
Validation of models and tests
for constrained combinatorial

interaction testing

Paolo Arcaini Angelo Gargantini Paolo Vavassori

University of Bergamo- Italy

International Workshop on Combinatorial Testing 2014

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Intro to validation

• GOAL: finding faults in combinatorial models and test suites

• Better before test generation and test execution

• Normally done by hand by domain experts

• We focus on some faults that are detected by the violation of

some meta-properties that

• must be true in any valid model and test suite

• automatically checked (by an SMT solver)

• Example

• The constraints do not contradict each others

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Desired (meta)-properties

• For combinatorial models and tests

• Consistency

• requires that there are no elements that conflict with each other.

• e.g. the constraints should not be contradictory

• Completeness

• e.g. every feasible requirement must be covered by at least one test

• Minimality

• guarantees that the specification does not contain elements defined or

declared in the model but never used

• no over-specification

• e.g. if a parameter value is never used, it could be removed from the

parameter domain

• e.g. the test suite is minimal

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

CitLab

• http://code.google.com/a/eclipselabs.org/p/citlab/

• Providing testers (and researchers) with some utilities

• Language (syntax checker) and eclipse-based editor [IWCT12]

• Test generation via external tools [ICST13]

• Translators from feature models [IWCT13]

• IWCT14

A “semantic” checker for validation

+ a guideline on how to solve these problems

31 March 2014 - IWCT Angelo Gargantini - Validation of CIT models and tests

Using SMT solver to prove meta-props
1. CCIT models and tests are translated in the SMT solver as

SMT problem

2. Every meta-property is translated into the SMT solver

3. If the property holds (valid) then OK else FAULT

• We use the SMT as prover: � valid � ¬� is sat

Meta-property

SMT

SOLVER

CCIT Model CCIT Tests

OK/

FAULT

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Why SMT ??????

A BDD or SAT is enough, but:

• in the future some new

features to the CitLab language

(functions, arrays …)

• Some SMT utilities:

• No need of CNF

• Incremental resolution

VALIDATION OF CIT MODELS

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Inconsistent constraints

• Example of inconsistent constraints:

{a ∧ ¬b, a → b}

• In order to discover if a model is consistent, we use the SMT

solver by simply checking the satisfiability of the conjunction of

the constraints.

A set of constraints � = {��, … , ��} is consistent iff

⋀ ��∈� is satisfiable

(i.e. there is a model that satisfies them)

A model is consistent if its constraints are consistent.

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

How to deal with inconsistent constraints

• In the simplest case a single constraint �� is inconsistent by

itself, i.e., it is a contradiction (⊨ ¬��).
• Remove or correct the constraint

• Example: a=5 and a=6

• In most cases there is not a single inconsistent constraint, but

the inconsistency derives from the interaction of the

constraints

• Example: {a ∧ ¬b, a → b, a ∨ b}

• In this case, the designer may be interested in finding a maximum subset

of consistent constraints

• Greedy algorithm (see paper)

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Constraints Vacuity

• Classically a property is vacuously satisfied if that property is

satisfied and proved true regardless of whether the model

really fulfills what the designer originally had in mind or not

• Example: the property a → b is vacuously satisfied by any model where a

is never true.

• Here not the same

We borrow the term vacuity to indicate a

constraint or one of its subformulas which is

useless

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Constraints Total Vacuity

A constraint �� is totally vacuous iff

⊨ � ��
�∈ {�,…,�} � {�}

→ (�� ≡ ����)

• With the SMT solver, check the validity of the formula above

• Example: set of constraints C = {¬a, a → b}

• The constraint a → b is totally vacuous

• ¬a → (a → b) is valid.

• Any tautology is totally vacuous

• More often constraints contain parts that are useless:

• Partial vacuity

• Intuitively, a constraint is totally vacuous if it can be removed

because it is always true

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Reducing a formula

• Given a predicate R, �� ��� returns the set of all the formulas

obtained from R by removing one occurrence of a subformula

in R

function �� ���(R){

if R is atomic then return ∅
if R= " ∧ # then return " ∧ �� ��� # ∪ �� ��� " ∧ #
if R= " ∨ # then return " ∨ �� ��� # ∪ �� ��� " ∨ #
if R= ¬" then return ¬�� ��� "

}

Example:

�� ��� " ∧ # = ", #
�� ��� " ∧ (# ∨ �) = {", # ∨ �, " ∧ #, " ∧ �}

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Reducing a formula (tree)

• �� ��� can be represented as abstract syntax tree “cutting”

∧
" ∨

¬

�

"
∨

¬

�
∧

" # ….

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Vacuity (general)

• If this is true, then ϕ is equivalent to ��
(assuming all the other constraints).

• Using ϕ istead of �� would give an equivalent simpler model.

• Example: C = {�� , �& } with ��= a ∧ b and �&= (a ∨ b) ∧ d

REDUCE(�&) = {a ∧ d, b ∧ d, a ∨ b, d}.

The constraint �& is partially vacuous because it is equivalent to d

• �� → (�& ≡ d) is valid

A constraint �� is partially vacuous if there exists ϕ ∈ �� ���(��)
such that ⋀ ���∈ {�,…,�} � {�} → (�� ≡ ϕ)

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

How to deal with vacuous constraints

• The vacuity of a constraint may actually be caused by an error

• Correct the error

• If the model and constraints are correct

1. Simplify the constraints (to speed up the test generation)

• Totally vacuity→ remove one, check again

• Partial vacuity →subs�tute one with an equivalent subformula and

check again

Or

2. The user may be interested to keep extra implied

constraints

• Keep and introduce a new notation property?

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Useless Values and Parameters

• A parameter p can contain in its domain some values which are

never taken by p.

The value v of a parameter p is useless if, due to the constraints,

p can never assume value v

If the parameter p can assume only a value, then the whole

parameter is useless.

• In SMT: v∈ D domain of parameter p is useless, iff ' = (∧
⋀ ���∈ {�,…,�} � {�} is unsatisfiable.

• Example: Parameter Enumerative a {a1 a2 a3};

Constraints: # a == a.a1 #

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

How to deal with useless elements and

parameters
• Uselessness of parameters and values can be caused by errors

in the constraints: the test designer may have inadvertently

introduced a restriction not present in the real system

• In this case, the constraints should be revised.

• Otherwise useless parameters and values can be removed from

the model

• To speed up the test generation

• However, other constraints may require to be modified accordingly.

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

VALIDATION OF CIT TEST

SUITES

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Test suite correctness

• A test suite is sound if every test is syntactically correct and valid:

• an assignment of values to the parameters is a syntactically correct test if it
satisfies the type definitions;

• a test is valid if it does not violate any constraint

• A test suite is complete if every feasible test requirement is covered

Test suite correctness.

A test suite is correct if it is sound and complete.

Checking the completeness of a test suite requires a satisfiability solver,

since in the presence of constraints it is not possible to judge if a test

requirement is feasible by syntax checking

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

How to deal with incorrect test suites

• An unsound test suite must be fixed before it can be used.

• either discard any invalid test or

• It may reduce the coverage

• Or modify it in order to make it valid

• It may be difficult

• An incomplete test suite can be completed

• For instance by using a test generator tool that accepts an existing

possibly incomplete test suite (often called seeds)

• Incorrect test suites signal a fault of the test generation

algorithm: useful for researchers when experimenting and

implementing ne techniques

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Test suite minimality

• A test generally cover several other tuples covered by other tests

• Redundancies

• Some tests that overlap may be eliminated without reducing the total

coverage of the test suite.

• test suite reduction or minimization

A test suite TS is minimal if there exists no subset

)*′ ⊂)* such that)*-satisfies all the testing

requirements as the original set TS does, i.e., that all

the tuples covered by TS are also covered by TS

• How to recognize a non-minimal test suite?

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Test suite minimality check

• A test case �� is essential if it covers at least one tuple in TP

(the set of all the tuples for a given n-wise coverage) not

covered by other test cases of the test suite TS.

• Formally, ∃tp ∈ TP: �� ⊨ tp ∧ (¬∃��∈ TS: (5 ≠ 7 ∧ �8 ⊨ tp))

A test suite TS is non-minimal iff TS contains at

least a not essential test.

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

How to deal with non minimal test suites

• Not essential tests can be removed

• Not at once: removing a not essential test may make others essential…

• Test suite reduction (also known as test suite minimization) is

often applied in regression testing

• The problem of finding the minimal test suite that satisfies a set of test

goals can be reduced, in polynomial time, to the minimum set covering

problem which is NP-hard.

• A simple greedy heuristic for the minimum set covering

problem defined can be adapted to the test suite minimization.

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

EXPERIMENTS

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Experiment setup

• A set of 64 models with constraints taken from the literature

• CASA (M. B. Cohen, M. B. Dwyer, and J. Shi)

• FoCuS (I. Segall, R. Tzoref-Brill, and E. Farchi)

• ACTS (Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence)

• IPO-S (A. Calvagna and A. Gargantini)

• used in most papers

• SMT solver yices http://yices.csl.sri.com/

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Good news

• No benchmark contains inconsistent constraints

• No tool (ACTS, CASA, ATGT) produced incorrect test suites

• Somehow expected because the models are used in the

literature and the tools are validated by other experiments

• Future work: use during model design or to setup ne algorithms

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

1. Vacuity detection

• 37 models presented

at least one vacuity
• More than 50% of the

benchmarks

• bench_n: randomly

synthetized from real case

studies [CASA]

• But others as well

• See table

Vacuous

subformalas

Vac.

constraints

CommProt 814 76%

Concurr 7 14%

gcc 6 5%

HealthC2 14 8%

ProcComm2 43 83.2%

Services 81 7%

SmartHome 33 77%

Storage1 205 43%

Telecom 5 5%

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

2. Useless values and parameters

• 23 models have at least one useless parameter value

or one useless parameter

• 21 bench_n

• Ok, but they should be fixed

• ProcComm2

• ``real-life test space instance generated by or for our customers‘

• SmartHome

• From a Feature Model: useless parameters are present because the

model has been automatically obtained from a feature model without

applying any optimization.

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Are we sure they are good benchmarks?

3. Non minimal test suites

• ACTS in two cases (3% of all the cases) produced non minimal

test suites

• However, still very easy to find and fix

Angelo Gargantini - Validation of CIT models and tests31 March 2014 - IWCT

Conclusions

• Validation of combinatorial models and tests by proving some

semantic meta-properties:

• Consistency and not vacuity (total or partial) of constraints,

• Utility of parameters and elements

• Correctness and minimality of test suites

• Requires a solver (SMT in our case)

• How to deal with them? Still open problem.

• Useful for users and researchers

31 March 2014 - IWCT Angelo Gargantini - Validation of CIT models and tests

Thank you

