
HYPpOTesT: Hypothesis Testing Toolkit for
Uncertain Service-based Web Applications

Matteo Camilli?, Angelo Gargantini†, Rosario Madaudo‡, and Patrizia
Scandurra†

? Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
matteo.camilli@unibz.it

† Dept. of Management, Information and Production Engineering (DIGIP),
Università degli Studi di Bergamo, Italy

{angelo.gargantini,patrizia.scandurra}@unibg.it
‡ Altran Italia SPA, Milan, Italy
rosario.madaudo2@altran.it

Abstract. This paper introduces a model-based testing framework and
associated toolkit, so called HYPpOTesT, for uncertain service-based
web applications specified as probabilistic systems with non-determinism.
The framework connects input/output conformance theory with hypoth-
esis testing in order to assess if the behavior of the application under test
corresponds to its probabilistic formal specification. The core component
is a (on-the-fly) model-based testing algorithm able to automatically gen-
erate, execute and evaluate test cases from a Markov Decision Process
specification. The testing activity feeds a Bayesian inference process that
quantifies and mitigates the system uncertainty by calibrating probabil-
ity values in the initial specification. This paper illustrates the structure,
features, and usage of HYPpOTesT using the U-Store exemplar, i.e.,
a web-based e-commerce application that exhibits uncertain behavior.

Keywords: Model-based Testing · Probabilistic systems · Service-based
Web applications · Bayesian Inference · Uncertainty Quantification.

1 Introduction

Modern software systems operate in a complex ecosystem of protocols, libraries,
services, and execution platforms that change over time in response to: new
technologies; repairing activities (due to faults and vulnerabilities); varying re-
sources/services availability; and reconfiguration of the environment. Predictabil-
ity is very hard to achieve since modern software-intensive systems are often
situated in complex ecosystems that can be hard or even impossible to fully un-
derstand and specify at design-time. Namely, these systems are often exposed to
multiple sources of uncertainty that can arise from an ambiguous specification
not completely known before the system is running. Common examples of ap-
plications affected by uncertain and probabilistic behavior are control policies in
robotics, speech recognition, security protocols, and service-based web applica-
tions (e.g., e-commerce, e-health, online banking, etc.). In this latter case, highly

2 M. Camilli et al.

dynamic and changing ecosystems influence a workflow of interacting distributed
components (e.g., web-services or microservices) owned by multiple third-party
providers with different Quality of Service (QoS) attributes (e.g, reliability, per-
formance, cost, etc.). Testing is the most common validation technique, seen as
it generally represents a lightweight and vital process to establish confidence on
the developed software systems. Nevertheless, there is little work in the scientific
community that focuses on executable testing frameworks for uncertain systems,
with notable exceptions in the context of cyber physical systems [11,12].

As part of our ongoing research activity on testing under uncertainty [2, 3],
this paper introduces HYPpOTesT: a model-based HYPOthesis Testing Toolkit
for service-based web applications that considers uncertainty as a first-class con-
cern. Namely, we focus on statistical hypothesis testing [5] of uncertain QoS
parameters of the System Under Test (SUT), modeled by a Markov Decision
Processes (MDP) [7]. MDPs represent a widely adopted formalism for mod-
eling systems exhibiting both probabilistic and nondeterministic behavior. As
described in [4], hypothesis testing (differently from functional testing) repre-
sents a fundamental activity to assess whether the frequencies observed during
model-based testing (MBT) processes correspond to the probabilities specified
in the model. Thus, HYPpOTesT has been tailored to deal with the uncer-
tainty quantification problem [3] by means of hypothesis testing while executing
a model-based exploration of the SUT. The MDP specification, along with as-
sumptions on the uncertain QoS parameters, guides the automatic generation of
the test cases so that the probability to stress the uncertain components of the
application is maximized. Testing feeds a Bayesian inference [5] process that cal-
ibrates the uncertain parameters depending on the observed behavior. Bayesian
inference is used to compute the Posterior density function associated with spe-
cific uncertain parameters θ of the MDP model. As described in [5], Bayesian
inference represents an effective technique used to update belief about θ. A Prior
density function (or simply Prior) is the probability distribution that would ex-
press one’s beliefs about θ parameters before some evidence (i.e., experimental
data) is taken into account.

This paper focuses on engineering aspects of HYPpOTesT, such as design
and implementation concerns. To sum up, our toolkit supports: (i) modeling of a
service-based web application (SUT) in terms of a MDP using a simple domain-
specific language; (ii) explicit elicitation of the uncertain QoS parameters using
Prior probability distributions; (iii) automatic generation, execution, and eval-
uation of the test cases using an uncertainty-aware (on-the-fly) model-based
testing algorithm. Throughout the paper, we adopt an uncertain web-based e-
commerce application, U-Store (Uncertain Store), as running example to
illustrate the main feature of the toolkit and as exemplar for a preliminary val-
idation of our testing approach.

Related Work . In [1] MDPs are used to model systems exhibiting stochas-
tic failures. The proposed approach aims at finding input-selection (i.e., testing)
strategies which maximizes the probability of hitting failures. The approach in-
troduced in [10] is based on Machine Learning and it aims at inferring a behav-

Hypothesis Testing Toolkit for Uncertain Service-based Web Application 3

Table 1. Services composing the U-Store web-based application.

Service Description

frontend Exposes an HTTP server to serve the website. Generates session IDs for all users.

user Provide Customer login, sign up, as well as user’s information retrieval.

cart Stores selected items in the user’s shipping cart (persistent memory) and retrieves it.

catalog Provides the list of products from a SQL database, the ability to search products, and

get individual products.

shipping Gives shipping cost estimates based on the shopping cart and the given address (mock

component).

payment Charges the given credit card info (mock component) with the given amount and returns

a transaction ID.

ioral model of the SUT to select those tests which the inferred model is “least
certain” about. Results suggest that such a test case generation outperforms
conventional random testing. In [12] test case generation strategies based on the
uncertainty theory and multi-objective search are proposed in the context of
cyber-physical systems. Results in this work showed that this test strategy in-
creases the likelihood to observe more uncertainties due to unknown behaviors of
the physical environments. In [11] a testing method that takes into account un-
certainty in timing properties of embedded software systems is proposed. This
method improves the fault detection effectiveness of tests suites derived from
timed automata compared to traditional testing approaches. Summarizing, there
are few and recently defined approaches that deal with testing driven by uncer-
tainty awareness. Notable examples has been briefly described. The topic defi-
nitely needs further investigation in the area of service-based applications, where
QoS attributes are influenced by highly dynamic and uncertain ecosystems.

This paper is organized as follows. Sect. 2 introduces the running example;
Sect. 3 describes our testing toolkit; Sect. 4 reports some experimental results
of a preliminary validation of our toolkit; and Sect. 5 concludes the paper.

2 Running Example: the U-Store Web Application

U-Store1 consists of a number of services that implement specialized pieces of
functionalities and interact with each other using HTTP resource APIs. Table 1
lists the services of the U-Store and provides a brief description of them. From
the user perspective, the application behavior can be viewed as a number of
functional statuses (or states), each one of them with a number of feasible inputs
that cause services to execute specific tasks. Services tasks generate outputs and
allow the current state to be changed accordingly.

In this context, both functional and non-functional quality attributes of the
web application depend on parameters (e.g., performance, bandwidth, available
memory, etc.) typically subject to different sources of uncertainty (e.g., jobs
arrival, fault tolerance, scalability, etc.) [6]. As an example, suppose the user

1 Sources and testing results are publicly available at https://github.com/SELab-
unimi/ustore-exemplar.

4 M. Camilli et al.

MBT
module

Selenium
WebDriver

Modeler Eclipse IDE plugin Model-based Testing Framework Testing UI

MDP, Priors,
AspectJ instr.

Posterior
summarization

Inference
module

Fig. 1. Main components of the HYPpOTesT toolkit.

navigates the U-Store towards the Checkout web page. After selecting the
payment method, the user submits the buy request. At this stage, the U-Store
asks the external payment service to execute the proper task. The outcome of
this operation is inherently influenced by several sources of uncertainty (as those
mentioned above), and from the user perspective uncertainty reflects common
types of failure or undesired behavior upon the buy request, such as unexpected
errors and/or high latency.

3 The Hypothesis Testing Toolkit

HYPpOTesT (see Fig. 1) is tailored to perform hypothesis testing of uncertain
service-based web applications by combining an uncertainty-aware MBT and
Bayesian inference. A description of the three major components follows.

Modeler. The modeler is an Eclipse IDE plugin2 that allows the MDP spec-
ification to be created using a textual Domain Specific Language (DSL). As de-
scribed in [7], a MDP model is composed of finite sets of states, transitions, and
actions. Transitions between states occur by taking a nondeterministic choice
among the available actions from the current state and then a stochastic choice
of the successor state, according to a partial probabilistic transition function.
Fig. 2 reports an extract of the U-Store MDP design-time model using our
DSL. The keywords reflect the structural elements of the model: actions (line 2),
states (line 6), and arcs (line 14). Fig. 3 contains a visual representation of this
MDP extract. It is worth noting that upon the submit action from state S6

(readyToPay) we can have multiple responses from the system. Each one of them
is associated with a different probability value reflecting our assumption about
the behavior of the payment service, typically based on past experience or previ-
ous studies. To express uncertainty on the assumptions, the DSL allows the Prior
probability density functions to be specified (e.g., line 10). In particular, model-
ers use Dirichlet as conjugate Priors for the uncertain transition probabilities of
the MDP model. In fact, as described in [5], the Dirichlet distribution Dir(αi) is
the natural conjugate prior of the categorical distribution, with αi = (α1, ..., αn)

2 Publicly available at https://github.com/SELab-unimi/mdp-generator/tree/web-
app. The repository contains sources and the complete specification of the U-Store.

Hypothesis Testing Toolkit for Uncertain Service-based Web Application 5

1 model ”UStore”
2 actions
3 select -> click(”s-credit-card” ”1000” ”s-pay-button”)
4 submit -> submit form(”s-pay” ”5000” ”s-pay-result”)
5 ...
6 states
7 S0 {} initial
8 ...
9 S5 {checkoutPage}

10 S6 {readyToPay} Dir(submit, <S7, 95.0> <S8, 3.0> <S9, 2.0>)
11 S7 {success}
12 S8 {error}
13 S9 {failure}
14 arcs
15 ...
16 a5 : (S5, select) -> S6, 1.0
17 a6 : (S6, submit) -> S7, 0.95
18 a7 : (S6, submit) -> S8, 0.03
19 a8 : (S6, submit) -> S9, 0.02
20 observe
21 ...
22 a6 -> ”result.getUIElement().findElement(By.id(\”s-success\”)).isDisplayed()”
23 a7 -> ”result.getUIElement().findElement(By.id(\”s-error\”)).isDisplayed()”
24 a8 -> ”result.timeout()”

Fig. 2. U-Store MDP extract in our DSL.

s0 …

s6

s9

s8

s5

{checkoutPage} {readyToPay}

select 1.0 submit

.02
.95

.03
{success}

{recoverableError}

{failure}

wait
1.0

s7 …

wait

1.0

…

Controllable actions Observable events

Selenium WebDriver

click(“s-credit-card”…) a8

Fig. 3. Visual representation of
the U-Store MDP extract and of
mapping to SUT components.

vector of concentration parameters. Priors are used to express uncertainty on
model parameters describing QoS attributes, such as reliability of the services
or the communication channels, response time, and cost in terms of resources
usage or energy consumption.

To make our framework able to carry out model-based generation and exe-
cution of tests, the structural elements in the model are bound to components in
the SUT as informally sketched in Fig. 3. Such a binding is defined by the mod-
eler at design-time. MDP actions are mapped to controllable actions while arcs
are mapped to observable events. Controllable actions are user inputs supplied
to the application using the available web UI. A wide range of inputs typically
seen in web applications are supported by our DSL, such as click on differ-
ent UI elements (e.g., link, button, checkbox, etc.), filling in text fields, submit
forms, navigating back and forth, and more. As an example, the submit form
controllable action (line 4) allows a form to be submitted. Arguments specify
the form id, a timeout, and the id of a specific UI element which contains the
result of the executed task. Each arc in the model is mapped to an observable
event (e.g., line 22), that is an arbitrary Java boolean expression, where we typ-
ically make assertions on the resulting UI element (i.e., a WebElement object of
the Selenium [8] library package org.openqa.selenium). After the execution of
a controllable action, HYPpOTesT waits until one of the suitable observable
events happens and performs the selected transition. These operations are exe-
cuted by an automatically generated test harness (AspectJ instrumentation).
The MBT module generates test cases using the MDP specification and makes
them executable upon the SUT though the test harness.

Model-based Testing Framework. The main components of the testing frame-
work3 are: the MBT module responsible for test cases generation; the Selenium

3 Sources and instructions are publicly available at https://github.com/SELab-
unimi/mbt-module/tree/web-app.

6 M. Camilli et al.

WebDriver responsible for test cases execution; and the Inference module re-
sponsible for hypothesis testing.

The MBT module dynamically generates test cases from the MDP specifica-
tion according to an uncertainty-aware test case generation strategy. Essentially,
this strategy solves a dynamic decision problem [7] to compute the best explo-
ration policy π∗ that returns, for each state s, the actions that maximize the
probability to reach the uncertain θ parameters in the model. More technical
details on this strategy can be found in [2]. Thus, the testing process stochasti-
cally samples the state space by choosing those inputs that allow the uncertain
components of the SUT to be stressed out. To this end, the test harness pro-
vides a high-level view of the SUT behavior matching the abstraction level of
the MDP specification. Technically, it allows the actions selected by the explo-
ration policy π∗ to be translated into valid inputs for the SUT by means of the
Selenium WebDriver that interacts directly with the web UI. At the same time,
observable events provide a serialized view on the SUT behavior to keep track of
the execution trace and extract meaningful data to perform hypothesis testing.
From a theoretical perspective, the MBT module uses the test harness to con-
duct a input/output conformance game [2, 9] between the model and the SUT.
During the conformance game, hypothesis testing is carried out by the Inference
module that incrementally updates beliefs on θ parameters by using the Bayesian
inference formulation: Posterior ∝ Likelihood ·Prior. In our context, the Prior
and Posterior are conjugate distributions and the Posterior can be obtained by
applying a very efficient updating rule [2,5]. In fact, the Posterior is distributed
as Dir(α′), where α′ = α+(c1, ..., cn) with ci number of observations in category
i. At termination, the MBT module summarizes the Posteriors (by computing
the mean values) and calibrates the θ parameters.

Two termination conditions are currently supported by our testing frame-
work: a traditional condition based on the number of executed tests; and termi-
nation based on the convergence of the Bayes factor [5]. This latter condition,
in particular, is a model selection method that allows the testing activity to be
terminated when the θ parameters do not substantially change during the infer-
ence process. So, by using this latter method the Inference module decides when
inferred θ parameters are strongly supported by the data under consideration.

Testing UI. The UI allows information about hypothesis testing to be visual-
ized for human consumption. Three different canvas in the main window show:
the MBT model, the Posterior density functions, and a log produced by the
MBT module. The MDP model canvas contains an animated visualization of
the model. During testing, the UI highlights the current model state and the
current action selected by the test case generation strategy. The Probability
charts canvas displays the Posterior distributions so that the tester can see how
the inference process updates the knowledge on θ parameters while testing goes
on. The log canvas shows textual information generated by the MBT module for
each uncertain parameter: the number of executed tests, the summarization of
the Posterior density functions, and the Bayes factor.

Hypothesis Testing Toolkit for Uncertain Service-based Web Application 7

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

θ-
va

lu
e

#tests

inferred value
true value

Fig. 4. Inference of a θ parameter.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

random history uncertainty

R
E

, H
P

D
 w

id
th

strategy

Posterior RE
HDP width

Fig. 5. Inference effectivenes.

4 Evaluation

We are evaluating our testing framework by conducting a large testing campaign
of the U-Store application. Here we briefly discuss some significant results and
we refer the reader to our implementation for the replicability of the presented
data. To measure the effectiveness of HYPpOTesT, we artificially induced ab-
normal conditions due to sources of uncertainty. Namely, the services composing
the U-Store application have been configured to simulate service degradation
by means of failure rates and random delays. As an example, we forced the un-
certain payment component to have specific failure/error rates and we executed
our testing framework starting from wrong hypothesis (i.e., using an informa-
tive Prior having a relative error of 1.5). Fig. 4 shows how the uncertain suc-
cess rate associated with the payment service varies during hypothesis testing
of the U-Store. The uncertainty-aware strategy allows the probability to test
the payment component to be maximized during model-based exploration. As
long as evidence is collected, the Posterior knowledge is incrementally updated.
The termination condition based on the Bayes factor allows the uncertain θ pa-
rameter to be inferred with high precision (i.e., the order of magnitude of the
Posterior relative error is 10−2) after executing ∼ 8k tests.

We also compared the effectiveness of our uncertainty-aware test case gener-
ation strategy with two traditional model-based exploration strategies: a com-
pletely random walk approach; and a history-based exploration approach. Fig. 5
shows the accuracy in terms of Posterior relative error and Posterior Highest
Probability Density (HPD) region width, very often used as a measure of the
confidence gained after the inference activity (i.e., the smaller the region width,
the higher the accuracy). This comparative evaluation assumes equal effort (i.e.,
5k tests) spent using different strategies. For each strategy, we started the hy-
pothesis testing activity using a Prior with 0.5 relative error and 0.1 HPD region
width. In our running example, the uncertainty-aware strategy used by HYP-
pOTesT allows inference to be always more precise. On average, we measured
a decreased Posterior relative error by a factor of ∼ 50.

8 M. Camilli et al.

5 Conclusion

In this paper we presented HYPpOTesT, a model-based testing toolkit for uncer-
tain web service applications modeled in terms of MDPs. HYPpOTesT adopts an
online MBT technique that combines test case generation guided by uncertainty-
aware strategies and Bayesian inference. Namely, we focused on statistical hy-
pothesis testing of uncertain QoS parameters of the SUT. The U-Store applica-
tion was used throughout the paper to illustrate the features of the toolkit and
as validation benchmark.

As future work, we plan to study different fine grained uncertainty-aware
testing methods in order to assess whether delivered confidence out from test-
ing may be better if looking at specific and uncertain model-based properties
of interest. We also plan to enhance the toolchain that supports the proposed
approach with the ability to perform sensitivity analysis can be apportioned
to different experimental designs (e.g., traffic condition, frequency of requests,
workload of services).

References

1. Aichernig, B.K., Tappler, M.: Probabilistic black-box reachability checking. In:
Lahiri, S., Reger, G. (eds.) Runtime Verification. pp. 50–67. Springer International
Publishing, Cham (2017)

2. Camilli, M., Bellettini, C., Gargantini, A., Scandurra, P.: Online model-based test-
ing under uncertainty. In: 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). pp. 36–46 (Oct 2018)

3. Camilli, M., Gargantini, A., Scandurra, P., Bellettini, C.: Towards inverse uncer-
tainty quantification in software development (short paper). In: Cimatti, A., Sir-
jani, M. (eds.) Software Engineering and Formal Methods. pp. 375–381. Springer
International Publishing, Cham (2017)

4. Gerhold, M., Stoelinga, M.: Model-based testing of probabilistic systems. Formal
Aspects of Computing 30(1), 77–106 (Jan 2018)

5. Insua, D., Ruggeri, F., Wiper, M.: Bayesian Analysis of Stochastic Process Models.
Wiley Series in Probability and Statistics, Wiley (2012)

6. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: International
Conference on Performance Engineering. pp. 3–14 (2014)

7. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, NY, USA (1994)

8. Selenium HQ: WebDriver. https://www.seleniumhq.org/ (2019), online; accessed
June 2019

9. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model
programs. SIGSOFT Softw. Eng. Notes 30(5), 273–282 (2005)

10. Walkinshaw, N., Fraser, G.: Uncertainty-driven black-box test data generation.
In: International Conference on Software Testing, Verification and Validation. pp.
253–263 (2017)

11. Wang, C., Pastore, F., Briand, L.: Oracles for testing software timeliness with
uncertainty. ACM Trans. Softw. Eng. Methodol. 28(1), 1:1–1:30 (Nov 2018)

12. Zhang, M., Ali, S., Yue, T.: Uncertainty-wise test case generation and minimization
for cyber-physical systems. Journal of Systems and Software 153, 1 – 21 (2019)

