
Model-driven Language Engineering: the ASMETA case study

Angelo Gargantini
Dip. di Ing. Informatica e Metodi Matematici

Università di Bergamo, Italy
angelo.gargantini@unibg.it

Elvinia Riccobene, Patrizia Scandurra
Dip. di Tecnologie dell’Informazione

Università di Milano, Italy
{riccobene,scandurra}@dti.unimi.it

Abstract

This paper reports our experience in exploiting the meta-
modelling approach of model-driven language engineer-
ing to define a standard modelling language for the Ab-
stract State Machines (ASMs) formal method, and develop
a general framework (ASMETA) for a wide interoperabil-
ity of ASM tools in a model-driven development context.
We describe the requirements to fulfill and the design/-
implementation/validation/tools development steps neces-
sary to support such a language engineering life cycle.
We finally discuss the benefits/limits of a model-driven lan-
guage engineering approach with respect to traditional
techniques primarily used for the same goal.

1 Introduction
The model-based approach to software development pro-

motes models as first-class entities that need to be main-
tained, analyzed, simulated and otherwise exercised, and
mapped into programs and/or other models. In the con-
text of (software) language engineering, we refer to model-
driven language engineering when language descriptions
are first class artifacts of the model-based approach, and
the abstract syntax of the language is defined in terms of
a (usually object-oriented) model, called metamodel, which
allows separating the abstract syntax and semantics of the
language constructs from their different concrete notations.
Indeed, the metamodel of a language describes the vocabu-
lary of concepts provided by the language, the relationships
existing among those concepts, and how they may be com-
bined to create models. A metamodel based abstract syntax
definition has the great advantage of being suitable to de-
rive from the same metamodel (through mappings or pro-
jections) different alternative concrete notations, textual or
graphical or both, for various scopes like graphical render-
ing, model interchange, standard encoding in programming
languages, and so on, still maintaining the same semantics.
Therefore, a metamodel could be intended as a standard rep-
resentation of the language notation.

Here, we address the issue of applying the basic prin-
ciples of model-driven language engineering to the ASM
(Abstract State Machine) domain, in order to engineer a
metamodel-based language for ASMs [2, 6] and its asso-
ciated supporting tools.

The success of the ASMs as a system engineering
method able to guide the development of complex sys-
tems, from requirements capture to their implementation,
is nowadays widely acknowledged [2]. As discussed in
[14], a unified notation and interchange format is of primary
interest for the ASMs community, since ASM tools have
been usually developed by individual research groups, are
loosely coupled, and have syntaxes and internal representa-
tions of ASM models strictly depending on the implementa-
tion environment. This makes the encoding of ASM mathe-
matical models not always natural and straightforward and
makes the integration of tools hard to accomplish, so pre-
venting ASMs from being used in an efficient and tool sup-
ported manner during the software development life-cycle.

To achieve the goals of developing a unified abstract
notation for ASM, a notation independent from any spe-
cific implementation syntax and allowing a more direct en-
coding of the ASM mathematical concepts and constructs,
and tackling the problem of ASM tool inter-operability,
we exploited the metamodelling approach suggested by the
model-driven development.

In this paper, we report our experience in engineering a
standard metamodel-based modelling language for ASMs,
and building a general framework suitable to the devel-
opment of new ASM tools for ASMs and for the inte-
gration of existing ones. We describe the requirements,
the design/implementation/validation steps that are neces-
sary to support the (software) language engineering life
cycle, and we present a set of tools for ASMs that we
have developed by using the ASMs Metamodelling (AS-
META) framework [1], i.e. an instantiation of the OMG
MDA framework for the ASM domain. We summarize the
lessons learned by providing evidence of the benefits/limits
of model-driven language engineering. Although this work
is specific to the ASMs, our experience can be useful for de-



veloping metamodel-based languages based on the concepts
of “abstract state” and “transitions” for which, indeed, well-
established object-oriented metamodelling patterns may not
always be reused.

The remainder of this paper is organized as follows.
Sect. 2 introduces basic concepts underlying ASMs. Sect.
3 presents the overall process of engineering a language for
ASMs by metamodelling. It has implied the development of
the Abstract State Machine Metamodel (AsmM) as abstract
syntax description of the language, and the implementation
(obtained in a generative manner from the AsmM) of some
derivative artifacts. Sect. 4, discusses over benefits/limits
of model-driven language engineering compared to tradi-
tional techniques, like graph grammars, primarily used for
the same scope. Finally, related and future work are given
in Sect. 5.

2 Abstract State Machines
Abstract State Machines are an extension of FSMs,

where unstructured control states are replaced by states with
arbitrary complex data. The states of an ASM are multi-
sorted first-order structures, i.e. domains of objects with
functions and predicates defined on them, while the transi-
tion relation is specified by “rules” describing the modifica-
tion of the functions from one state to the next. A complete
mathematical definition of the ASM method can be found in
[2, 6]. The notion of ASMs moves from a definition which
formalizes simultaneous parallel actions of a single agent,
either in an atomic way, Basic ASMs, and in a structured
and recursive way, Structured or Turbo ASMs, to a gener-
alization where multiple agents interact Multi-agent ASMs.
Appropriate rule constructors also allow non-determinism
and unrestricted synchronous parallelism.

3 Model-driven language engineering
According to the metamodelling approach to (software)

language engineering, a language definition comprises:
– an abstract syntax, i.e. a metamodel representing in an ab-
stract (and possibly visual) way concepts and constructs of
the modelling language, and providing the means (usually
constraints) to distinguish between valid and invalid mod-
els, i.e. conformance;
– one or more concrete syntaxes, textual or visual o mixed,
derived from the metamodel as notation to be used by lan-
guage users to effectively write models conforming to the
langauge metamodel;
– a semantics, i.e. the abstract logical space in which mod-
els, written in the given language, find their meaning.

Therefore, the overall iterative – often we had to come
back to previous steps and make corrections – process of de-
veloping a metamodel-based language for ASMs and imple-
menting several artifacts (as concrete syntaxes, interchange
formats, APIs, etc.) and supporting tools consisted of the

following steps (later explained in detail):

1. Language requirements capture and analysis;
2. Choice of a metamodelling framework and supporting

technologies;
3. Language design by metamodelling;
4. Implementation of language artifacts, i.e. metamodel

derivatives, to handle ASM models:
(a) an interchange syntax, usually XMI/XML-based,
for serializing ASM models;
(b) APIs to access and manipulate ASM models in a
model repository or metamodelling framework;
(c) one or more concrete syntaxes (textual, graphical,
or mixed) for human use with their associated parsers
for conformance-checking of models against the meta-
model;

5. Validation of the metamodel and its derivatives;
6. Development of tools based on the chosen metamod-

elling framework and of SW artifacts to integrate ex-
isting tools with the new framework.

A metamodel provides a unifying framework in which
to ensure and check model conformance. Steps 3. and
4., in fact, lead to an instantiation of the chosen metamod-
elling framework for a specific domain of interest, that for
the ASM domain we called ASMETA (ASMs METAmod-
elling).

3.1 Language requirements analysis

We started collecting all material available on the ASM
theory and tool support. We took [2] as reference for official
documentation about the ASM theory.

Regarding the languages adopted by existing ASM
tools1, we observe that they all are ad-hoc extensions of the
implementation languages (namely Gofer for AsmGofer,
.Net languages for AsmL, C for XASM, ML for ASM-SL,
Promela, SMV and PVS for model analysis tools), devel-
oped to encode an ASM formal model into the language of
the implementation environment. Therefore, all these tool
languages have syntaxes strictly depending on the imple-
mentation environment, provide different representations of
ASM models, and have proprietary constructs which extend
the basic mathematical concepts of the ASMs. This causes
two main disadvantages for a practical and efficient use of
ASMs in system development. First, a practitioner needs to
map mathematical concepts, like ASM states (namely uni-
verses and functions defined on them), into types and struc-
tures provided by the target language; therefore, the process
of encoding ASM models is not always straightforward and
natural. Second, all these tools are loosely coupled and their
integration is hard to accomplish.

1See http://www.eecs.umich.edu/gasm/tools.html for a list of ASM
tools.



Metamodelling the ASM formal notation was the solu-
tion adopted in order to: (i) develop a unified notation, in-
dependent from any specific implementation syntax and al-
lowing a more direct encoding of the ASM mathematical
concepts and constructs, and (ii) tackle the problem of ASM
tool inter-operability.

3.2 Choice of a metamodelling framework

As metamodelling framework, we initially chose the
OMG MDA framework – the mainstream at the time we
started [14], based on object oriented technology –, al-
though many other platforms implementing the model-
based development principles exist now, like the AMMA
metamodelling platform, the Xactium XMF Mosaic initia-
tive, the Software Factories and their Microsoft DSL Tools,
the Model-integrated Computing (MIC), the Generic Mod-
eling Environment for domain-specific modelling, and the
Eclipse Modelling Framework.

We used the OMG’s Meta Object Facility (MOF) as
meta-language, i.e. as language to define metamodels, the
model repository proposed by the MDR (Model Driven
Repository) of NetBeans, and the OCL support provided by
the OCLE tool.

Thanks to well-mastered model transformations, like the
ATL-KM3 plugin which allows to move forward and back-
ward in the EMF [3] and MOF modelling spaces, the choice
of a specific metamodelling framework does not prevent the
use of models in other different modelling spaces.

3.3 Language design by metamodelling

In a model-based approach, the abstract syntax of a lan-
guage is defined in terms of a metamodel, which describes
the vocabulary of concepts provided by the language, the
relationships existing among those concepts, and how they
may be combined to create models. In [1], a complete meta-
model for ASMs is presented.

The AsmM (Abstract State Machines Metamodel) results
into class diagrams developed using the MOF modeling
constructs (classes, packages, associations).

We developed the metamodel in a modular and bottom-
up way. We started separating the ASM static part repre-
sented by the state, namely domains, functions and terms,
from the dynamic part represented by the transition system,
namely the ASM rules. Then, we proceeded to model Ba-
sic ASMs, so reflecting the natural classification of abstract
state machines. The whole and precise architecture came
later, at the end of the metamodelling process (see Fig. 1).

The complete metamodel is organized in one pack-
age called ASMETA containing 115 classes, 114 associa-
tions, and 150 OCL class invariants, approximatively. The
ASMETA package is further divided into four packages as
shown in Fig. 1. Each package covers different aspects of
the ASMs. The dashed ovals in Fig. 1 denote the packages
representing the notions of State and Transition System, re-

Figure 1. AsmM package structure

spectively. The Structure package defines the architec-
tural constructs (modules and machines) required to spec-
ify the backbone of an ASM model. The Definitions
package contains all basic constructs (functions, domains,
constraints, rule declarations, etc..) which characterize al-
gebraic specifications. The Terms package provides all
kinds of syntactic expressions which can be evaluated in
a state of an ASM. The TransitionRules package
contains all possible transition rules schemes of Basic and
Turbo ASMs. All derived transition rules are contained in
the DerivedTransitionRules package. All relations
between packages are of type uses.

Each class of the metamodel is equipped with a set of
relevant constraints, OCL (version 2.0) invariants written to
fix how to meaningfully connect an instance of a construct
to other instances, whenever this cannot be directly derived
from the class diagrams.

AsmM is also available in the meta-languages
AMMA/KM3 and in EMF/Ecore thanks to the ATL-
KM3 plugin, which allows model transformations both in
the EMF and MOF modelling spaces.

To define the semantics of the metamodel, we have es-
tablished a semantic mapping from AsmM to a semantic
domain where AsmM constructs take their meaning. The
semantic domain is the first- order logic extended with a
logic for function updates and for transition rule construc-
tors formally defined in [2].

3.4 Language artifacts implementation

Whenever a language or formalism is specified in terms
of a MOF-compliant metamodel, it is possible to automat-
ically (or semi-automatically) generate several artifacts –
here referred as language artifacts – from the metamodel
by exploiting standard or proprietary projections from MOF
to other technical spaces [11]. Fig. 2 shows, in particular,
three projections that we used in order to generate:
– an XMI (XML Metadata Interchange) interchange format
for ASMs; The main purpose of XMI is to provide an easy
interchange of data and metadata between modeling tools.



Figure 2. MOF Projections

– JMI (Java Metadata Interfaces) APIs for the creation, stor-
age, access and manipulation of ASM models in a MOF-
based instance repository; They can be used by tool devel-
opers to speed up the creation of tools supporting ASMs
and by researchers to experiment algorithms over ASMs.
– a concrete textual notation, called AsmetaL (ASMETA
Language), and its parser to effectively edit ASM models
conforming to the AsmM metamodel.

From MOF to EBNF: derivation of a textual concrete
syntax. A metamodel provides an abstract syntax for a
language with the advantage of deriving (through well-
established mappings or projections) different alternative
concrete notations, textual or visual or mixed, to be used for
different goals, all sharing the same language semantics.

From the AsmM metamodel we derived a concrete syn-
tax, called AsmetaL, as a textual notation to write ASM
models conforming to the AsmM. To this end, initially,
we investigated the use of tools like HUTN (Human Us-
able Textual Notation) [9] or Anti- Yacc [7] which are
capable of generating text grammars from specific MOF-
based repositories. Nevertheless, we decided not to use
them since they do not permit a detailed customization of
the generated language and they provide concrete notations
strongly reflecting the object-oriented nature of the MOF
meta-language, while ASM is not an object-oriented for-
malism (even though it can model OO concepts). There are
better MOF-to-grammar tools now, like xText of OpenAr-
chitectureWare or TCS of AMMA, which we may consider
to adopt in the future.

In [5], we defined general rules on how to derive a
context-free EBNF (Extended Backus-Naur Form) gram-
mar from a MOF-compliant metamodel, and we use these
mapping rules to derive an EBNF grammar from the AsmM.
The AsmetaL textual notation is the resulting language. It is
completely independent from any specific platform and al-
lows a natural and straightforward encoding of ASM mod-

els according to the AsmM metamodel (the abstract syntax).
AsmetaL consists of four parts reflecting the AsmM

packages: the structural language providing the constructs
describing the structure of an ASM, the definitional lan-
guage providing a notation for basic ASM elements such
as functions, domains, rules, and axioms, the language of
terms providing syntactic expressions to be evaluated in an
ASM state, and the language of rules providing a notation
for transition rule schemes of an ASM.

We do not present here details of AsmetaL. Its complete
EBNF grammar can be found in [1]. In [5], we also pro-
vided guidance on how to automatically assemble a script
file and give it as input to the JavaCC parser generator to
generate a parser for the EBNF grammar of the AsmetaL
notation. This parser is more than a grammar checker: it is
able to process ASM models written in AsmetaL, to check
for their well-formedness with respect to the OCL con-
straints of the AsmM metamodel, and to create instances of
the AsmM metamodel in a MDR MOF repository through
the use of the AsmM-JMIs.

3.5 Language validation

The validation of a metamodel-based language requires
the validation of the metamodel defining the abstract syntax
of the language and of the metamodel derivatives (concrete
syntaxes, APIs, etc.) representing the language artifacts.

The AsmetaL notation is the concrete syntax counterpart
of the AsmM metamodel, therefore one way to validate the
metamodel consists in validating the expressive power of
AsmetaL w.r.t. ASM mathematical models, namely to test
if AsmetaL is suitable to encode not trivial ASM specifica-
tions and if the encoding process of mathematical models is
natural and straightforward. Furthermore, we validate the
capability of AsmetaL to support the great variety of ASM
specifications written in different ASM dialects. To this
purpose, we encoded a great number of specifications (up
to now we have about 140 ASM specification files in [1]),
and we also asked to a non ASM expert to port in AsmetaL
some specifications from [2] and other written in AsmGofer
ans ASML. The task was completed within approximately
three man months. Moreover, we evaluated the coverage of
the metamodel obtained by our examples by instrumenting
the parser of AsmetaL with EMMA, a free Java code cover-
age tool, and by parsing all the examples. We have checked
that all the metamodel constructs are covered at least once.

Validating the language artifacts means to check if the
AsmM-specific XMI and JMIs provide the desired global
infrastructure for inter-operability and integration of ASM
tools, as well as the suitable support in terms of specifica-
tion language, abstract storage (i.e. the MOF-based model
repository), APIs, interchange format, etc., to develop new
ASM tools. To test the feasibility of tool inter-operability
within the ASMETA framework and to evaluate the effort



Figure 3. The ASMETA tool set

required to modify existing code, we made ATGT, an exist-
ing tool supporting test case generation for ASMs (written
using the AsmGofer syntax), AsmM-compliant. To test the
advantages offered by the ASMETA metamodelling frame-
work to build new tools, we have developed a simulator for
ASM models, called AsmetaS. It operates directly on in-
stances of ASM models in the ASMETA repository, which
is a metadata repository based on the MDR Netbeans li-
braries. AsmetaS reads ASM models in terms of JMI ob-
jects and, at every step, builds the update set according to
the theoretical definitions given in [2] to construct the run
of the model under simulation. Therefore, the AsmetaS
development did not require to implement a parser, a type
checker, and an internal representation of the model to sim-
ulate. The specification in the repository can be loaded from
textual AsmetaL files by using the AsmetaL parser, but As-
metaS works regardless the way models are loaded in the
repository.

3.6 Development and integration of tools

We take advantage of the metamodelling approach to de-
velop a set of tools for ASMs – the ASMETA tool set avail-
able in [1] – based on the ASMETA framework.

The ASMETA tool set components (see Fig. 3) includes,
among other things, a textual notation, AsmetaL, to write
ASM models (conforming to the AsmM) in a textual and
human-comprehensible form; a text-to-model compiler, As-
metaLc, to parse AsmetaL models and check for their con-
sistency w.r.t. the AsmM OCL constraints; a simulator, As-
metaS, to execute ASM models; the Avalla language for
scenario-based validation of ASM models, with its support-
ing tool, the AsmetaV validator; the ATGT tool that is an
ASM-based test case generator based upon the SPIN model
checker; a graphical front-end called ASMEE (ASM Eclipse
Environment) which acts as IDE and it is an eclipse plug-in.

All the above artifacts/tools are classified in: generated,
based, and integrated. Generated artifacts/tools are deriva-
tives obtained (semi-)automatically by applying appropriate
MOF projections to the technical spaces Javaware, XML-
ware, and grammarware. Based artifacts/tools are those de-
veloped exploiting the ASMETA environment and related
derivatives; an example of such a tool is the simulator As-
metaS). Integrated artifacts/tools are external and existing
tools that are connected to the ASMETA environment.

Our overall goal in developing the ASMETA tool set
is to: (a) provide an intuitive modelling notation hav-
ing rigourous syntax and semantics, possibly supporting a
graphical view of the model; (b) allow modelling techniques
which facilitate the use of the ASMs in many stages of the
development process, and analysis techniques that combine
validation (by simulation and testing) and verification (by
model checking or theorem proving) methods at any de-
sired level of detail; and (c) support an open and flexible
architecture to make easier the development of new tools
and integration with other existing tools.

4 Lesson learned
In general, we can identify some significant benefits we

get in exploiting the metamodelling approach for language
engineering. First, a metamodel could serve as standard
interlingua establishing a common terminology to discrim-
inate pertinent elements to be discussed during language de-
sign, and therefore, helps to communicate understandings,
especially if – as in the case of the ASMs – the underlying
language is a still evolving formal method and the commu-
nity is too much heterogeneous to easily come to an agree-
ment on the further development of the method itself.

Second, the metamodel-based approach has the advan-
tage of being suitable to derive from the same metamodel
(through mappings or projections) several artifacts (con-
crete syntaxes, interchange formats, APIs, etc.) – here
also called language artifacts – which are useful to cre-
ate, access, transform, manage and interchange models in a
model-driven development context, settling, therefore, also
a flexible object-oriented infrastructure for tools develop-
ment and inter-operability. This framework allowed us to
develop new tools like AsmetaS and AsmetaV with a very
limited effort.

Third advantage, especially important for formal nota-
tions, is that people often claim that formal methods are
too difficult to put in practice due to their mathematical-
based foundation. In this direction, an abstract and (possi-
bly) visual representation, like the one provided by a MOF-
compliant metamodel, delivers a more readable view of the
modeling primitives offered by a formal method, especially
for people, like students, who do not deal well with mathe-
matics but are familiar with the standard MOF/UML.

Furthermore, we like to remark that, although the task
of defining a metamodel for a language is not trivial and its
complexity closely matches that of the language being con-
sidered, the effort of developing from scratch a new EBNF
grammar for a complex formalism, like the ASMs, would
not be less than the effort of defining a MOF-compliant
metamodel for the ASMs, and then deriving a EBNF gram-
mar from it. Moreover, one has to consider the great pos-
sibility of being able to derive, from the same metamodel,
different alternative concrete notations, textual or visual or



both, for various goals like graphical rendering, model inter-
change, standard encoding in programming languages, etc.

Finally, metamodelling allows to settle a “global frame-
work” to enable otherwise dissimilar languages (of possibly
different domains) to be used in an interoperable manner
in different technical spaces [11], namely working contexts
with a set of associated concepts, knowledge, tools, skills,
and possibilities. Indeed, it allows to establishment precise
bridges (or projections) among different domain-specific
languages to automatically execute model transformations.

5 Related work and future directions
Concerning the metamodelling technique for language

engineering, we can mention the official metamodels sup-
ported by the OMG for MOF itself, for UML, for OCL,
etc. Academic communities like the Graph Transformation
community [8, 15] and the Petri Net community [13], have
also started to settle their tools on general metamodels and
XML-based formats. A metamodel for the ITU language
SDL-2000 has been also developed [4]. Recently, a meta-
model for the AsmL language is available as part of a zoo of
metamodels defined by using the KM3 meta-language [10].
However, this metamodel is not appropriately documented
or described elsewhere, so this prevented us to evaluate it
for our purposes.

Developing a grammar for the ASMs from the meta-
model was challenging and led us to the definition of a
bridge between grammars and metamodels as explained
in [5]. This part of the process required at least six man
month. Although we did not automatize these rules, since
we wanted to derive only one grammar for AsmetaL, the
rules could be easily reused for other formalisms.

Future work will include the integration of more ex-
isting tools and the development of new ones in the AS-
MEE IDE to better support model evolution activities [12]
such as model refinement, model refactoring, model incon-
sistency management, etc. Today, only limited support is
available in model-based development tools for these activ-
ities, but a lot of research is being carried out in this par-
ticular field, especially for language engineering, to estab-
lish synergies between model-based approaches and many
other areas of software engineering including software re-
verse and re-engineering, generative techniques, grammar-
ware, aspect-oriented programming, etc.

The definition of a means for specifying languages se-
mantics rigorously and natively within their metamodels is
currently an open and crucial issue in the model-driven con-
text. What is required is a metamodelling environment suf-
ficiently rich to express all syntactic and semantic aspects
of a language. We believe this goal can be achieved by
integrating metamodelling techniques with formal methods
providing the requested and lacked rigour and preciseness.
We think that the ASM formal method is a good candidate

for this goal, and currently we have been working on defin-
ing a formal semantic framework to express the dynamic
(possibly executable) operational semantics of metamodel-
based languages in a multi-domain environment, by pro-
viding different techniques showing how the ASM formal
method can be integrated, and in some cases promoted as
metalanguage, with metamodel engineering environments.

References
[1] The Abstract State Machine Metamodel website. http://

asmeta.sf.net/, 2006.

[2] E. Börger and R. Stärk. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer Verlag,
2003.

[3] Eclipse Modeling Framework. http://www.eclipse.
org/emf/, 2008.

[4] J. Fischer, M. Piefel, and M. Scheidgen. A Metamodel for
SDL-2000 in the Context of Metamodelling ULF. In Fourth
SDL And MSC Workshop (SAM’04), pages 208–223, 2004.

[5] A. Gargantini, E. Riccobene, and P. Scandurra. Deriving a
textual notation from a metamodel: an experience on bridg-
ing Modelware and Grammarware. In 3M4MDA’06 work-
shop at the European Conference on MDA, 2006.

[6] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In
E. Börger, editor, Specification and Validation Methods,
pages 9–36. Oxford University Press, 1995.

[7] D. Hearnden, K. Raymond, and J. Steel. Anti-Yacc: MOF-
to-text. In Proc. of EDOC, pages 200–211, 2002.

[8] R. Holt, A. Schürr, S. E. Sim, and A. Winter. Graph
eXchange Language. http://www.gupro.de/GXL/
index.html.

[9] OMG, Human-Usable Textual Notation, v1.0. Document
formal/04-08-01. http://www.uml.org/.

[10] F. Jouault and J. Bézivin. KM3: a DSL for metamodel spec-
ification. In Proceedings of 8th IFIP International Confer-
ence on Formal Methods for Open Object-Based Distributed
Systems, Bologna, Italy, 2006.

[11] I. Kurtev, J. Bézivin, and M. Aksit. Technical Spaces: An
Initial Appraisal. In CoopIS, DOA’2002, Federated Confer-
ences, Industrial track, Irvine, USA, 2002.

[12] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri. Challenges in software evo-
lution. In International Workshop on Principles of Software
Evolution (IWPSE’05), 2005.

[13] Petri Net Markup Laguage (PNML). http://www.
informatik.hu-berlin.de/top/pnml.

[14] E. Riccobene and P. Scandurra. Towards an Interchange Lan-
guage for ASMs. In W. Zimmermann and B. Thalheim, edi-
tors, Abstract State Machines. Advances in Theory and Prac-
tice, LNCS 3052, pages 111 – 126. Springer, 2004.

[15] G. Taentzer. Towards common exchange formats for graphs
and graph transformation systems. In J. Padberg (Ed.), UNI-
GRA 2001: Uniform Approaches to Graphical Process Spec-
ification Techniques, satellite workshop of ETAPS, 2001.


