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SUMMARY

Nowadays there exists an increasing demand for reliable software systems able to fulfill their requirements
in different operational environments and to cope with uncertainty that can be introduced both at design-
time and at runtime due to the lack of control over third-party system components and complex interactions
among software, hardware infrastructures and physical phenomena. This article addresses the problem of
the discrepancy between measured data at runtime and the design-time formal specification by using an
Inverse Uncertainty Quantification approach. Namely, we introduce a methodology called METRIC and
its supporting toolchain to quantify and mitigate software system uncertainty during testing by combining
(on-the-fly) Model-based Testing and Bayesian inference. Our approach connects probabilistic input/output
conformance theory with statistical hypothesis testing in order to assess if the behavior of the system under
test corresponds to its probabilistic formal specification provided in terms of a Markov Decision Process.
An uncertainty-aware model-based test case generation strategy is used as a means to collect evidence from
software components affected by sources of uncertainty. Test results serve as input to a Bayesian inference
process that updates beliefs on model parameters encoding uncertain quality attributes of the system under
test. This article describes our approach from both theoretical and practical perspectives. An extensive
empirical evaluation activity has been conducted in order to assess the cost-effectiveness of our approach.
We show that, under same effort constraints, our uncertainty-aware testing strategy increases the accuracy of
the uncertainty quantification process up to 50 times with respect to traditional model-based testing methods.
Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nowadays there is a growing demand for reliable software systems able to fulfill their requirements
in highly uncertain and changing operational environments. The negative impact of unreliable or
unpredictable software cannot be tolerated as society increasingly depends on it to carry out tasks in
many different application domains. However, predictability is very hard to achieve since modern
software-intensive systems are often situated in complex ecosystems that can be hard to understand
and specify completely at design-time. Thus, there exists an increasing need for systematic and
effective approaches to deal with incomplete knowledge and uncertainty. According to Esfahani et
al. [1], uncertainty can be introduced into the system by the system itself (e.g., uncertainty in the
software structure or in the implementation of the algorithms) or its execution environment (e.g.,
uncertain inputs or operational profiles). In the past, software engineers used to abstract sources
of uncertainty away because of insufficient understanding and unavailability of adequate methods
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and techniques. Today, endowing conventional software engineering methodologies with techniques
and practices able to model, quantify, and manage uncertainty explicitly is becoming increasingly
crucial [1, 2]. In particular, techniques that explicitly consider uncertainty in software testing is an
emerging research direction.

This article focuses on the problem of uncertainty quantification and introduces a methodology
able to deal with it by means of a Model-based Hypothesis Testing approach. Namely, we use
statistical hypothesis testing to reduce the discrepancy between delivered products and initial design-
time uncertainty assumptions. As described by Broy at al. [3], Model-based Testing (MBT) is
a software testing technique where run-time behavior of a software System Under Test (SUT)
is checked against predictions made by a model description of the system’s behavior. In our
approach, the design-time model description contains uncertain aspects explicitly specified by
means of probability. Uncertainty must be mitigated accounting for evidence during the actual
system’s execution. Thus, we make use of (on-the-fly) MBT as a means to extract evidence from
the SUT execution. This data is used to apply statistical hypothesis testing and infer a probability
distribution describing the best knowledge on uncertain aspects. Specific methods and techniques
used to achieve our goal of uncertainty quantification compose a methodology, so called METRIC†.
The methodology follows an Inverse Uncertainty Quantification (IUQ) approach [4,5], meaning that
it mainly reasons at runtime (on the discrepancy between evidence and the uncertain design-time
assumptions) and then it propagates back the posterior knowledge to calibrate the initially uncertain
design-time model. To this purpose, METRIC works by combining Bayesian inference [6] and
(on-the-fly) model-based test case generation based on infinite horizon optimization algorithms [7],
This approach allows the system state space to be explored in a controlled way by maximizing the
probability to stress the uncertain components of the SUT. The Bayesian inference process updates
the Posterior knowledge that encodes values of uncertain parameters. In our vision, new estimations
out of the MBT activity, represent the basis of new verification phases and the prior knowledge for
future evolutions of the software system. In METRIC, the modeling formalism of choice is Markov
Decision Process (MDP) [7] and requirements are expressed in Probabilistic Computation Tree
Logic (PCTL) [8]. This work assumes that uncertainty can be encoded to transition probabilities,
modeling events or actions whose probability of occurrence becomes quantified and corrected by
applying the METRIC methodology.

The whole methodology is supported by a software toolchain whose core component is a model-
based hypothesis testing module which integrates test case generation, execution and evaluation by
means of an uncertainty-aware exploration policy. An extensive evaluation activity of our METRIC
toolchain implementation is reported in this article. Our major objective is to show the effectiveness
of METRIC in statistical hypothesis testing (rather than functional testing) of uncertain software
systems by measuring both the accuracy and the effort of the inference process. We show a
comparative evaluation between our approach and traditional pseudorandom model-based test case
generation algorithms, thus showing the convenience of METRIC.

This approach has been introduced by Camilli et al. [5, 9, 10] through a preliminary sketch
of a testing method under uncertainty supported by a prototypal software implementation. Here
we provide an extended presentation of the approach as part of a comprehensive methodology.
Specifically, the contributions of this article can be summarized as follow: (i) characterization of
the uncertainty quantification problem in software development; (ii) introduction of the METRIC
methodology to model, quantify, and mitigate uncertainty in software systems; (iii) improved
definition of the METRIC theoretical foundation; (iv) richer description of the software toolchain
supporting METRIC; (v) description of additional empirical evaluation activities. The empirical
evaluation shows that, on the one hand, under same effort constraints, our testing method increases
the accuracy of the uncertainty mitigation up to 50 times with respect to traditional pseudorandom
strategies. On the other one hand, under same termination conditions based on uncertainty
mitigation, our testing method requires up to 80% less effort.

†METRIC stands for Modeling & vErification, Testing, Inference & Calibration
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The remainder of this article is structured as follows. First, in Section 2 we briefly recall the
necessary background concepts and we present a characterization of the uncertainty quantification
problem in software systems, thus providing a reference context where our approach can be
classified. Section 3 introduces a preview of the METRIC methodology to IUQ. Section 4 presents
a running example (i.e. a Tele Assistance System), used throughout the article to illustrate in details
the main phases of the METRIC methodology. Section 5 describes the theoretical foundation of
METRIC. Section 6 describes engineering aspects of the METRIC toolchain.Section 7 reports a
broad set of experiments to assess the effectiveness of the IUQ process. It also provides discussion
on both lessons learned by using METRIC in practice, and threats to validity. Section 8 describes
related work. Finally, Section 9 concludes with a summary of the challenges ahead.

2. BACKGROUND AND PROBLEM STATEMENT

This section briefly recalls the necessary background concepts and a comprehensive characterization
of the problem that has been addressed. The theoretical background includes: Markov Decision
Processes, the temporal logic PCTL extended with rewards, Bayesian inference, and model-based
testing of probabilistic systems.

2.1. Markov Decision Processes and Rewards

MDPs [7,11] represent a widely used formalism for modeling systems that exhibit both probabilistic
and nondeterministic behavior. Formally, a MDP is a tupleM = (S, s0, A, δ, L) where:

• S is a finite set of states (s0 ∈ S initial state);

• A is a finite alphabet;

• δ : S ×A→ Dist(S)‡ is a (partial) probabilistic transition function;

• L : S → 2AP is a labeling function mapping each state to a set of atomic propositions taken
from a set AP .

Transitions between states occur in two steps: (i) a nondeterministic choice among the available
actions A(s) = {a ∈ A : ∃δ(s, a)}; and (ii) a random choice of the successor state s′, according
to the probability distribution δ, such that δ(s, a)(s′) represents the probability that a transition
to s′ occurs. Note that δ satisfies

∑
s′ δ(s, a)(s

′) = 1, foreach s, a and successor state s′. The
execution of an MDP model M can be identified by a sequence of transitions between states
EM = {〈s, s′〉}s,s′∈S , such that ∃a ∈ A(s) : δ(s, a)(s′) > 0.

Nondeterminism is used in general to capture different aspects of system behavior (e.g.
concurrency, underspecification, etc.). Our approach uses it to capture the possible ways that a
controller (or decision maker) has to influence the behavior of the system by means of controllable
actions. This terminology comes from the domain of testing, where certain operations are under
the control of the tester, and certain operations are only observable. Intuitively, a sequence of
controllable actions can be viewed as a test in the sense that it identifies a sequence of inputs to
guide the execution of the system under test and verify that the produced outputs are predictable by
the MDP model.

MDPs can be augmented with rewards to quantify a benefit (or loss) due to the sojourn in a
specific state or to the occurrence of a certain state transition. A reward is a non-negative value
assigned to states and/or transitions that can represent information such as average execution time,
power consumption or usability. A reward structure associated with a MDP M is defined as a
pair r = (rs, ra) composed of a state reward function rs : S → R≥0 and an action reward function
ra : S ×A→ R≥0 that assigns rewards to states and transitions, respectively.

‡Dist(S) is the set of discrete probability distributions over a countable set S.
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Given a state s, there exist many paths connecting s to one of the final states (i.e., states having
a single self-loop transition with probability 1). Given a reward structure, each of these paths
cumulates as reward the sum of the rewards in the path. A common problem of MDPs is to find
a policy function π that specifies the action π(s) chosen by a decision maker when state s holds.
The best (or optimal) policy π∗ maximizes some function of the cumulated rewards, typically the
expected discounted sum over a potentially infinite path. Namely, given a reward structure r, π∗ can
be computed solving a dynamic decision problem [7] as follows:

π∗(s) = arg max
a∈A(s)

∑
s′

δ(s, a)(s′) · (ra(s, a, s′) + γV ∗(s′)) (1)

where: V ∗(s′) represents the expected cumulated reward when starting from s′ and acting optimally
along a infinite path; γ ∈ [0, 1] represents a discount factor that alleviates the contribution of future
rewards in favor of present rewards. The best policy π∗ returns for each state s the action that allows
the cumulated reward to be maximized.

2.2. Probabilistic Computation Tree Logic

PCTL [8] is an extension of the temporal logic CTL [12] which allows for probabilistic
quantification of properties interpreted over an MDP. In particular, a PCTL formula is satisfied
in a state s if it is satisfied under all existing policies. The syntax supports the definition of state
formulas φ and path formulas ψ, which are evaluated over states and paths, respectively. Formally,
a state formula is defined as follows.

φ ::= true | a | φ ∧ φ | ¬φ | P��p[ψ] (2)

where a ∈ AP and a path formula ψ is used as the parameter of the probabilistic path operator
P��p[ψ], such that �� ∈ {≤, <,≥, >} and p ∈ [0, 1] is a probability bound. A path formula is
defined as follows.

ψ ::= Xφ | φ U φ | φ U≤k φ (3)

where X represents the next operator, U is the until operator, and U≤k with k ∈ N≥0 is the bounded
until operator. The temporal operators G (i.e., globally) and F (i.e., eventually) can be derived from
the previous ones as for CTL.

A state s ∈ S satisfies P��p[ψ] if, under any nondeterministic choice, the probability of taking
a path from s satisfying ψ is in the interval specified by ��p. Here we focus on PCTL extended
reward-based properties which introduces the reward operator R��r[ξ], where:

ξ := I=k | C≤k | Fφ (4)

Intuitively, R��p[I=k] holds in s if the expected reward, after exactly k steps along the paths
originating in s, meets the bound ��ρ, with ρ ∈ R≥0. R��ρ[C≤k] holds in s if, from state s, the
expected reward cumulated after k steps meets the bound ��ρ. R��ρ[Fφ] holds in s if, from state
s, the expected reward cumulated before reaching a state satisfying φ meets the bound ��ρ.

In the following sections we will use Rr to express reward-based properties that refer to the
reward structure r. Where the context is clear, we will drop the subscript r.

We let the reader refer to the comprehensive description and theoretical treatment by Baier et
al. [12] of PCTL extended with reward-based properties.

2.3. Bayesian Inference

The Bayesian approach [6] represents a very popular framework for inference and prediction
because of its easiness to be applied in practice. Bayesian and probabilistic techniques really come
into their own in domains where uncertainty must be taken into account.

The main goal of Bayesian inference is to learn about one or more uncertain/unknown parameters
θ that describe a stochastic phenomenon of interest. To incrementally update our prior knowledge
(hypothesis) about θ, we observe the phenomenon of interest to collect a sample of data y =
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(y1, y2, ..., yn) and calculate the conditional density f(y|θ) of the data given θ (usually referred
to as the likelihood function). The Bayesian approach also takes into account the hypothesis about
θ. This information is often available from external sources such as expert information based on past
experience or previous studies. This information is represented by the prior distribution f(θ). By
combining the prior and the likelihood using the Bayes’ theorem we obtain the posterior distribution
f(θ|y), describing the best knowledge of the true value of θ, given the observed data y.

f(θ|y) ∝ f(θ) · f(y|θ) (5)

The posterior distribution can be used in turn to perform point and interval estimation. Point
estimation is typically addressed, in the multivariate case, by summarizing the distribution through
the posterior mean:

E[θ|y] =
∫
θ · f(θ|y)dθ (6)

if the true value of θ is known in advance it is possible to measure the Relative Error (RE) which
represents the discrepancy between an exact value and some approximation of it. The RE can be
easily computed by dividing the absolute error by the magnitude of the exact value.
Interval estimation is typically addressed by calculating the shortest possible region of probability
0.95, that is the Highest Posterior Density (HPD) region [13] defined as the following set of θ values.

C = {θ : f(θ|y) ≥ 0.95}. (7)

The width of the HPD region yields the highest possible accuracy in the estimation of the true value
of θ and is usually adopted as a measure of the confidence gained after the inference activity.

2.4. On-the-fly Model-based Testing of Probabilistic Systems

Model-based testing is a software testing technique where run-time behavior of a SUT is checked
against predictions made by a model description of the system’s behavior. An on-the-fly (or online)
MBT approach combines test derivation from a model and test execution/evaluation into a single
algorithm that generates test cases at run time stochastically sampling the state space rather than
exhaustively attempting to enumerate it. Testing probabilistic systems, such as those modeled as
MDPs, is usually composed of two major activities: functional testing to assess the functional
correctness of the SUT; and statistical hypothesis testing [14] that focuses on determining whether
probabilities conform to the mathematical model. The functional evaluation procedure adopted by
METRIC is comparable to the one introduced by Veanes et al. [15]. Informally, all outputs produced
by the SUT must be predictable by the model. This condition is checked by executing a probabilistic
input/output conformance game [15] between two players: the controller (or decision maker) that
choses the input from those available in the model; and the observer that verifies if the current
execution trace is feasible in the model. The conformance game can be formalized by leveraging the
notion of alternating simulation and refinement. We let the reader refer to the work by de Alfaro et
at. [16] for a comprehensive theoretical discussion of this functional evaluation approach. Beside the
conformance game, statistical hypothesis testing (i.e., the focus of this work) assesses whether the
frequencies observed during the test process correspond to the probabilities specified in the model.
This represents a fundamental activity that usually makes use of statistical methods and frequency
analysis on the gathered sample to give a verdict based on a chosen level of confidence or to modify
the model in accordance with the observations. METRIC makes use of Bayesian inference while
gathering evidence from test executions, thus to compute the Posterior density function associated
with specific uncertain parameters θ of the MDP model.

2.5. Problem statement

Uncertainty is a natural and inevitable part of pattern classification in real-world domains.
Uncertainty can be defined as any departure from the unachievable ideal of complete deterministic
knowledge of the system. Preliminary research activities towards uncertainty classification in

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
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software systems aim at establishing a common vocabulary and taxonomy of uncertainty from the
perspective of a software system (see work by Ramirez et al. [17], Esfahani et al. [1], Perez et
at. [18] to name a few). Sources of uncertainty can occur either at requirements, design, or execution
phases [1, 19]. At each of these phases, uncertainty can be introduced into the system by the
system itself (i.e., system uncertainty) or its execution environment (i.e., environmental uncertainty).
Examples of sources of uncertainty include: input parameter uncertainty (due to uncertain
input values given to the mathematical model), structural uncertainty (due to approximations
in the mathematical model), algorithmic uncertainty (coming from numerical approximations
per implementation of the computer model), and experimental uncertainty (due to the inherent
variability of experimental measurements). Uncertainty quantification intends to work toward
reducing these sources of uncertainty (both in their epistemic and aleatory natures [1]). Traditionally,
there exist two complementary approaches to uncertainty quantification: Forward Uncertainty
Propagation (FUP) [20] and Inverse Uncertainty Quantification (IUQ) [4]. The first one focuses
on studying at design-time the quantification of the uncertainty in system output(s) propagated
from uncertain inputs. The latter one is essentially the inverse problem. Given some experimental
measurements of a system and some simulation outputs from its mathematical model, IUQ
evaluates the discrepancy between the measured data at runtime and the mathematical model (i.e.,
bias correction) and estimates the values of uncertain parameters in the model (i.e., parameter
calibration). More precisely, IUQ aims at estimating the discrepancy between measured data ye

at runtime and the response yM(θ) of the system model M that depends on different uncertain
parameters θ. Starting from the initial approximation yM(θ) ' ye, and performing a sequence of
observations is it possible to apply statistical machinery to infer a probability distribution for θ∗

describing the best knowledge of the true parameter values, such that yM(θ∗) = ye.
The IUQ problem is recently drawing increasing attention, since uncertainty quantification of

a model and its inference from the true system response(s) are crucial for engineering reliable
systems. As an example, consider the category of service-based systems [21] characterized by a
workflow of interactions with distributed components (e.g., web-services or microservices) owned
by multiple third-party providers with different Quality of Service (QoS) attributes θ, such as
reliability, performance, and cost. In this context, both functional and non-functional aspects of
the final system depend on the ability of the external services to comply with the design-time
assumptions during the early design-time specification phases. Here predictability is very hard
to achieve. In fact, modern service-based systems are often situated in complex ecosystems that
can be hard to fully understand and specify at design-time. Thus, our IUQ approach can be used
to complement traditional verification activities (e.g., model checking) in order to update beliefs
on θ parameters so that formal verification can then assess with increased confidence whether the
specification, including updated knowledge, satisfies design-time requirements.

3. METRIC METHODOLOGY OVERVIEW

As anticipated in Sect. 1, the key idea of METRIC is to apply hypothesis testing to estimate
the discrepancy between runtime evidence and the probabilistic representation that depends on
different uncertain parameters. Although the METRIC methodology applies in principle to any
probabilistic representation of non-functional QoS attributes, here we focus on systems modeled as
MDPs that are a widely accepted formalism to model software system reliability [11]. MDPs are
often used for design-time reliability assessment of systems composed of interacting parts, such as
component-based software systems or service oriented architectures [22]. In addition to that, they
provide the ability to specify both non-deterministic (i.e., external inputs) and probabilistic (i.e.,
uncertain responses) behavior. As detailed in the next sections, this clear separation represents a key
aspect that will allow us to formalize in a natural way testing related concerns, such as input/output
conformance and (on-the-fly) test case generation. Hereafter, we give a preview of the approach
we devise and we describe how selected methods and techniques are packaged together inside
the METRIC methodology to deal with the IUQ problem. A high-level overview of the proposed
methodology is shown in Figure 1. It relies on the iteration of three different phases:

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
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Calibration (2) on-the-fly MBT
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METRIC
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corrects

(1)

(3)

Figure 1. The METRIC methodology

(1) design-time modeling & verification phase;

(2) on-the-fly MBT & inference phase; and

(3) calibration phase.

Essentially, during the (1) modeling & verification phase, the MDP model of the system is created
and formally verified against requirements. However, models developed at design time are often
subject to different sources of uncertainty. For example, the failure probability or the response time
of an operation (represented by a transition in the model) may be hard to predict and assumptions
(i.e., prior knowledge) may be inaccurate. To account for uncertainty in model parameters, we
use Prior probability distributions (or simply Priors) that express beliefs about uncertain quantities
before some evidence is taken into account [23]. The (2) on-the-fly MBT & inference phase takes as
input the MDP model of the system and the set of Priors. Priors represent model parameters whose
value becomes known after the model-based hypothesis testing process. As described by Gerhold
et al. [14], hypothesis testing (differently from functional testing) represents a fundamental activity
to assess whether the frequencies observed during testing processes correspond to the probabilities
specified in the model. We assume that the system implementation (i.e., the SUT) is available. This
could be done, for instance, by deriving the implementation from the model using a model-driven
software engineering process or the implementation may be already deployed long before its model.
METRIC makes no assumption on how the implementation has been developed and deployed. The
objective of MBT here, is to guide the execution of the system and collect a sample via multiple
test runs. Intuitively, the larger the sample of the uncertain parameters, the higher the effectiveness
of the hypothesis testing process. Thus, the MBT leverages uncertainty awareness, in the sense of θ
parameters location, to perform a controlled model-based exploration and increase the sample size.
Namely, test case generation is grounded on the computation of infinite horizon optimal policies
of the MDP model that maximize the probability to execute those paths affected by θ. Evidence
is gathered by monitoring the system in its operational environment during MBT. In fact, testing
feeds a Bayesian inference process that incrementally updates the Priors depending on the gathered
sample.

Let us consider an example where a transition in the model leads to a failure state and its
probability value represents an uncertain failure rate of a software component. The (on-the-fly)
test case generation provides the ability to select those inputs that will guide testing towards the
(multiple) execution of the faulty component. The Bayesian inference process updates the prior
knowledge based on the actual value of the component’s failure rate observed during the MBT
activity. Bayesian inference [13] represents an effective technique used to update belief as more
evidence (i.e., experimental data) becomes available.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
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raw data
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[failure]

[discard]

Figure 2. Activity diagram showing the TAS workflow.

Bayesian inference computes the Posterior probability distributions (or simply Posteriors) that
represent the probability distributions of the uncertain parameters conditional on the evidence
obtained from testing. The Posteriors compose the input of the (3) calibration phase, which is in
charge of updating the θ parameters of the MDP model by summarizing the Posterior probability
distributions as described by Robert et al. [23].

In short, the METRIC methodology to IUQ iterates over three different phases which use methods
and techniques able to reduce the overall system uncertainty and deliver increased confidence on the
software product. Namely, (on-the-fly) test case generation is used to stress the uncertain software
components and observe the actual behavior of the system implementation. A statistical hypothesis
testing process based on Bayesian inference is then used to update beliefs and calibrate the uncertain
parameters in the MDP model. New values of model parameters, estimated out from a METRIC
iteration, represent the basis of new verification phases and the prior knowledge of future evolutions
of the software system.

4. A RUNNING EXAMPLE: THE TELE ASSISTANCE SYSTEM

The running example we use in the article is based on a case study introduced by Weyns et
al. [24] which deals with a distributed system for medical assistance. This application, called
Tele Assistance System (TAS), consists in a service-based system providing health support to
chronic condition patients at their homes. It is composed of a number of sensors embedded in
one or more wearable devices to track patients’ vital parameters and a number of remote services
provided by healthcare, pharmacy and emergency units. Figure 2 shows a high-level overview of the
workflow which coordinates services typically managed by external organizations, other than the
owner of the service composition. This implies that both functional and non-functional properties
of the composed service rely on behaviors of third-party partners that influence the obtained
results. The workflow starts as soon as a Patient enables the wearable device which periodically
sends a message to target medical service. The medical service replies to the following messages:
vitalParam message and alarm message. The first message contains the patient’s vital parameters
that are forwarded to the medical service by executing the activity operation analyze data. The
medical service is in charge of analyzing the data and it replies by either discarding the data (i.e.,
no action is required), changing the drug/dose, or sending an alarm. The latter message may trigger
the intervention of a first-aid squad composed of doctors, nurses, and paramedics, whose task is to
visit the patient at home in case of emergency. To alert the squad, the TAS workflow invokes the

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
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handle alarm S1, S3
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Figure 3. Markov Decision Process of the TAS behavior.

handle emergency activity of the emergency service. The TAS is an example of a wide category of
service-based systems (e.g., e-commerce, e-health, online banking, taxi-hailing, etc.) characterized
by a workflow of interactions with distributed components (e.g., web-services or microservices)
owned by multiple third-party providers with different Quality of Service (QoS) attributes, such
as reliability, performance, and cost as described by Camilli et al. [21]. As anticipated in Sect. 2,
the overall functional and non-functional quality attributes of the final system also depend on the
capability of the external services to comply with the assumptions made at design-time during the
specification of the system.

Figure 3 shows a formalization of the TAS behavior by means of a MDP. Labels associated with
states (e.g., {alarm}, {error}) represent the labeling function L. The model is augmented with two
reward structures rtime/renergy associated with states (e.g., S0 maps to 0.5/1.0). These values represent
response time and power consumption of components, respectively.

As specified by the model, the TAS takes periodical measurements of the vital parameters of
a patient and employs a third-party medical service for their analysis. This is represented by the
occurrence of the action vitalParamsMsg from the initial state S0 and the sojourn in state S4. The
analysis made by the medical service may trigger either the computation of new medication/dose
to the patient (i.e., changeDrug action), or the invocation of the alarm service eventually leading
to dispatch a first aid team to the patient home (i.e., alarmMsg action). The legend provided in
Figure 3 lists a mapping between workflow activities and model states. Some activities are modeled
by a single state in the MDP (e.g., the activity handle emergency maps to state S2). Some other
activities are decomposed into different states to represent further refined information about the
functional status of services (e.g., the activity handle alarm maps to states S1, S3, representing a
working state and a recoverable error state, respectively).

The TAS specification contains a number of uncertain transition probabilities, identifying the set
of uncertain parameters θ, that are explicitly represented in Figure 3 by numeric values followed
by the question mark “?” symbol. For example, the alarm service can be invoked directly by the
patient, by using a special button placed on a wearable device. This behavior of the workflow is
represented by the alarmMsg action directly occurring from state S0. Once an alarm has been sent
(i.e., sendAlarm action), the alarm service may successfully complete the execution (most likely
with probability 0.95), or exhibit a faulty behavior such as data loss on the communication channel

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
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or an unexpected exception (with probability 0.03 as initial assumption), or exhibit a failing behavior
such as unreachability of the alarm service (calculated as one minus the sum of the previous two
probabilities, i.e., 0.02 in this case). As another example, the pharmacy service, represented by
the sojourn in state S5, accepts as input a single action named wait. Intuitively, this means that
waiting in state S5 can ends up in different target states with different probabilities. The operation
can succeed slowly (probability 0.2 as initial assumption), succeed very fast (i.e., most likely with
probability 0.7), fail with a recoverable error (with low probability, such as 0.09), or even fail in an
unrecoverable manner (i.e., a very unlikely event, thus, with probability 0.01).

It is worth noting that, during the initial stages of the development process, these transition
probabilities represent initial assumptions/beliefs on the QoS-related properties of the TAS. These
assumptions are intrinsically subject to different types of uncertainty, usually found in service-based
systems, such as network data loss, service failure, service response time, inadequate design, etc.
(see the work by Ramirez at al. [19] for a comprehensive classification of uncertainty in this context).

Finally, let us assume that the TAS must satisfy the non-functional requirements reported in
Table I. All these non-functional properties can be easily verified by means of off-the-shelf model
checking software tools supporting PCTL as probabilistic temporal logics, such as PRISM [25].
However, the uncertainty, discussed early on, can jeopardize the ability to achieve these properties.
A crucial point is that TAS must ensure reliability under uncertainty, meaning that reliability is a
first class concern but it cannot be proven until the uncertainty has been mitigated by accounting
evidence during testing/execution. This could make the usage of classic model checking (or more in
general formal verification) ineffective or even leading to erroneous conclusions, if used in isolation
only at design-time.

5. THEORETICAL ASPECTS OF METRIC

In this section we provide a formalization of the core techniques adopted inside METRIC. After
giving some preliminary definitions about expressing the SUT behavior as a MDP, we provide a
detailed description of the input/output conformance game, the model-based test case generation
strategies, and the mathematical machinery involved during the model inference/calibration process.

5.1. Preliminary definitions

As introduced by Camilli et al. [9], the execution of a generic program P can be viewed in the same
way as the one of its formal specification. In particular, the MDP model extracted from the SUT
execution is called model program and denoted by MSUT . This model is defined exploiting the
notion of binding declared by the tester using the DSL introduced in Sect. 3. In the following, we
write ~vin to identify a sequence of input parameters (i.e., the arguments of a subroutine), and we
write ~vout for the output parameters including the return value.

Definition 1 (Binding)
Given a MDP M = (S, S0, A, δ, L) and a set of subroutines of H of a program P , a binding is a
tuple of partial functions (H, I,Pre,Post) with domain S ×A, such that:

• H(a), with a ∈ A(s), identifies a subroutine h ∈ H;

• I(a), with a ∈ A(s), identifies a valid vector of input parameters ~vin for the subroutineH(a);

• Pre(s, a), with a ∈ A(s), maps to a pre-condition that must hold for ~vin given to H(a) from
the source state s;

• Post(s, a), with a ∈ A(s), maps to a post-condition that must hold for ~vout after the execution
of H(a) in the target state s.

The notion of binding allows allows to view the behavior of the SUT associated to the MDP
specification. In particular, both controllable and observable components are connected to the on-
the-fly MBT module (see Figure 5) through the automatically generated test harness. Given a
binding, the model programMSUT is defined taking into account the specificationM as follows.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
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Definition 2 (Model Program)
Given a MDP specificationM = (S, s0, A, δ, L) and a binding (H, I,Pre,Post), the model program
MSUT = (S′, s′0, A

′, δ′, L′) is a MDP model, such that:

• S′ ⊆ S, A′ ⊇ A;

• s0 = s′0, L′(s) = L(s) if s ∈ S, ∅ otherwise;

• δ′(s, a)(s′) > 0 iff.

(i) the pre-condition Pre(s, a) holds for ~vin = I(a)
(ii) the post-condition Post(s′, a) holds for ~vout, resulting from the execution of H(a)(~vin)

The intuition behind the notion of model program is as follows. The first condition ensures that,
on one hand all observable configurations (states) of the implementation are possible in the model,
and on the other hand that all possible actions in the model are possible in the implementation. The
second condition imposes that the model and the implementation have the same initial state and
labeling function. The latter condition describes possible transitions defined by δ′ from a source
state s and an action a to a target state s′, provided that the model elements s, a, and s′ have been
bound to the implementation.

5.2. Conformance Checking

Given the preliminary definitions above, we formally define the conformance relation between the
MDP modelsM (i.e., the specification) andMSUT (i.e., the model program) using the notions of
alternating simulation and refinement as described by Veanes et al. [15].

Definition 3 (Alternating simulation)
An alternating simulation betweenM andMSUT is a binary relation σ ⊆ S × S′, such that for all
(s, s′) ∈ σ,

(i) A(s) ⊇ A′(s′)

(ii) ∀a ∈ A(s), t ∈ S : δ(s, a)(t)>0, ∃a′ ∈ A′(s′), t′ ∈ S′ : δ′(s′, a′)(t′)>0 s.t. (t, t′) ∈ σ

Intuitively, the condition (i) ensures that the available actions in the model are possible in the
implementation. The condition (ii) guarantees that if (i) holds for a given pair of source states then
it also holds in the resulting target states from the application of any controllable action enabled
in the model. Now, we can formally define when the output produced by the implementation are
predictable by the model, using the notion of refinement as follows.

Definition 4 (Refinement)
A MDPM refines a MDPMSUT iff. there exists an alternating simulation σ fromM andMSUT

s.t. (s0, s′0) ∈ σ.

As anticipated in Sect. 2, the notion of refinement can be explained in terms of conformance
game [15, 26] between two players: a controller and an observer. The game, visually represented
in Figure 4, starts from the initial state s0 of the model M and the initial configuration s′0 of the
implementationMSUT , and it consists of a sequence of steps. For each step, the controller makes
it own move, i.e., it choses an available action in A(s) from the current state s of the specification
M and it executes the subroutine H(a) with a valid input vector of parameters I(a). There is a
conformance failure if it is not possible to determine the available actions, or the subroutine, or a
valid input. After the controller, the observer makes its own move, i.e., it evaluates the pre-condition
Pre(s, a) on the input vector, then if the precondition holds it determines the target state s′, such that
the post-condition Post(s′, a) evaluated on the output vector holds. Whenever a pre-condition does
not hold or does not exist a target state s′ such that the post-condition holds, there is a conformance
failure. The game continues until the controller decides to end the game (i.e., a termination condition
has been reached) or a conformance failure is found.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
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Observer Controller 

execute H(a)
with input I(a)

determine s' s.t. 
Post(s',a) holds

choose a in A(s) evaluate Pre(s,a)

Figure 4. Conformance game.

5.3. Uncertainty-aware Test Case Generation

On-the-fly MBT is a technique able to derive tests from a program model and then execute them by
means of a single algorithm. The idea is to stochastically sample a large state space at runtime rather
than pre-computing a huge amount test cases derived from all possible responses from the SUT. Our
algorithm dynamically generates test cases by executing the conformance game and providing to the
user control over test scenarios by selecting actions during the test run based on specific test case
generation strategies and termination conditions. The uncertainty-aware strategy is governed by a
probabilistic function that has the following form:

P(s, a) =

{
0 ω(s, a) = 0

ω(s, a)/
∑

a′∈A(s) ω(s, a
′) otherwise

(8)

The function ω is a per-state weight function that maps a state s and an action a to a value in
N≥0. The weight function allows the generation of test cases to be configured. Our approach takes
explicitly into account the uncertainty modeled by means of the Prior distributions associated with
θ parameters in order to stress the uncertain components of the SUT during testing. To achieve this
goal, we first construct a set of uncertainty-aware reward structures defined as follows.

Definition 5 (Uncertainty-aware Reward Structure)
Given a MDPM and a set of uncertain parameters θi ⊆ θ, the uncertainty-aware reward structure
is a reward structure u = (us, ua), s.t.,

• us(s) = 0,∀s ∈ S

• ua(s, a, s′) =

{
k ∈ N>0 δ(s, a)(s′) ∈ θi
0 otherwise

The rationale of the structure uncertainty-aware structure u is to assign a high reward value (k)
to model transitions associated with uncertain parameters, and a low reward value (0) to other
transitions. Given such a reward structure, we construct a suitable decision maker able to choose
actions maximizing the (infinite horizon) cumulative reward over the uncertainty-aware structure
u. Namely, it leverages the optimal policy π∗u, that maximizes the expected sum of u rewards. The
best policy π∗u(s) returns for each state s the action that allows the model-based exploration to run
optimally towards the uncertain parameters.

The subsets θi are motivated by the practical need of constructing regions of θ parameters attached
to transitions sharing the same source state and action. Namely, the subsets θi represent partitions
of θ defined as follows:

θi = {α ∈ θ s.t. ∃a ∈ A(si), sj ∈ S : δ(si, a)(sj) = α}, s.t.
⋃
i

θi = θ (9)

Intuitively, we partition θ in order to identify different uncertain model regions and then we compute
the set of optimal policies that maximize the probability to reach each different uncertain region of
the model.

Considering our running example, the set θ is partitioned in two subsets θ1 and θ2. As shown
in Figure 3, θ1 contains the parameters attached to transitions starting from s1 when choosing the

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
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action sendAlarm; θ2 contains the parameters attached to transitions starting from s5 when choosing
the action wait.

The set of optimal policies {π∗ui
}, is used in turn to construct the uncertainty-aware weight

function ω as follows.

ω(s, a) =

{
k ∈ N>0 ∃i : σ∗ui

(s) = a

0 otherwise
(10)

The weight function ω makes the controller able to stochastically sample the available actions
maximizing the probability to reach the uncertain model regions.

The optimal policies computed on the TAS example, considering the uncertainty-aware reward
structures given by θ1 and θ2, are reported in Table II. In this example, this computation is
trivial, however in general it can be arbitrarily complex due to complex combination of transition
probabilities, alternative paths and loops in a MDP model.

5.4. Inference & Calibration

During testing, we set up a Bayesian reasoner, where the prior knowledge f(θ) is incrementally
updated taking into account the evidence y. In the following we introduce a brief overview on the
statistical machinery used to perform this calibration and we refer the reader to the comprehensive
description introduced by Insua et al. [13] for more details.

A natural conjugate Prior for the uncertain transition probabilities of a MDP model is defined by
letting pai = (pai,j , ..., p

a
i,k) have a Dirichlet distribution [27], where pai,j is the probability to observe

a transition from si to sj when the action a is chosen.

pai ∼ Dir(αi), where αi = (αi,j , ..., αi,k) (11)

During the conformance game, the observer component collects nai,j that represents how many times
the transition from si to sj has been observed, when the action a is selected. Given a sequence of
observations (i.e., a sample), the Posterior distribution is also a Dirichlet distribution and can be
computed very efficiently as follows.

pai |y ∼ Dir(α′i), where α′i = (αi,j + nai,j , ..., αi,k + nai,k) (12)

When little prior information, a natural possibility is to use a uninformative Dirichlet Prior with
αa
i,j = 1/2,∀i, j, a. Otherwise, when past experience is available, is it possible to use a Dirichlet

Prior with αi,j = nai,j .
For instance, considering the TAS we may describe the hypothesis on θ1 with a Dirichlet

Prior with α1 = (α1,2 = 900, α1,3 = 90, α1,10 = 10), if in our past experience, we observed 900
transitions from s1 to s2, 90 transitions from s1 to s3 and 10 transitions from s1 to s10, in a sample
of 1K observations.

At termination, our on-the-fly MBT algorithm performs the calibration of the θ parameters by
performing point and interval estimation of the Posterior distributions. For instance, let us consider
once again the TAS example. Assume that starting from the Prior example given above, and by
running the on-the-fly MBT, we eventually come up with a Posterior distribution with updated α′1 =
(α′1,2 = 88000, α′1,3 = 11000, α′1,10 = 1000). This Posterior leads to update the parameters attached
to transitions 〈s1, s2〉 and 〈s1, s3〉 (when sendAlarm is chosen) to 0.88 and 0.12, respectively. The
calibration process in this case can be carried out with high confidence because of a very small HPD
region (less than 0.05 for each parameter). The calibrated model, along with the new estimations,
can lead to invalidate the design-time requirements of the TAS (Table I). For instance, by using the
PRISM model checker we can easily verify that R2 and R3 do not hold after the calibration activity
mentioned above.

5.5. Termination conditions

The tester has the ability of configure the on-the-fly MBT algorithm of METRIC with different
termination conditions which determine when the controller can decide to end the conformance
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game. Two first conditions are classical criteria based on the desired level of coverage of the
available state-action pairs and the desired length of test runs in terms of number of executed
methods. Both these termination conditions are typically used in combination with random
and history-based sampling policies aiming at testing the SUT by generating a pseudorandom
permutation of actions until either a conformance failure is found, or the desired level of confidence
has been reached. In addition to that, METRIC introduces a novel termination condition based on
the precision achieved during the inference process. This condition is grounded on a model selection
criterion based on the convergence of the Bayes factor [13]. The Bayes factor is used to choose
between two probabilistic models with different parameters θ and θ′, on the basis of observed data
y as follows.

F =
f(y|θ)
f(y|θ′)

(13)

The two terms of the ratio F represent the likelihood that data y are produced under different
assumptions θ and θ′. A positive value of F means that the data under consideration supports more
the assumption θ than θ′. The usual interpretation of this value considers F ∈ [100, 101/2] as not
substantial. So, our termination condition reduces to check whether the Bayes factor K falls in this
interval. More precisely, given a sample size N , the on-the-fly MBT algorithm computes the Bayes
factor for each Posterior, every N observations. Thus, the convergence of the computed F values is
used as a termination condition of the algorithm. The rationale behind this choice is to exploit the
Bayes factor to recognize when the observed data does not make the posterior knowledge change
more than a significant threshold.

6. METRIC TOOLCHAIN

The METRIC methodology has been implemented by a toolchain whose design follows the
high-level architecture shown in Figure 5. This schema shows the METRIC macro-components
and interactions. There are two main subsystems: the front end (taking into account design-time
concerns), and the back end (in charge of applying testing-related activities). The major components
of our toolchain has been developed using the JAVA programming language, ASPECTJ [28], and the
grammarware framework XTEXT/XTEND [29]. However, the approach, as described in Sect. 5, is
general and does not refer to any specific feature of our programming language and/or libraries
of choice. Therefore, it can be substantially applied to other languages with limited technological
modifications. The major components of our toolchain have been released as open source software§

to encourage the adoption of the proposed approach and to allow the replication of experiments.
In the remaining of the section we provide further details on both the front end and the back end.

6.1. The Front end: Modeling & verification

The core components of the front end are the Modeler (used to create/edit the MDP model and the
uncertain parameters), the Generator (in charge of generating the test harness), and the PRISM
model checker (used to perform design-time verification). Numbered labels refer to the major
components detailed in the following.

6.1.1. Modeler. This component (1) allows the tester to create and/or edit the SUT behavior
(including the uncertain parameters) in terms of MDP model. In addition, the tester specifies the
Prior distributions, and the binding, describing how the SUT components map to the provided
model. All these concepts are defined using a textual Domain Specific Language (DSL). As an
example, Listing 1 reports an extract of the TAS specification using the DSL. The language allows
the MDP to be defined intuitively by using the keywords: actions (line 2), states (line 4), and arcs

§Publicly available at https://github.com/SELab-unimi/mdp-generator and https://github.
com/SELab-unimi/mdp-simulator-monitored, together with all artifacts produced for the TAS running
example.
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Figure 5. METRIC high-level architecture

general and does not refer to any specific feature of our programming language and/or libraries
of choice. Therefore, it can be substantially applied to other languages with limited technological
modifications. The major components of our toolchain have been released as open source software§

to encourage the adoption of the proposed approach and to allow the replication of experiments.
In the remaining of the section we provide further details on both the front end and the back end.

6.1. The Front end: Modeling & verification

The core components of the front end are the Modeler (used to create/edit the MDP model and the
uncertain parameters), the Generator (in charge of generating the test harness), and the PRISM
model checker (used to perform design-time verification). Numbered labels refer to the major
components detailed in the following.

6.1.1. Modeler. This component (1) allows the tester to create and/or edit the SUT behavior
(including the uncertain parameters) in terms of MDP model. In addition, the tester specifies the
Prior distributions, and the binding, describing how the SUT components map to the provided
model. All these concepts are defined using a textual Domain Specific Language (DSL). As an
example, Listing 1 reports an extract of the TAS specification using the DSL. The language allows
the MDP to be defined intuitively by using the keywords: actions (line 2), states (line 4), and arcs
(line 16). States can be augmented with Prior density functions using the keyword Dir (which stands
for Dirichlet) describing the hypothesis on the uncertain parameters.

Listing 1 contains also the definition of the binding between the specification of the system’s
behavior and the implementation. The binding is defined by using the keywords observe (line 24)
and control (line 32). Essentially, we follow the notation introduced in Sect. 5 to distinguish
between controllable behavior from the tester (i.e., the environment, such as user requests) and

§Publicly available at https://github.com/SELab-unimi/mdp-generator and https://github.
com/SELab-unimi/mdp-simulator-monitored, together with all artifacts produced for the TAS running
example.
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(line 16). States can be augmented with Prior density functions using the keyword Dir (which stands
for Dirichlet) describing the hypothesis on the uncertain parameters.

Listing 1 contains also the definition of the binding between the specification of the system’s
behavior and the implementation. The binding is defined by using the keywords observe (line 24)
and control (line 32). Essentially, we follow the notation introduced in Sect. 5 to distinguish
between controllable behavior from the tester (i.e., the environment, such as user requests) and
observable behavior from the running software system. In particular, the observe section contains
a mapping between transitions of the model and methods (or more generally subroutines) of the
SUT along with pre- and post-conditions (i.e., arbitrary conditions on input parameters and return
values). The control keyword is used to define a mapping between states of the model and states of
quiescence [30] of the SUT, i.e., states where the SUT expects inputs from the external environment
using the available SUT APIs. Inputs, selected during test case generation, depend on the available
actions from model states and they are declared in the actions section by mapping actions to
arbitrary JAVA objects. For instance, line 3 declares that the Strings “v” and “a” are associated to
the model actions vitalParamsMsg and alarmMsg, respectively.

The Modeler is currently implemented as an ECLIPSE IDE plug-in and it supports a
comprehensive set of standard editing features: syntax highlighting, error checking, auto-
completion, and parse tree exploration.

6.1.2. Generator. This component (2) is in charge of translating the textual MDP model to a .prism
file (3), i.e., the input format accepted by the PRISM model checker (4). Then, the Generator creates
a number of software artifacts used as input by the testing module. These artifacts include: (5)
a concise textual representation of the MDP model (a .jmdp file) equipped with the priors and the
reward structures needed by the MBT module to carry out Bayesian inference; and (6) the ASPECTJ
instrumentation script (i.e., the test harness as .aj file) that allows the SUT to be linked to the MBT
structure depending on the binding.

6.1.3. Model checker. The PRISM model checker is part of the front end and it enables formal
verification of design-time requirements of the system under development. As anticipated in Sect. 4,
requirements are formalized using PCTL (see Table I) and verified against the MDP model of the
system behavior. Before accounting evidence during testing, design-time model checking serves
as a means to verify the desired requirements against the system’s model that includes a number
of assumptions/belief. These uncertain parameters become quantified only after executing the
hypothesis testing process.
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1 model ”TAS”
2 actions
3 vitalParamsMsg {”v”} alarmMsg {”a”} finish {”f”} sendAlarm {”s”} ...
4 states
5 S0 {} initial
6 S1 {alarm} Dir(sendAlarm, <S2, 190.0> <S10, 4.0> <S3, 6.0>)
7 S2 {}
8 S3 {error}
9 S4 {}

10 S5 {} Dir(wait, <S6, 140.0> <S7, 40.0> <S8, 18.0> <S10, 2.0>)
11 S6 {}
12 S7 {slow}
13 S8 {fast}
14 S9 {success}
15 S10 {fail}
16 arcs
17 a0 : (S0, vitalParamsMsg) −> S4, 1.0
18 a1 : (S0, alarmMsg) −> S1, 1.0
19 a2 : (S0, finish) −> S9, 1.0
20 a3 : (S1, sendAlarm) −> S2, 0.95
21 a4 : (S1, sendAlarm) −> S10, 0.02
22 a5 : (S1, sendAlarm) −> S3, 0.03
23 ...
24 observe
25 a0 −> ”public IntegerState MDPSimulator.doAction(..)”, args {state:”IntegerState” action:”char”},
26 precondition ”state.label().equals(\”S0\”) && action==’v’”,
27 postcondition ”result.label().equals(\”S4\”)”
28 a1 −> ”public IntegerState MDPSimulator.doAction(..)”, args {state:”IntegerState” action:”char”},
29 precondition ”state.label().equals(\”S0\”) && action==’a’”,
30 postcondition ”result.label().equals(\”S1\”)”
31 ...
32 control
33 S0 −> ”private char MDPDriver.waitForAction(..)”,
34 args {actionList: ”Actions<CharAction>” input:”InputStream”}
35 S2 −> ”private char MDPDriver.waitForAction(..)”,
36 args {actionList:”Actions<CharAction>” input:”InputStream”}
37 S5 −> ”private char MDPDriver.waitForAction(..)”,
38 args {actionList:”Actions<CharAction>” input:”InputStream”}
39 sampleSize 2000
40 explorationPolicy uncertainty

Listing 1. Extract of the TAS specification using our DSL.

6.2. The Back end: On-the-fly MBT & Inference

The core macro-component of the back end is (7) the on-the-fly MBT & inference module. In
addition to that, the METRIC framework also provides a (8) User Interface (UI) that the tester
may use to visualize information about the testing/inference activity conducted by the core module.

6.2.1. MBT Module. The (6) customized test harness allows controllable/observable components
of the SUT to be handled at runtime by the MBT module. More precisely, this instrumentation
provides a particular high-level view of the SUT behavior matching the abstraction level of the
MDP specification. Moreover, it provides a serialized view of the execution of observable methods
in order to gather useful data for the inference activity. Controllable methods are handled by
supplying external inputs via the available APIs; technically, this is realized by injecting suitable
input arguments (specified through the DSL) upon the execution of the controllable methods during
testing. The MBT module dynamically generates test cases from the MDP specification depending
on the selected test case generation strategy. During testing, the MBT module collects data and
performs a Bayesian inference process to compute the Posterior density functions associated with
the uncertain parameters θ. If a conformance failure is found, the overall testing process ends and
a detailed report about the failure is reported to the tester. Whenever testing reaches termination, a
summarization (9) of the Posterior distributions is produced. This last information is used in turn
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to perform point/interval estimation in order to (10) calibrate the initial MDP model and update the
knowledge on the uncertain parameters.

The overall testing and learning process terminates when the discrepancy between the model and
the implementation became acceptable and all the initial requirements are satisfied.

6.2.2. MBT UI Module. The MBT UI allows information about both functional testing and
Bayesian inference to be easily visualized. As shown in Figure 5, three different canvas in the
main UI window show: the MBT model, the Posterior density functions, and a log produced by the
MBT module. The MDP model (upper) canvas contains an animated visualization of the model.
During testing, the UI highlights the current model state and the current action selected by the test
case generation strategy. The Probability charts (middle) canvas displays the Posterior distributions
so that the tester can see, how the inference process updates the knowledge on θ parameters while
testing goes on. The log (lower) canvas shows textual information generated by the MBT module.
Specifically, it shows for each uncertain parameter: the number of executed tests, the summarization
of the Posterior density functions in terms of mean value and HPD region, and the Bayes factor, used
as model selection criteria to determine the termination condition.

7. EMPIRICAL EVALUATION

In this section we introduce the objective of our empirical evaluation by means of a number of
research questions (Sect. 7.1); we describe the overall design of the evaluation (Sect. 7.2); we
present the collected results (Sect. 7.3); we further discuss them (Sect. 7.4); and then we describe
how threats to validity have been mitigated (Sect. 7.5).

7.1. Research questions

The major objective of this section is to show the evaluation activity to assess the capability of
METRIC to statistical hypothesis testing of uncertain software systems. In particular, we aim at
answering the following research questions:

RQ1: How much is the accuracy of the uncertainty quantification process applied by our
uncertainty-aware testing method?

RQ2: How much is the effort required by our uncertainty-aware testing method?

RQ3: How does the uncertainty-aware testing method compare to traditional pseudo-random
model-based exploration strategies?

7.2. Design of the evaluation

The METRIC approach to IUQ has been evaluated through a large testing campaign using using
the TAS example to construct a number of testing scenarios. Experiments have been carried out on
a machine with following setting: Intel Xeon E5-2630 at 2.30GHz CPU, 32GB of RAM, Ubuntu
16.04.3 LTS (GNU/Linux 4.4.0-112-generic x86 64), and Oracle Java Runtime Environment 1.8.
For each research question we selected a number of testing scenarios that have been designed
taking control over a number of independent variables. This direct manipulation of these factors
allowed specific experimental conditions to be controlled with decreased threats to internal validity,
as further elaborated below. Table III summarizes these scenarios by listing independent variables
(i.e., factors) and dependent variables (i.e., measured quantities) used in experiments. Beliefs on
θ parameters have been controlled by setting upfront the Prior RE (i.e., amount of error) and
the Prior HPD region width (i.e., degree of confidence), respectively. The sample size represents
another factor affecting the existing relation between accuracy and effort of the inference process
applied during testing. The accuracy of testing here represents the ability of mitigating the system
uncertainties through the inference process. Thus, we measured it by means of the Posterior RE
(i.e., amount of error in the inferred θ values) and the Posterior HPD region width (i.e., degree of
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confidence in the inferred values). The effort spent during testing has been measured in standard
ways by using either the number of executed test cases or the number of executed methods until
termination. Finally, both the exploration policy and the termination condition have been controlled
to conduct a quantitative comparison of cost-effectiveness between our uncertainty-aware and
existing (traditional) testing methods. To reduce the risk of obtaining results by chance, all the
experiments have been repeated multiple times and using very large sample size values (200 to
4000). The comparative evaluation has been conducted by following the guidelines introduced by
Arcuri et al. [31] to detected statistical differences through a pairwise comparison using the Mann-
Whitney U test to calculate p-value with significance level α = 0.05.

7.3. Results

Here we discuss the most significant results collected during experiments to address the research
questions reported above. We refer the reader to our implementation for the replicability of the
presented data. The software repository contains the METRIC MBT module implementation
packages together the inputs used to obtain results described in this section.

Results for RQ1. We addressed this research question by studying the existing relation between
accuracy (out of testing), initial beliefs (before testing), and sample size. Figure 6 shows the
Posterior RE out of multiple testing activities (with the uncertainty-aware policy) having diverse
hypothesis (Prior RE and HPD region width). Namely, we selected different error and confidence
scales as follows. Selected RE scales are: small error (0.4), substantial error (0.8), and large error
(1.6). Selected HPD region widths scales are: vague information (0.15), definite information (0.10),
precise information (0.05). Within each combination of these scales, we varied the sample size from
small sample (200) to large sample (4000).

Figure 6 shows that there exists a direct relation between sample size and accuracy. Namely, the
larger the sample, the higher the accuracy (i.e., the lower the Posterior RE). An increase in the data
sample implies a more significant Bayes factor, thus allowing for better model selection supported
by the data under consideration. For each selected scenario, testing leads to calibrate θ parameters
with a very high accuracy (i.e., the order of magnitude of the Posterior RE is 10−2) even in the
worst-case scenario (i.e., precise information expressing large error). The shape of accuracy lines
is very similar even changing the RE scale. We found that the Prior HPD width scale has a major
impact on achieved accuracy especially when using small samples. In case the tester does not have
strong hypothesis on uncertain θ parameters, uninformative Priors represent always a better choice.

Results for RQ2. This research question has been addressed by measuring the number of
tests required by the whole testing activity until termination using the same experimental setting
described above. Figure 7 shows data extracted from experiments. Intuitively, there exists a direct
relation between the sample size and the effort. Initial beliefs have a major impact on the effort as
well. Namely, the higher the confidence in the hypothesis, the higher the effort in case of wrong Prior
information. For instance, considering the scenario in Figure 7b (i.e., substantial error) and sample
size 2k, we observe about 65% decrease of the effort when passing from 0.10 to 0.05 HPD width.
This behavior is more evident when increasing the RE. In fact, a very informative (but wrong) Prior
has a negative impact on performance of the inference process. Considering the scenario in Figure 7c
(i.e., large error) and sample size 2k, we observe about 85% decrease of the effort when passing
from 0.10 to 0.05 HPD width. To summarize, testing with wrong beliefs increases the required
effort. The convergence of the Bayes factor is even slower when using Priors expressing precise
(but wrong) information. In this case testing relies more on Priors rather than observed evidence.
Even though worst cases (in the sense of completely wrong hypothesis) cause a slowdown of the
whole testing process, the termination condition based on the Bayes factor has been showing high
effectiveness in keeping inference up and running until the achievement of an adequate degree of
accuracy.
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Figure 6. Achieved accuracy by varying the sample size.
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Figure 7. Required effort by varying the sample size.

Results for RQ3: As shown in Table III, to deal with this research question we have run multiple
testing activities by taking control over the exploration policy (i.e., the strategy used to generate
test cases), the termination condition, and the sample size. During experiments we measured the
achieved degree of coverage (in terms of state-actions in the model), the accuracy out of testing (in
terms of Posterior RE and HPD width), and the effort (in terms of executed methods in the SUT).
Initial beliefs on θ parameters have been fixed using the following values: 0.4 Prior RE and 0.1 HPD
width. The sample size has been fixed to 2k. The three selected strategies are: the uncertainty-aware
test case generation, a random walk test case generation approach, and a history-based approach. We
let the reader refer to the detailed description provided by Camilli et al. [9] for further information
about the two latter traditional model-based testing methods. Data collected during operation is
shown in Figure 8 (i.e., coverage and accuracy) and Figure 9 (i.e., effort).

Figure 8a shows the percentage of coverage depending on the selected testing strategy. Traditional
pseudorandom methods generally achieve higher coverage values. However, as shown in Figure 8b
the achieved accuracy (in terms of Posterior RE and HPD width) is an order of magnitude higher
when using the uncertainty-aware approach. Namely, the uncertainty-aware strategy increased
achieved accuracy by a factor up to ∼50. Figure 9a and Figure 9b show the effort (in terms of
number of executed methods) depending on the testing strategy and the sample size. The two figures
show data extracted from experiments by using alternative scenarios: a simplifies TAS version with
decreased structural complexity (to increase the likelihood of hitting θ, i.e., 0.33 using a random
walk) and the regular TAS version having higher structural complexity (to decrease the likelihood
of hitting θ, i.e., 0.11 using a random walk). Random and the history-based strategies are comparable
in terms of required effort. The uncertainty-aware strategy instead is more efficient in both the two
scenarios we considered. In particular, with the simplified TAS we measured on average 42% less
effort. With increased structural complexity, the convenience of the uncertainty-aware strategy is
even more evident. Here, we measured on average 80% less effort. To sum up, the uncertainty-
aware strategy is more efficient with respect to traditional model-based testing methods and this is
more evident when increasing the complexity of the underlying model (i.e., the lower the likelihood
of hitting uncertain regions, the more the convenience of the uncertainty-aware strategy).
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Figure 8. Coverage and accuracy comparison among test case generation strategies.
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Figure 9. Effort comparison among test case generation strategies.

7.4. Discussion

During our practical experience in using METRIC, we found the uncertainty-aware testing is likely
to achieve more cost-effectiveness in delivering confidence vs. traditional pseudorandom model-
based testing methods. We found a number of configuration settings having a major impact on
the overall hypothesis testing process. There exists a trade-off between accuracy and effort while
setting up the sample size. High accuracy requires large samples, therefore more effort during
testing. This shortcoming is even more severe when using high confidence in wrong beliefs.
Whenever the confidence in the hypothesis is low the tester should adopt Prior expressing vague
information (i.e., a large HPD width) in order to rely more on the observed data rather than the
initial guess. Another important factor is the termination condition. Our experience suggests that
traditional termination conditions based on coverage properties are not effective when dealing
with uncertainty quantification. The condition we developed, based on the Bayes factor, showed
increased effectiveness in terms of accuracy. In particular, the Bayes factor gives the ability of
recognizing in a fully automated way the required effort (i.e., when the runtime evidence does not
cause significant changes in the Posterior knowledge).

Our empirical evaluation suggests useful insights to test case generation strategies depending
on the characteristics of the system under test. Traditional pseudorandom testing can be usually
tuned by means of fixed weights that can be used to selectively increase or decrease the probability
associated with available actions. Nevertheless, arbitrary complex combination of actions, transition
probabilities, and alternative paths makes this approach not feasible in practice. In our experience,
the tester can benefit from pseudorandom strategies whenever no clues on how to drive testing exist.
However, uniform sampling of the input space (whereby all the available inputs are equally likely
to be observed) may lead to an unbalanced model-based exploration decreasing the effectiveness of
hypothesis testing of low probability uncertain regions.
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7.5. Threats to validity

Below, we discuss a number of threats to the validity of experiments. We describe these issues and
how we tried to limit them.

External Validity. Generalization of results represent a typical external validity threat in empirical
evaluations. Our results have been obtained by conducting a large testing campaign on different
versions/configurations of our running TAS example (see Sect. 4) that represents a traditional
benchmarking example in the area of service-based (healthcare) systems. Different TAS versions
combined with different Priors were synthesized to assess the effectiveness of our approach varying
the structural complexity of the underlying MDP model. Additional experiments with case studies
in different application domains (e.g., sensor networks, robotics, security protocols) are required
to further generalize the results. We tried to reduce threats to external validity by detailing the
characteristics (i.e., model, uncertain regions, Priors, values given to independent variables) of every
experiment we conducted in order to evaluate the applicability in this specific context.

Internal Validity. To achieve high degree of internal validity in our empirical study, we
designed each experiment to have direct manipulation of independent variables. In particular,
our experimental environment allows for direct access to both true values associated with θ-
parameters and design-time beliefs expressed by Priors. Directly manipulating the overall degree
of uncertainty has been fundamental to assess cause-effect relations between external factors and
uncertainty quantification capability. In fact, we had the possibility to conduct precise measurements
of both initial (before testing) and final (after testing) RE on estimation of θ parameters. This fine
grained access to independent variables allows for greater internal validity than conclusions based
on an association observed without manipulation. Direct manipulation of independent variables
allowed us to create same experiment contexts when varying the model-based test case generation
strategy. This means we used the same criteria to empirically evaluate uncertainty quantification
capability during testing for each considered MBT strategy (i.e., both uncertainty-aware strategy
and uncertainty-unaware strategies).

Conclusion Validity. Since model-based test case generation algorithms are governed by
probabilistic functions there exists the possibility that results have been produced by chance as
described by Wang et al. [32]. We reduced this threat to validity by repeating experiments multiple
times and using for each experiment a very large sample size (between 200 and 4000). Following
the practical guidelines introduced in [31], during the comparative evaluation we have run the MBT
algorithms 1000 times. To detect statistical differences, we conducted a pairwise comparison using
the Mann-Whitney U test to calculate p-value with significance level α = 0.05.

Construct Validity. As introduced in de Oliveira Barros et al. [33], we handled major construct
threats by assessing the validity of cost-effectiveness measures used during our experiments. The
cost of executing MBT algorithms has been measured by considering the number of tests required
to achieve termination. Such a selected metric is traditionally accepted as valid in assessing
randomized testing algorithms as stated by Arcuri et al. [31]. Similarly, the effectiveness has been
measured by adopting standard methods. The magnitude of the improvement has been computed by
using the RE (independent from the measurement unit) very often adopted in statistical inference
to assess difference between an exact value and an approximation. As a measure of confidence, we
adopted the HPD width which yields the highest possible accuracy in estimating the θ parameters.
As described Insua et al. [13], this measure is usually adopted in Bayesian statistics as a measure of
the confidence gained after obtaining the Posterior knowledge.

8. RELATED WORK

Uncertainty mitigation has received a lot of attention in different fields of software engineering.
The work presented in this article has been mainly influenced by different lines of research. In this
section, we compare our work with selected literature that we considered the most relevant to our
context, grouping them according to the research lines that inspired our approach.
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Design-time Uncertainty Assessment. A popular technique to deal with uncertainty at design-time
is parametric model checking [34]. It follows a Forward Uncertainty Propagation [20] approach
which focuses on the influence on the model outputs from the parametric variability in the sources
of uncertainty. Our technique follows instead a IUQ (inverse) approach to estimate the discrepancy
between experimental data (from a real system) and the mathematical model.

Many pieces of work, inside the community of self-adaptive systems, aim at making adaptation
decisions taking into account the sources of uncertainty. Notable examples include recent activities
by Camilli et al. [35], Ramirez et al. [19], and Esfahani et al. [1]. Most of them employ Markov
Models to express uncertain QoS properties and make decisions under probability theory. These
approaches are promising, but they are known to be computationally expensive for use at runtime,
where often decisions have to be made very fast [1].

An interesting effort has been shown in recent research activities by Calinescu et al. [36]. Authors
focus primarily on design-time verification aspects to assure quality-of-service (QoS) properties
(reliability, performance, and others) of systems that exhibit stochastic behavior. The presented
theoretical framework and associated toolchain aim at establishing confidence intervals for the QoS
properties of a software system modeled as a Markov chain with uncertain transition probabilities,
i.e. transition probabilities are unknown but observations of these transitions are available.

Design-time UML-based models of uncertainty have been proposed by Ma et al. [37]. The
approach is called fuzzy UML data modeling and it relies on fuzzy set and possibility distribution
theories. The Fuzzy Description Logic [38] represents an extension of this model and it aims at
checking correctness of fuzzy properties. These pieces of work focus on the analyses at the design
time, whereas METRIC focuses on testing.

Bayesian Reasoning. The usage of Bayesian reasoning has been mainly influenced by different
existing approaches [39, 40]. Bayesian estimators [13, 23] have recently gained high interest for
online calibration thanks to the ease with which the basic ideas are put into place. In fact, because
of the Markov property [41], the learning problem using Bayesian inference usually reduces to the
independent learning of different independent categorical distributions [13]. Moreover, convergence
is usually fast and the Bayesian approach allows expert knowledge to be embedded in the inference
framework. The approaches described by Filieri et al. [39] apply Bayesian reasoning to calibrate
transition probabilities of Discrete Time Markov Chains kept alive along with the running system
in production. Improvements of these approaches have been proposed by Calinescu et al. [42] and
Filieri et al. [43] in order to alleviate the negative effect of historical data on the estimation by using
aging mechanisms (e.g., Kalman filters [44]) to discard old information.

Model-based Testing. A comprehensive survey on MBT approaches has been presented by Dias
et al. [45]. Here, the strategy for test case generation is highlighted as one of the main challenges of
this domain. In the following we discuss some recent activities dealing with this issue and proposing
different alternatives as model-based exploration methods. Work presented by kastner et al. [46]
introduces the idea of variability-aware testing in product-lines. Roughly speaking, the idea is to
analyze the product generator instead of the generated products in order to minimize the effort
and maximize the accuracy. Experiments are carried out by generating test cases that are simulated
using a model checker. The testing strategy introduced by Fraser et a. [47] is guided by behavioral
coverage. Namely, machine learning algorithms are employed to augment standard syntactic testing.
This is used in turn as a test case selection criterion. Arcaini et al. [48] proposed to divide a system
model into subsystems leveraging the notion of independent variables. Here, tests generated for
single subsystems are then combined in a bottom-up fashion to obtain tests for the whole system.
All these recent activities aim at developing MBT techniques with optimized test case generation.
Nevertheless, none of these approaches considers system uncertainties for such a scope.

Testing Under Uncertainty. When jointly considering uncertainty quantification and testing, there
are few and recently defined approaches that deal with MBT driven by uncertainty assessment. We
here give a brief overview of the most significant ones.

The basic idea of on-the-fly MBT is not new. It has been introduced in the context of labeled
transition systems using both ioco theory, as described by Bijl et al. [26] and alternating simulation,
as introduced by Veanes et al. [15]. MBT under uncertainty, in particular, has been considered
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to improve dependability of Cyber-Physical Systems (CPSs) by defining frameworks supporting
MBT of CPSs under uncertainty in a cost-effective manner. UncerTum [49], for example, is a test
modeling framework providing a UML profile and model libraries to capture uncertainty explicitly
in UML state machine models. The same authors propose the testing framework UncerTest [50].
UncerTest provides a set of uncertainty-wise test case generation and test case minimization
strategies that rely on UML test ready models explicitly specifying subjective uncertainty. Their
methodology is based on a so called Uncertainty Theory [51] and multi-objective search [52].
UncerTest uses an off-line test case generation approach. To avoid explosion in this process they
introduce cost-effective minimization algorithms (i.e., uncertainty-wise test minimization) aiming
at reducing the number of test cases but maintain coverage of models. To increase chances of
occurrences of uncertainties, UncerTest enable occurrences of uncertainty sources specified by
means of design-time models. Since an uncertainty may have multiple sources, authors propose a
set of strategies to decide which sources to introduce, where to introduce them and how to introduce
them during test generation. Here, major objective of testing is discovering unknown occurrences
of uncertainties (i.e., uncertainties occurred with unknown sources) by observing the existing
causal relationship between uncertainties and their (known or unknown) sources. Differently from
UncerTest, METRIC adopts on-the-fly approaches to generate test cases and it is mainly concerned
with hypothesis testing rather than discovering unknown sources. Another approach that focuses
on fault detection has been recently introduced by Ma et al. [53]. Authors deal with testing of
self-healing CPSs in the presence of sources uncertainty. In their vision uncertainties are treated as
controllable quantities during testing. Such a process aims at learning optimal policies for invoking
operations and introducing uncertainties, respectively, to effectively detect faults.

The Active Learning strategy to black-box test case generation has been proposed by Walkinshaw
et al. [54] to select test cases for execution to decrease uncertainty about the correctness of a software
system. This work aims at overcoming the problem of intractability in MBT and generating test
cases which the inferred model is “least certain” about. Our approach deals with intractability by
using an online approach that stochastically samples alternative choices, rather than exhaustively
enumerate them.

The iterative MBT approach introduced by Ji et al. [55] aims at generating evolving test models
to discover unknown behaviors in uncertain network conditions. Similarly to UncerTest, authors
propose a modeling approach based on UML state diagrams. Model-based test case generation is
then used to discover uncertain behavior as follows. Test cases lead the SUT to states where possible
uncertain behavior can be observed inducing particular environment settings (i.e., user operations
and network conditions).

Wang et al. [56] introduced an approach for testing timed systems under uncertainty. The
approach aims at the automatic generation of stochastic oracles that verify the capability of a
software system to fulfill timing constraints in the presence of time uncertainty is proposed. Such
stochastic oracles entail the statistical analysis of repeated test case executions based on test output
probabilities predicted by means of statistical model checking. In their context, uncertainty is caused
by the inherent concurrent and indeterminate nature of timed systems.

To the best of our knowledge, the METRIC approach differs from the state-of-the-art in literature
since it enhances current on-the-fly MBT techniques with an uncertainty-aware test case generation
strategy having the ability of learning from runtime data to calibrate the initial assumptions.

9. CONCLUSION AND FUTURE DIRECTIONS

In this article, we introduced the METRIC methodology, its theoretical foundation and the current
software toolchain that aims at aiding the software deployment process by mitigating sources of
uncertainty through testing.

Contribution. METRIC makes use of a novel on-the-fly MBT technique that combines test
case generation guided by uncertainty-aware strategies and Bayesian inference. The key ideas are:
(i) explicitly include the notion of uncertainty inside the system specification; (ii) exploit this
definition to drive model-based test case generation in order to observe the software product in its
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own uncertain components; (iii) quantify the design-time uncertainty by using hypothesis testing
approaches.

Results. To study the effectiveness of METRIC, we performed a validation activity through
a large testing campaign within a number of scenarios constructed using our TAS running
example. The experience collected during our experimentation suggests that the uncertainty-aware
test case generation strategy, paired with the termination condition based on the Bayes factor,
outperforms traditional pseudorandom testing methods in terms of cost-effectiveness. In particular,
our comparative empirical evaluation shows that, under same effort constraints, our uncertainty-
aware testing strategy increases the accuracy of the uncertainty mitigation by a factor of ∼ 50
with respect to traditional model-based testing methods. Furthermore, under same termination
conditions, the uncertainty-aware testing strategy requires up to 80% less effort in terms of number
of executed methods along the whole testing process. The METRIC toolchain has been released as
open source software to allow and encourage the replication of experiments.

Challenges Ahead. To the best of our knowledge, there are no approaches providing fine grained
test generation strategies based on the nature of the uncertainty and/or structural properties of the
model. This represents a challenge that calls for novel uncertainty-aware testing methods able to
increase delivered confidence. In general, the ability of collecting enough evidence from multiple
uncertain regions is affected by structural properties of the SUT model that might exhibit trap-
like regions [57]. These regions may cause unbalanced model-based exploration leading to uneven
distribution of confidence over θ parameters.

APPENDIX A LIST OF ACRONYMS

CPS Cyber-Physical System.
CTL Computation Tree Logic.
DSL Domain Specific Language.
FUP Forward Uncertainty Propagation.
HPD Highest Posterior Density.
IOCO Input/Output Conformance.
IUQ Inverse Uncertainty Quantification.
MBT Model-based Testing.
MDP Markov Decision Process.
METrIC Modeling & vErification, Testing, Inference & Calibration.
PCTL Probabilistic Computation Tree Logic.
QoS Quality of Service.
RE Relative Error.
SUT System Under Test.
TAS Tele Assistance System.
UI User Interface.
UML Unified Modeling Language.
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22. Immonen A, Niemelä E. Survey of reliability and availability prediction methods from the viewpoint of software
architecture. Software & Systems Modeling 2007; 7(1):49, doi:10.1007/s10270-006-0040-x. URL http://dx.
doi.org/10.1007/s10270-006-0040-x.

23. Robert CP. The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. 2nd
edn., Springer, 2007.

24. Weyns D, Calinescu R. Tele assistance: A self-adaptive service-based system examplar. Proceedings of the 10th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’15, IEEE
Press: Piscataway, NJ, USA, 2015; 88–92. URL http://dl.acm.org/citation.cfm?id=2821357.
2821373.

25. Kwiatkowska M, Norman G, Parker D. PRISM 4.0: Verification of probabilistic real-time systems. Proc. 23rd
International Conference on Computer Aided Verification (CAV’11), LNCS, vol. 6806, Gopalakrishnan G, Qadeer
S (eds.), Springer, 2011; 585–591.

26. van der Bijl M, Rensink A, Tretmans J. Compositional testing with ioco. Formal Approaches to Software Testing,
Petrenko A, Ulrich A (eds.), Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; 86–100.

27. Diaconis P, Ylvisaker D. Conjugate priors for exponential families. Ann. Statist. 03 1979; 7(2):269–281, doi:
10.1214/aos/1176344611. URL https://doi.org/10.1214/aos/1176344611.

28. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG. An overview of aspectj. ECOOP 2001 —
Object-Oriented Programming, Knudsen JL (ed.), Springer Berlin Heidelberg: Berlin, Heidelberg, 2001; 327–354.

29. Eysholdt M, Behrens H. Xtext: Implement your language faster than the quick and dirty way. Proceedings of the
ACM International Conference Companion on Object Oriented Programming Systems Languages and Applications
Companion, OOPSLA ’10, ACM: New York, NY, USA, 2010; 307–309, doi:10.1145/1869542.1869625. URL
http://doi.acm.org/10.1145/1869542.1869625.

30. Tretmans J, Belinfante A. Automatic testing with formal methods. 7th European Int. Conf. on Software Testing,
Analysis & Review, 1999; 8–12.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://doi.org/10.1007/978-3-319-66197-1_24
https://doi.org/10.1007/978-3-319-66197-1_24
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/978-3-540-39910-0_12
https://doi.org/10.1007/978-3-540-39910-0_12
http://doi.acm.org/10.1145/2568088.2568095
http://doi.acm.org/10.1145/2568088.2568095
http://dl.acm.org/citation.cfm?id=2666795.2666812
http://dl.acm.org/citation.cfm?id=2666795.2666812
http://dx.doi.org/10.1007/s10270-006-0040-x
http://dx.doi.org/10.1007/s10270-006-0040-x
http://dl.acm.org/citation.cfm?id=2821357.2821373
http://dl.acm.org/citation.cfm?id=2821357.2821373
https://doi.org/10.1214/aos/1176344611
http://doi.acm.org/10.1145/1869542.1869625


26 M. CAMILLI ET AL.

31. Arcuri A, Briand L. A practical guide for using statistical tests to assess randomized algorithms in software
engineering. Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11, ACM:
New York, NY, USA, 2011; 1–10, doi:10.1145/1985793.1985795. URL http://doi.acm.org/10.1145/
1985793.1985795.

32. Wang S, Ali S, Gotlieb A. Minimizing test suites in software product lines using weight-based genetic algorithms.
Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, ACM: New
York, NY, USA, 2013; 1493–1500, doi:10.1145/2463372.2463545. URL http://doi.acm.org/10.1145/
2463372.2463545.

33. de Oliveira Barros M, Dias-Neto AC. Threats to validity in search-based software engineering empirical studies.
RelaTe-DIA 2011; 5(1).

34. Hahn EM, Hermanns H, Wachter B, Zhang L. Param: A model checker for parametric markov models. Computer
Aided Verification, Touili T, Cook B, Jackson P (eds.), Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; 660–
664.

35. Camilli M, Gargantini A, Scandurra P. Zone-based formal specification and timing analysis of real-time self-
adaptive systems. Science of Computer Programming 2018; 159:28 – 57, doi:https://doi.org/10.1016/j.scico.2018.
03.002.
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Table I. TAS non-functional requirements.

label description category PCTL formula

R1
The probability of successfully handling a
request must be at least 0.98 reliability P≥0.98(Fsuccess)

R2
The probability of successfully handling a
request without errors must be at least 0.89 reliability P≥0.89(¬error U (¬error & success))

R3
The probability of encounter two errors in a
single run must be less than 0.009

reliability P<0.009(Ferror & X(Ferror))

R4

The probability of of successfully handling
a request between 5 and 7 operations must
be at least 0.9

complexity bound P≥0.9(F[5,7]success)

R5
The expected response time of a fast
execution must be less than 2.0

response time Rtime<2.0(F S6)

R6

The expected energy consumption of a run
with less than 10 operations must be less
than 15.0

energy consumption Renergy<15.0(C≤10)

Table II. P(s, a) using ωu evaluated on the TAS.

action
state

S0 S1 S4 S5-S10

alarmMsg 1/2 0 1/2 0
sendAlarm 0 1 0 0

vitalParamsMsg 1/2 0 0 0
changeDrug 0 0 1/2 0

wait 0 0 0 1

Table III. Design of the evaluation.

research question independent variables dependent variables

RQ1
Prior RE,

Prior HPD width,
sample size

Posterior RE

RQ2
Prior RE,

Prior HPD width,
sample size

#tests

RQ3
exploration policy,

termination condition,
sample size

%coverage,
Posterior RE,

Posterior HPD width,
#methods
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