to the test suite, hence we cannot simply add

all the required tests at once. We have implemented a greedy algorithm, reported in

Alg. 1, which �nds a test suite with the minimum number of required test cases.

Algorithm 1 Test suite reduction

T = test suite to be optimized
Op = optimized test suite (required test predicates)
Tp = set of test predicates which are not covered by tests in Op

0. set Op to the empty set and add to Tp all the test predicates
1. take the test t in T which covers most test predicates in Tp
2. add t to Op
3. remove all the test predicates covered by t from Tp
4. if Tp is empty then return else goto 1

3.4 Test Predicates Ordering

If monitoring is applied, the order in which the candidate test predicates are chosen

and processed has a major impact on the size of the �nal test suite. In fact, each

time a tp is selected, a corresponding test case is generated, covering also other test

predicates, which will be then removed from the candidate pool too. In fact, the more

the candidate pool is reduced, the less the variety of test cases will be. Considering

test predicates in the same order in which they are generated may lead to not optimal

test suites [22]. For this reason, in our process we inserted an additional processing

stage (stage 3 of Figure 1) in which the test predicates are ordered according to a user

speci�ed policy, chosen among the following:
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Randomly The �rst policy is to randomly choose the next predicate for which the tool

generates a test case. This makes our method non deterministic, as the generated test

suite may di�er in size and composition at each execution of the algorithm. Random

ordering is considered a good ordering policy [22].

Ordering by novelty A di�erent policy is to order the tps in the candidate pool

according to a well de�ned ordering criterion, and then process them sequentially. At

each iteration, the pool is again sorted against this criterion and the �rst test predicate

is selected for processing. In order to do this we de�ne a novelty comparison criteria as

follows.

De�nition 3 Let t1 and t2 bet two test predicates, and T a test suite. We say that

t1 is more novel than t2 if the variable assignment of t1 has been tested less times in

T than that of t2.

Ordering by novelty and taking the most novel one helps ensuring that during the test

suite construction process, for each parameter, all of its values will be evenly used,

which is also a general requirement of CAs. To this purpose, usage counting of all

values of all parameters in current test suite is performed and continuously updated

by the algorithm, when this optional strategy is enabled and the ordering is performed

every time a test predicate must be chosen.

Ordering requires additional (limited) computational e�ort to continuously order

the test predicates.

Anti-diagonal Pairwise test predicates can be ordered once and for all at the begin-

ning by the anti-diagonal criterion, which orders the test predicates such that no two

consecutive tp ≡ p1 = v1 ∧ p2 = v2 and tp′ ≡ p′1 = v′1 ∧ p′2 = v′2 where p1 = p′1 and

p2 = p′2 will have v1 = v′1 or v2 = v′2. Simply put, for each pair of input variables, the

algorithm indexes through the matrix of their possible values in anti-diagonal order,

see Figure 2. Thus, generating their sequence of pair assignments such that both val-

ues always di�er from previous ones5. We expect that enforcing diversity between two

consecutive tps will result in test cases covering a greater number of test predicates.

3.5 Composing test predicates

Since a test predicate binds only the values of a pair of variables, all the other variables

in the input set are still free to be bound by the model checker. Beside guiding the choice

of the selected test predicate in some e�ective way, we can only hope that the model

checker will choose the values of unconstrained variables in order to avoid unnecessary

repetitions, such that the total number of test cases will be low. It is apparent that a

guide in the choice of the values for all the variables not speci�ed by the chosen test

predicate is necessary to improve the e�ectiveness of test case construction, even if this

may require a greater computational e�ort. To this aim, our proposed strategy consists

in composing more test predicates into a collected test predicate, which speci�es the

values for as many variables as possible.

De�nition 4 (Collection) A collected test predicate is the conjunction of one or

more combinatorial test predicates.

5 With the only exception of the �rst and last pairs of the sequence.
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Figure 2 A schema showing anti-diagonal indexing order of the pair values. The row and
column indexes correspond to the values of two input parameters, each ranging in [0..n] and
[0..m] respectively. The arrows show the order in which values are selected to form the test
predicates.

When creating a composed test predicate, we must ensure that we will still be able

to �nd a test case that covers it. In case we try to compose too many test predicates

which contradict each other, there is no test case for it. We borrow some de�nitions

from propositional logic: since a sentence is consistent if it has a model, we can de�ne

consistency among test predicates as follows.

De�nition 5 (Consistency) A test predicate tp1 is consistent with a test predicate

tp2 if there exists a test case which satis�es both tp1 and tp2.

Let us assume now, for simplicity, that there are no constraints over the input values.

In this case, the consistency propery depends only on the values of the variables in the

test predicates we compose. The case where constraints over the model are de�ned will

be considered in section 4.

Claim 1 Let tp1 ≡ v1 = a1∧v2 = a2 and tp2 ≡ v3 = a3∧v4 = a4 be two pairwise test

predicates. They are consistent if and only if ∀i ∈ {1, 2}, ∀j ∈ {3, 4} vi = vj → ai = aj

Claim 1 can be easily extended for t-wise test predicates:

Claim 2 Let tp1 ≡ ∧ti=1vi = ai and tp2 ≡ ∧tj=1wj = bj be two t-wise test predicates.

They are consistent if and only if ∀i ∈ [1, t]∀j ∈ [1, t] vi = wj → ai = bj

We can add a test predicate tp to a composed test predicate TP , only if tp is

consistent with TP . This keeps the composed test predicate consistent.

Claim 3 A collection TP of test predicates is consistent with a test predicate tp if and

only if every t in TP is consistent with tp

Now the test suite is built up by iteratively adding new test cases until no more

tps are left uncovered, but each test predicate is composed from scratch as a logical

conjunction of as many as possible uncovered tps. The collection activity uses claims

1, 2, and 3 to keep the composed test predicate TP still consistent. Than, TP is used
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to derive a new test case by means of a SAL counterexample. This test will cover all

the test predicates composing TP. Figure 3 shows the heuristic stage TP collect (step

7) of extracting from the pool of candidate tps the best sub-set of consistent tps to be

joined together into TP.

3.6 Composing and ordering

The ordering of the predicates in the candidate pool may in�uence the later process

of merging many test predicates into a composed one. Assume that the candidates tps

for merging are searched sequentially in the candidates pool: the more diversity there

will be among subsequent elements of the pool, the higher will be the probability that

a neighboring predicate will be found compatible for merging. This will in turn impact

on the ability to produce a smaller test suite, faster, given that the more predicates

have been successfully compacted into the same test case, the fewer test cases will be

needed to have a complete combinatorial coverage.

There are more than one strategy we tested in order to produce an e�ective ordering

of the predicates. In the implemented tool one can choose to compose the test predicates

(step 7) by any of the pluggable ordering policies presented in section 3.4. By adopting

the random policy, the TP collect component randomly chooses the next test predicate

and check if it is consistent. By novelty policy the tool chooses the most novel test

predicate and tries to combine it with the others already chosen.

4 Adding Constraints

Support for constraints over the inputs is given by expressing them as axioms in the

speci�cation. In the CC example, the assumptions that the engine is running only if

the ignition is on and that the car is driving too fast only if the engine is running, are

modeled in AsmetaL by the following axioms:

axiom inv_ignition over engRun : (engRun implies igOn)
axiom inv_toofast over fast : (fast implies engRun)

To express constraints we adopt the language of propositional logic with equal-

ity6. Note that most methods and tools admit only few templates for constraints: the

translation of those templates into equality logic is straightforward. For example the

require constraint is translated by an implication; the not supported to a not, and

so on. Even the method proposed in [14], which adopts a similar approach to ours,

prefers to allow constraints only in a form of forbidden con�gurations [31], since it

relies for the actual tests generation on existing algorithms like IPO. A forbidden com-

bination would be translated in our model as not statement. For instance, a forbidden

pair x = a, y = b would be represented by the following axiom:

axiom inv_fb: not (x = a and y = b)

6 To be more precise, we use propositional calculus, boolean and enumerative types for
variables, equality and inequality. This language is expressive enough to represent all the
constraints we found in examples and case studies presented in other papers. Nevertheless, our
approach can easily support a more general language for constraints as in [9].
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Our approach allows the designer to state the constraints in the form he/she prefers.

For example, the model of mobile phones presented in [14] has 7 constraints. The

constraint number 5 states that �Video camera requires a camera and a color display�.

In [14], this constraint must be translated into two forbidden tuples, while we allow

the user simply to write the following axiom, which is very similar to the informal

requirement.

axiom inv_5 over videoCamera, camera, display :
videoCamera implies (camera!= NO_CAMERA and display != BLACK_WHITE)

Moreover, we support constraints that not only relate two variable values (to ex-

clude a pair), but that can contain generic bindings among variables. We believe that

the translation from natural language to a �xed form of constraints (as in [12]) can be

error prone, while allowing a more expressive constraint language reduces the likelihood

of errors. Note that any constraint models an explicit binding, but their combination

may give rise to complex implicit constraints [14]: implicit constraints do not need to

be formalized in the speci�cation.

In our approach, the axioms must be satis�ed by any test case we obtain from the

speci�cation, i.e. a test case is valid only if it does not contradict any axiom in the

speci�cation. While others [6] distinguish between forbidden combinations (hard con-

straints) and combinations to be avoided if possible (soft constraints), we consider only

hard constraints. Since we allow the speci�cation to contain also controlled variables

and rules that assign value to them, error conditions can be modeled by an error con-

trolled variable, and rules that detect erroneous conditions and assign suitable values

to error in order to signal the occurrence of such conditions. The speci�cation can be

used then as oracle to know whether a combination causes an error in the system.

In the presence of constraints, �nding a valid test case becomes a challenge similar

to �nding a counter example for a theorem or proving it. Veri�cation techniques like

SAT algorithms, or model checkers algorithms are particularly e�ective in this case, so

we investigated the use of the bounded and symbolic model checkers in SAL to this aim.

To include constraints in SAL they must be translated in order to embed the axioms

directly in the trap property, since SAL does not support assumptions directly. Simply

put, the trap property must be modi�ed to take into account the axioms a1, a2, ...an.

The general schema for it becomes:

G(a1 ∧ a2 ∧ .. ∧ an)⇒ G(¬tp) (1)

A counter example of the trap property (1) is still a valid test case. In fact, if the

model checker �nds an assignment to the variables that makes the trap property false,

it �nds a case in which both the axioms are true and the implied part of the trap

property is false. This test case covers the test predicate and satis�es the constraints.

Without constraints, we were sure that a trap property derived from a test predicate

had always a counter example. Now, due to the constraints, the trap property (1)

may not have a counter example, i.e. it could be true and hence provable by the

model checker. We can distinguish two cases. The simplest case is when the axioms are

inconsistent, i.e. there is no assignment that can satisfy all the constraints. In this case

each trap property is trivially true since the �rst part of the implication (1) is always

false. The inconsistency may be not easily discovered by hand, since the axioms give

rise to some implicit constraints, whose consequences are not immediately detected

by human inspection. For example a constraint may require a 6= x, another b 6= y

while another requires a 6= x→ b = y; these constraints are inconsistent since there is
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no test case that can satisfy them. Note that also input domains must be taken into

account when checking axioms consistency. Inconsistent axioms must be considered as

a fault in the speci�cation and this case must be (possibly automatically) detected and

eliminated. For this reason when we start the generation of tests, if the speci�cation

has axioms, we check that the axioms are consistent by trying to prove with the model

checker:

G(¬(a1 ∧ a2 ∧ .. ∧ an)) (2)

If this is proved by the model checker, then we warn the user, who can ignore this

warning and proceed to generate tests, but no test will be generated, since no valid

test case can be found. We assume now that the axioms are consistent. Even with

consistent axioms, some (but not all) trap properties can be true: there is no test case

that can satisfy the test predicate and the constraints. In this case we de�ne the test

predicate as infeasible.

De�nition 6 Let tp a test predicate, M the speci�cation, and C the conjunction of

all the axioms. If the axioms are consistent and the trap property for tp is true, i.e.

M ∧ C |= ¬tp, then we say that tp is infeasible. If tp is the t-wise test predicate

p1 = v1 ∧ p2 = v2 . . . pt = vt, we say that this combination of assignments is infeasible.

An infeasible combination of assignments represents a set of invalid test cases: all

the test cases which contain such a combination are invalid. Our method is able to

detect an infeasible assignment, since it can actually prove the trap property derived

from it. The tool �nds and marks infeasible combinations, and the user may derive

from them invalid tests to test the fault tolerance of the system. For example, the

following test predicate is proved infeasible for the CC example, since the car cannot

run fast when the ignition is o�:

M ∧ C |= ¬(fast = true ∧ igOn = false) (3)

Note that this infeasible combination is not explicitly listed in the contraints. In-

feasible combinations represent implicit constraints. We believe that exposing them to

the user can help the detection of possibile errors in the model: consider the example

of a desired combination which results infeasible instead.

Since the BMC (Bounded Model Checker) is in general not able to prove a theorem,

but only to �nd counter examples, it would not be suitable to prove infeasibility of test

predicates. However, since we know that if the counter example exists then it has length

(i.e. the number of system states) equal to 1, it follows that if the BMC does not �nd

it then we can infer that the test predicate is infeasible.

4.1 Composition and constraints

In the presence of constraints, claims 1, 2, and 3 are no longer valid and the composition

method presented in section 3.5 must be modi�ed. Every time we want to add a test

predicate to a conjoint of test predicates we have to check its consistency by considering

the constraints too. We can exploit again the model checker SAL. Given a test predicate

tp, the axioms a1, a2, ... an and the conjoint TP, we can try to prove by using SAL:

G(TP ∧ a1 ∧ a2 ∧ .. ∧ an)⇒ G(¬tp) (4)
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If this is proved, we skip tp since it is inconsistent with TP, otherwise we can add

tp to TP and proceed. This approach would require to call the SAL model checker

at least as many times as the number of test predicates, reducing the advantages of

composing test predicates. Moreover, the presence of infeasible test predicates worsens

the approach: every time we can try to add an infeasible test predicate tp to a composed

one, the formula 4 is true and tp is postponed. To reduce these problems which would

limit the scalability of our approach, we have de�ned the following either su�cient or

necessary conditions for consistency.

Claim 4 Inconsistent by values Let tp1 ≡ ∧ti=1vi = ai and tp2 ≡ ∧tj=1wj = bj be

two t-wise test predicates. They are consistent (regardless of possible axioms) only if

∀i ∈ [1, t]∀j ∈ [1, t]vi = wj → ai = bj

Claim 4 denotes a necessary condition for consistency: if a test predicate in the

composed TP and the test predicate to be composed tp have vi = wj and ai 6= bj ,

then TP and tp are inconsistent and there is no need to call the model checker.

Claim 5 Implied by values Let TP collect the test predicates tpi ≡ ∧tj=1vi,j = ai,j

with i = 1, . . . ,m and tp ≡ ∧tk=1wk = bk be a t-wise test predicate. If ∀k ∈ [1, t]∃i ∈
[1,m]∃j ∈ [1, t]vi,j = wk∧ai,j = bk, then TP and tp are consistent (regardless possible

axioms).

Claim 5 denotes a su�cient condition for consistency: if a test predicate in the

composed TP contains already test predicates with the same bindings of variables to

values of tp, then TP and tp are consistent and there is no need to call the model

checker.

Figure 3 shows the entire process of adding a test predicate tp to a composed test

predicate TP. First we apply claims 4 and 5, then only if they do not give a de�nitive

answer, we call the model checker with the following trap property.

G(a1 ∧ a2 ∧ .. ∧ an)⇒ G(¬(TP ∧ tp)) (5)

If a model for it is found, then tp is added to TP, otherwise tp is checked for

feasibility: if the trap property (1) is proved, then tp is marked infeasible.

5 User de�ned test goals and tests

Our framework is suitable to deal with user de�ned test goals. In fact, the user may

be interested to test some particular critical situations or input combinations and

these combinations are not simple t-wise assignments. We assume that the user de�ned

test goals are given as generic logical predicates, allowing the same syntax as for the

constraints. For example, if the user wants to test the BBS system with a speci�c

combination of inputs, such that access is LOOP, billing is not CALLER and calltype

is not LOCALCALL, he is allowed to write the corresponding test goal as follows:

testgoal loop:

access = LOOP and billing != CALLER and calltype != LOCALCALL;
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Figure 3 The collect algorithm in the presence of constraints

Then, a new instance of SAL is run on the trap property derived from the loop

test goal, and a test case covering this test goal is �nally obtained from the resulting

counter example.

Besides user de�ned test goals, we also allow user de�ned test cases (sometimes

called seeds) to be speci�ed. The user may have already some tests cases that manda-

torily have to be included in the test suite, and which have already been generated (by

any other means). For example, the user may add the following test:

test basic_call:

access = LOOP, billing = CALLER,

calltype = LOCALCALL, status = SUCCESS;

Note that a test case speci�es the exact value of all the input variables, while a test

predicate speci�es a generic scenario. ATGT allows the tester to load an external �le

containing user de�ned tests and test goals. When an external �le is loaded, ATGT

adds the user de�ned test goals in the set of test predicates to be covered. Then it adds

the user de�ned tests and it checks which test predicates are satis�ed by these tests.

In this way the tester can decide to skip the test predicates covered by tests he/she

has written ad hoc.

6 Evaluation

The proposed approach has been implemented in the tool ATGT, and applied to a

series of example tasks taken from the literature [16,32]. These tasks have been used to



19

Table 4 Test suite sizes comparison using several ordering strategies for unconstrained models.

no collect collect Time
Task Size no mon. randomnovelty randomnovelty antidiag. as gen. (secs.)

CCA1u 33 9(27) 9(12) 9(11) 9 10(11) 9(15) 9(15) 1.8
CCA2u 43 18(48) 18(23) 16(21) 15 17(21) 20(28) 19(28) 4.7
CCA3u 53 29(75) 29(36) 29(34) 25 29(31) 32(45) 32(45) 7.6
CCA4u 63 43(108) 43(52) 43(53) 36 (38) 42(46) 50(66) 48(66) 11.2
CCA5u 73 60(147) 62(73) 59(71) 51 59(63) 66(91) 69(91) 14.2

CCA6u 54 500 205 211 152 210 - 225 29.6
CCA7u 64 864 364 373 268 372 - 396 53.4
CCA8u 74 1372 586 614 428 602 - 637 90.9

benchmark the performance of ATGT in terms of the size of the generated test suite,

and assess the di�erent test generation strategies discussed in section 3 of the paper.

Experiments have been executed on machine equipped with two 3GHz Quad Core Intel

Xeon processors and 16GB of RAM. In tables 4, 7, and 9 we report also the average

times taken by our tool to complete the test suite generation by using the strategy

which produced the best suite (generally such strategy is also the most demanding in

terms of run time). We do not report the memory required which was never greater

than 16 Mb.

Note that the exponential symbolic notation used in [32] to represent the problem

domain size is also adopted in the following. All the reported suite size values are

the best results over �fty tries. Size of the test suite prior to the application of the

reduction algorithm (see section 3.3) is also shown bracketed, where greater than the

reduced size.

The �rst series of experiments has been performed on a set of tasks de�ned in [14],

CCA1u to CCA8u, the �rst �ve of which required pairwise coverage while the last

three three-wise coverage. These are randomly generated constrained covering arrays

with 3 to 6 factors of 3 to 7 values each. Based on these speci�cations, Table 4 reports

a comparison of the sizes of generated combinatorial test suites for di�erent strategies,

in order to reveal the best performing options. The considered strategies di�er for the

settings of many con�guration options, that are:

� the order of pairs processing: in the same order as generated, random, anti-diagonal,

or by novelty;

� the choice between collecting the pairs to compose larger test predicates or pro-

cessing them one by one;

� the option of monitoring, that is to check (or not) for additional pairs covered by a

counterexample other than those for which it was generated. This is actually always

enabled with only the exception of the tests in the no mon. column.

Since the bounded model checker and the symbolic model checker performances

were equivalent, being none of them able to outperform the other in all tasks, the data

shown in the tables are the best results obtained from both the smc and bmc versions

of the sal tool.

As the experiments outcome shows, while collecting the pairs and enabled mon-

itoring had a dramatic impact on the tool performance, the novelty or anti-diagonal

processing order is not more e�ective than the random order of pair processing, with
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Table 5 Comparison of best test suite sizes for unconstrained models

Task Size ATGT mAETG-SAT SA-SAT PICT TestCover

CCA1u 33 9 9 9 10 9
CCA2u 43 15 16 16 17 16
CCA3u 53 25 26 25 26 25
CCA4u 63 36 37 36 39 36
CCA5u 73 51 52 49 55 49

CCA6u 54 152 143 127 151 -
CCA7u 64 268 247 222 260 -
CCA8u 74 428 395 351 413 -

Table 6 Pairwise performance comparison with existing tools for unconstrained models.

Task ATGTAETGPairTest TCon�g CTS Jenny AllPairs PICT
size [11] [47] [48] [30] [35] [41] [16]

34 11 9 9 9 9 11 9 9
313 19 15 17 15 15 18 17 18

415317229 38 41 34 40 39 38 34 37
41339235 27 28 26 30 29 28 26 27

2100 12 10 15 14 10 16 14 15
410 31 31 28 28 30
420 39 34 28 28 37
430 45 41 40 40 41
440 49 42 40 40 43
450 51 47 40 40 46
460 53 47 40 40 49
470 56 49 40 40 50
480 58 49 40 40 52
490 59 52 43 43 53
4100 60 52 43 43 53
1020 267 180 212 231 210 193 197 210

the exclusion of rare exceptions. Without monitoring, the number of runs and the

number of the tests in the test suite before optimization are much greater than the

number of runs with monitoring, and the number of the tests in the test suites is not

smaller. Using the random order processing and enabling collection and monitoring

options, revealed to be the best performing strategy for ATGT. For the same set of

unconstrained tasks, Table 5 reports a comparison of the best sizes of our tool with

those of other well-known existing tools, showing ATGT performance is substantially

aligned with that of other tools for the pairwise tasks and very close for the three-wise

tasks.

Table 6 report an additional performance comparison between our tool and other

well-known existing tools on a di�erent and larger series of tasks of increasing sizes.

These tasks are all unconstrained tasks, and have been executed for pairwise coverage

con�guring ATGT with collection and monitoring enabled and random pairs processing

order. Despite the performance achieved is not optimal it still is acceptable and very

close to that of the other compared tools, specially for smaller tasks, which in overall

demonstrates the practicability of the underlying approach, despite our method is

introduced to speci�cally target constrained models.
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Table 7 Test suite sizes for di�erent ordering strategies for constrained models.

no collect collect Time
Task δ no mon. randomnovelty randomnovelty antidiag. as gen. (secs.)

CCA1 2531 9(21) 9 9 9 9 9(10) 9(10) 9.7
CCA2 2331 17(44) 17(19) 18(19) 17(18) 17(18) 18(21) 19(21) 18.6
CCA3 2531 28(70) 27(34) 29(33) 26(28) 30(31) 29(37) 30(37) 28.1
CCA4 2631 41(102) 41(47) 41(52) 38(39) 41(46) 44(58) 46(58) 42.3
CCA5 2531 60(142) 59(69) 58(69) 54(56) 60 67(80) 66(80) 34.0

CCA6 2331 469 192 196 156 180 - 210 137.6
CCA7 2331 817 345 355 284 304 - 381 231.9
CCA8 2531 1304 570 577 456 531 - 616 469.3

Table 8 Comparison of test suite sizes for constrained models.

Task Size δ ATGT mAETG-SAT SA-SAT PICT TestCover

CCA1 33 2531 9 10 10 10 10
CCA2 43 2331 17 17 17 19 17
CCA3 53 2531 26 26 26 27 30
CCA4 63 2631 38 37 36 39 38
CCA5 73 2531 54 52 52 56 54

CCA6 54 2331 156 138 140 143 -
CCA7 64 2331 284 241 251 250 -
CCA8 74 2531 456 383 438 401 -

Table 7 reports the outcome of the same experiments run on CCA1u to CCA8u,

but run on their constrained counterparts, CCA1 to CCA8. In fact, these are the same

spec of the unconstrained tasks but with the addition of randomly generated forbidden

tuples of arity 2 or 3, where 2-way tuples were produced with a probability of .66.

Thus, a column to state the number of involved constraints has been added to the

tables. To be able to quantitatively measure the constraints we introduced a function δ

which accounts for every axiom after it has been converted into DNF, de�ned as follows:

(1) δ(a ∧ b) = δ(a) · δ(b)
(2) δ(a ∨ b) = δ(a) + δ(b)

(3) δ(x = b) = range(x)− 1

(4) δ(x 6= b) = 1

For forbidden combinations, δ is equal to the constraints measure proposed in [15],

which simply counts a forbidden tuple as t and multiply all the forbidden combinations.

For instance, the forbidden pair x = a, y = b, would be represented in our approach

by the constraint ¬(x = a ∧ y = b), which in DNF becomes x 6= a ∨ y 6= b which

is evaluated by δ to 2. In this case, quantities expressed with this criteria can take

advantage of exponential layout, e.g., 25 · 31 will read also as �ve pairwise constraints

plus one three-wise.

Table 8 compares the best constrained suite sizes of ATGT for pairwise and three-

wise coverages with those of many other existing tools, showing the tools perform very

good for these small pairwise tasks and reasonably good for three-wise tasks.

Moreover, Table 9 reports computed test suite sizes of two-fold experiments (with

and without constraints) performed on a new set of six example speci�cations, com-



22

Table 9 Test suite sizes and times for asm models of real-world systems.

ATGT mAETG-SAT
cnstr. ucnstr. cnstr. ucnstr.

Task Size δ size time size time size time size
BBS 34 21 11 13.7 11 2.2
Cruise Control 413124 22 8 16.7 6 2.2
Mobile Phone 3322 25 · 3 · 5 9 27.6 11 3.4
Spin simulator 21345 247 · 32 26 186.3 5.7 23 24 0.4 25
Spin veri�er 24232411 213 46 2745.0 33 20.2 41 11.3 33
GCC 2189310 237 · 33 26 26729.8 19 22.2 23 286.9 24

pared with mAETG-SAT [14], for which these additional data were available. This lat-

ter tool is also based on an incremental construction process, derived from the AETG

algorithm, which builds the test suite one test case at a time, like our tool. Also, both

our tool and mAETG-SAT rely on external solvers to ensure compliance of the built

test cases with the constraints, even though only our tool allows them to be expressed

as logical expressions. Moreover, our tool uses the external solver also to build test cases

from test predicates, while in mAETG-SAT a di�erent, greedy heuristic is employed.

Its basic algorithm alternates phases in which AETG and SAT each search the space

of possible assignments of values to factors in a con�guration, where AETG proposes

a new test case and SAT checks its consistency and in case it suggests some changes.

The examples used in Table 9 are actually models of real-world systems subject to a

number of contraints (modeled as axioms), quantitatively measured in the third column

again by δ. BBS is a model of a basic telephone billing system [40], already presented

in the introduction of this paper. Cruise Control models a simple cruise control sys-

tem originally presented in [1], while the Mobile Phone example models the optional

features of a real-world mobile phone product line, and has been recently presented

in [14]. Figure 4 reports all the AsmetaL axioms translating the constraints for this

model. SPIN is a well-known publicly available model checking tool [34], and can be

used as a simulator, to interactively run state machine speci�cations, or as a veri�er

to check properties of a speci�cation. It exposes di�erent sets of con�guration options

available in its two operating modes, so they can be accounted for two di�erent tasks

of di�erent sizes. Finally, the GCC task is derived after the version 4.1 GNU compiler

toolset, supporting a wide variety of languages, e.g., C, C++, Fortran, Java, and Ada,

and over 30 di�erent target machine architectures. Due to its excessive complexity the

task size has been here reduced to model just the machine-independent optimizer that

lies at the heart of GCC. Speci�cations for Spin and GCC are the same also used in

[14]. Please note that in this latter series, all the examples have been run for pairwise

coverage only. In all the computed test suites the tool was able to correctly handle

the axioms restrictions in order to ensure complete coverage of all non-forbidden pairs,

without the need to enumerate those pairs explicitly. This has been particularly helpful

in those examples involving many explicit and also a few implicit (derived) constraints.

Note that the time taken by our approach (with the best strategy and collecting)

is much greater than the time required by mAETG-SAT. Our tool is not optimized

with respect to the time requirements, and every time a test predicated is considered

for collection it calls the external model checker by exchanging �les. We believe that

embedding the model checker or a SAT solver in our tool would signi�cantly improve

the time performances without increasing the test suite sizes.
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asm mobile_phone

signature:
enum domain DisplayType = {MC16|MC8|BW}
enum domain EmailType= {GV|TV|NOV}
enum domain CameraType={MP2|MP1|NOC}

dynamic monitored display :DisplayType
dynamic monitored email : EmailType
dynamic monitored camera :CameraType
dynamic monitored videoCamera : Boolean
dynamic monitored videoRingtones : Boolean

de�nitions:
axiom inv_1 over display, email : display=BW implies email!=GV
axiom inv_2 over display, camera : display=BW implies camera!=MP2
axiom inv_3 over camera, email : camera=MP2 implies email!=GV
axiom inv_4 over display, camera : display=MC8 implies camera!=MP2
axiom inv_5 over videoCamera, camera, display :

videoCamera implies (camera!=NOC and display!=BW)
axiom inv_6 over camera, videoRingtones :

camera=NOC implies !videoRingtones
axiom inv_7 over display, email, camera :

!(display=MC16 and email=TV and camera=MP2)

Figure 4 ASM speci�cation for the mobile phone example.

7 Related work

There are already a few approaches of combinatorial testing that deal with the con-

straints over inputs. In order to deal with constraints, some methods require to remodel

the original speci�cation, very few directly support constraints in CCIT. For instance,

AETG [11,40] requires to separate the inputs in a way that they become unconstrained,

and only simple constraints of type if then else (or requires in [14]) can be directly

modeled in the speci�cation. Other methods [30] require to explicitly list all the for-

bidden combinations. As the number of input grows, the explicit list may explode and

it may become practically infeasible to �nd for a user. In [6] the authors introduce the

concept of (explicit) soft constraints: they use a method to avoid tuples if possible. In

this paper we consider only hard constraints: a test is valid only if it satis�es all the

constraints (explicit and implicit as well). Cohen et al. [14] found that just one tool,

PICT [16], was able to handle full constraints speci�cation, that is, without requir-

ing remodeling of inputs or explicit expansion of each forbidden test cases. However,

there is no detail on how the constraints are actually implemented in PICT, limit-

ing the reuse of its technique. Others propose to deal with the constraints only after

the test suite has been generated, by deleting tests which violate the constraints and

then generate additional test cases for the missing combinations. By this approach,

any classical algorithm for CIT may be extended to support constraints. However, this

is usable only if the number of missing combinations is small and all the constraints

are explicitly listed. In fact, experiments show that when the test suite is generated

ignoring the constraints then the number of its tests violating the constraints can be

very high, and that the number of implicit constraints can grow exponentially with the

number of variables [15]. Recently, several papers investigated the use of veri�cation
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methods for combinatorial testing. Hnich et al. [33] translates the problem of building

covering arrays to a Boolean satis�ability problem and then they use a SAT solver to

generate their solution. In their paper, they leave the treatment of auxiliary constraints

over the inputs as future work. Note that in their approach, the problem of �nding an

entire covering array is solved by SAT, while in our approach only the generation of a

single test case is solved by the model checker. To this respect, our approach is similar

to [14,15], where a mix of logical solvers and heuristic algorithms is used to �nd the

�nal test suite. Kuhn and Okun [37] try to integrate combinatorial testing with model

checking (SMV) to provide automated speci�cation based testing, with no support

for constraints. Conversely, Cohen et al. [14,15] propose a framework to incorporat-

ing constraints into established greedy and simulating annealing combinatorial testing

algorithm. They exclusively focus on handling constraints and present a SAT-based

constraint solving technique that has to be integrated with external algorithms for

combinatorial testing like IPO or AETG. Their framework is general and fully sup-

ports the presence of constraints, even if they can be modeled only in a canonical form

of boolean formulae as forbidden tuples. In [12] the authors discuss the translation of

di�erent forms of natural language constraints into this canonical form. Their work do

not deal with user de�ned tests and test goals, nor with the integration of combinatorial

testing with other testing criteria. In our work we address the use of full constraints as

suggested in [14]. Furthermore, while Cohen's general constraints representation strat-

egy has to be integrated with an external tool for combinatorial testing, our approach

tackles every aspect of the test suite generation process and strive to achieve the goals

A to D stated in section 2.

8 Conclusion and future work

In this paper we presented an original approach to constrained combinatorial testing,

based on formal logic. This approach aimed at giving a contribution to the testing

research community by providing original solutions to reach some important goals for

CCIT testing. The most important contribution being maybe its unique characteris-

tic of providing many useful features, usually found in di�erent and alternative tools,

in an tightly integrated way. In particular, these features are: the support of Asm as

the language for modeling the system under test, which enables a wide variety of sys-

tems to be analized; the ability to express complex constraints on the input domain

in a compact, e�ective syntax, as formal predicate expressions; the ability to gener-

ate t-wise combinatorial test suites, based on many optional optimization strategies;

and the ability to deal with user speci�c requirements on the test suite by including

speci�c test goals and/or test cases. The practicability of this approach has also been

demonstrated by implementing it in the software tool ATGT, which has been also

extensively experimented, with interesting results. Plans for future works are in the

direction to improve our technique along these directions. We already support enu-

merative and boolean domain types, but we plan to extend also to domain products

(e.g. records), functions (arrays), derived functions, and discrete, �nite sub-domains of

integer. Converting integers to enumerations by considering each number one enumer-

ation constant, is unfeasible unless for very small domains. We plan to investigate the

partition of integer domains in sub-partitions of interest. Also, we are already work-

ing to extend the constraints support by allowing generic temporal logic expressions,

which may specify requirements on the inputs evolution in time. For this reason, we
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chose to rely a model checker instead of simply using an SMT solver in the �rst place,

as this latter would not be able to deal with temporal constraints. Moreover, further

improvements include taking into account the output and state variables, assuming

that a complete behavioral model for the given system is available, and the binding

of monitored input variables to some initial value at the system start state. We plan

to apply combinatorial testing to complete speci�cations and compare it with other

types of testing like structural testing [25] and fault based testing [23] which, however,

require a complete system speci�cation, including outputs, controlled variables, and

transition rules.
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