
Scenario-based Validation of Embedded Systems∗

A. Gargantini
DIIMM, Università di Bergamo, Italy

angelo.gargantini@unibg.it

E. Riccobene, P. Scandurra, A. Carioni
DTI, Università di Milano, Italy

{riccobene, scandurra, carioni}@dti.unimi.it

Abstract

This paper describes a scenario-based methodology
for system-level design validation based on the Abstract
State Machines formal method. This scenario-based
approach complements an existing model-driven design
methodology for embedded systems based on the Sys-
temC UML profile. It allows the designer to function-
ally validate system components from SystemC UML
designs early at high levels of abstraction and without
requiring strong skills and expertise on formal meth-
ods. A validation tool integrated into an existing model-
driven co-design environment to support the proposed
scenario-based validation flow is also presented.

1 Introduction

SystemC (built upon C++) has emerged as de
facto, open [20], industry-standard language for system-
level models, specifically targeted at architectural, al-
gorithmic, transaction-level modelling of embedded sys-
tems. [27]. Recently, a further improvement has been
achieved by exploiting lightweight software modelling
languages like UML (Unified Modeling Language) [28]
to describe system specifications and generate from
them executable models in C/C++/SystemC. See the
numerous standardization activities controlled by the
OMG group [19] like the Schedulability, Performance,
and Timing Analysis (SPT) profile, the recent UML ex-
tension for SoC (USoC), the SysML proposal, which ex-
tends UML towards the Systems Engineering domain,
and the MARTE (Modeling and Analysis of Real-Time
Embedded systems) initiative. Along the same research
line, according to the Model Driven Engineering (MDE)
approach, in [25] a model-driven design methodology
for embedded systems is introduced. It is based on the
UML 2, a SystemC UML profile (for the HW side),
and a multi-thread C UML profile (for the SW side).
It allows system modelling at higher levels of abstrac-
tion (from a functional executable level down to RTL

∗This work is supported in part by the project Model-
driven methodologies and techniques for embedded system design
through UML, ASMs and SystemC at STMicroelectronics.

level). The methodology is fostered by a design process
called UPES (Unified Process for Embedded Systems)
[26] which extends the conventional Unified Process
(UP), and by the UpSoC (Unified Process for SoC) sub-
process of UPES for refining the HW platform model.

However, UML-like design methods are not yet well
supported by effective formal analysis (validation &
verification) techniques. Formal methods and analysis
tools have been most often applied to low level hardware
design. But, these techniques are not applicable to sys-
tem descriptions given in terms of programs of system-
level languages like SystemC, since such languages are
closer to concurrent software than to traditional hard-
ware description [29], and the focus in the literature so
far has been mainly on traditional code-based simula-
tion techniques. Moreover, classical analysis techniques
are not directly applicable to UML-based design meth-
ods, due to their lack of a strong mathematical founda-
tion necessary for formal model analysis.

We address the problem of formally analyzing high-
level UML-like embedded system descriptions by com-
bining model-driven modelling languages with formal
notations (like ASMs, Object-Z, Petri Nets, etc.) ca-
pable of eliminating ambiguities in the UML seman-
tics. We here show how to complement the design
methodology in [25] with a formal process for high
level system validation involving the Abstract State
Machines (ASMs) formal method [6] and the ASMETA
(ASM mETAmodelling) toolset [4] as supporting anal-
ysis tools around ASMs. The choice of the ASMs as
formal method is intentional and due to the fact that
this method comes with a rigourous scientific founda-
tion [6], and since it provides executable specifications,
it is suitable for high-level model validation. Valida-
tion is intended as the process of investigating a model
with respect to its user perceptions, in order to ensure
that the specification really reflects the user needs and
statements about the application, and to detect faults
in the specification as early as possible with limited ef-
fort. Validation should precede the application of more
expensive and accurate methods, like formal verifica-
tion of properties, that should be applied only when a
designer has enough confidence that requirements satis-

faction is guaranteed. Moreover, the validation activity
should be supported by tools allowing the user to effec-
tively interact with the specification/prototype.

In this paper, we propose a scenario-based approach
to system-level design validation which allows the de-
signer to build critical scenarios reflecting given require-
ments to be guaranteed and check for requirements sat-
isfaction. System components from SystemC UML de-
signs can be, therefore, functionally validated early at
high levels of abstraction, and even in a transparent
way, i.e. no strong skills and expertise on formal meth-
ods are required to the user. We also present the val-
idation tool integrated into the model-driven HW-SW
co-design environment originally presented in [24] to
support the scenario-based validation flow. As a proof-
of-concept, the paper reports the results of the scenario-
based validation for the well-known Simple Bus case
study from the SystemC distribution.

This paper is organized as follows. Sect. 2 provides
some background on the ASMs and their supporting
toolset. Sect. 3 briefly reminds the model-driven HW-
SW co-design environment architecture of [24] and its
components features. Sect. 4 focus on the new val-
idation component of this environment by describing
the mapping from the SystemC UML models to ASM
models and the scenario-based approach for high-level
validation of SystemC UML models. Sect. 5 provides
some results of the scenario-based validation of the Sim-
ple Bus case study. Sect. 6 quotes some relevant related
work. Finally, Sect. 7 concludes the paper.

2 ASMs and ASMETA

Abstract State Machines are an extension of FSMs,
where unstructured control states are replaced by states
with arbitrary complex data. The states of an ASM are
multi-sorted first-order structures, i.e. domains of ob-
jects with functions and predicates defined on them,
while the transition relation is specified by “rules” de-
scribing the modification of the functions from one state
to the next. A complete mathematical definition of
the ASM method can be found in [6]. The notion of
ASMs moves from a definition which formalizes simul-
taneous parallel actions of a single agent, either in an
atomic way, Basic ASMs, and in a structured and recur-
sive way, Structured or Turbo ASMs, to a generalization
where multiple agents interact Multi-agent ASMs. Ap-
propriate rule constructors also allow non-determinism
and unrestricted synchronous parallelism.

The ASMETA (ASM mETAmodelling) toolset [9, 4]
is a set of tools around ASMs developed according to
the model-driven development principles. At the core
of the toolset, the AsmM metamodel [4] is a complete
meta-level representation of ASMs concepts based on
the OMG’s Meta-Object-Facility (MOF) [16]. AsmM
is also available in the meta-language EMF/Ecore [3]

thanks to the ATL-KM3 plug-in [2], which allows model
transformations both in the EMF and MOF.

The ASMETA toolset includes: a notation, As-
metaL, to write ASM models conforming to the AsmM
in a textual and human-comprehensible form; a text-to-
model compiler, AsmetaLc, to parse AsmetaL models
and check for their consistency w.r.t. the AsmM OCL
constraints; a simulator, AsmetaS, to execute ASM
models; the Avalla language, a domain-specific mod-
elling language for scenario-based validation of ASM
models, with its supporting tool, the AsmetaV valida-
tor; and the ATGT tool that is an ASM-based test case
generator based upon the SPIN model checker [14].

3 Model-driven co-design environment

The overall co-design environment presented in [24]
works as front-end for consolidated lower level co-design
tools, and is intended to assist the designer across the
refinement steps in the modelling activity, from a high-
level functional UML model of the system down to the
SystemC RTL. Fig. 1 shows the environment archi-
tecture. The environment consists of two major parts:
a development kit (DK) with design and development
components, and a runtime environment (RE) that is
the SystemC execution engine.

Figure 1. Tool architecture

The DK consists of a UML2 modeler supporting
the UML profile for SystemC and for multi-thread
C, translators for forward/reverse engineering to/from
C/C++/SystemC. The modeler is based on the Enter-
prise Architect (EA) UML tool [8] by SparxSystems.

4 The Validation component

Fig. 1 exposes (inside a dashed rectangular) a V&V
tool as new component of the co-design environment. It
is built upon the ASMETA toolset and should guaran-
tee traceability and correctness along the UPSoC design
process from a UML high-level abstract description of
the system to the final SystemC implementation. The
validation component architecture is depicted in Fig.
2 together with the phases (denoted in the figure with

Figure 2. V&V toolset

a number and a label) the designer (or analyst) un-
dertakes in the scenario-based validation process. The
process starts by applying the mapping (phase 1) of
the SystemC-UML model of the system (exported from
the EA-based modeler in Fig. 1) into a corresponding
ASM model (written in AsmetaL). This transformation
is defined (once for all) by establishing a set of seman-
tic mapping rules between the SystemC UML profile
and the AsmM metamodel (see below). The UML2AsmM
transformation is completely automatized by means of
the ATL transformation engine [2] developed as a pos-
sible implementation of the OMG QVT [22] standard.

Once the ASM model of the system is generated,
the designer can do basic simulation (phase 2) and
scenario-based validation (phase 3). A brief descrip-
tion of each activity follows. Note that as required skills
and expertise the designer has to familiarise with the
SystemC UML profile (embedded in the EA-based mod-
eler), and with very few commands of the Avalla textual
notation to write pertinent validation scenarios.

Mapping from SystemC UML profile to AsmM
In this step the SystemC UML model provided in input
from the EA tool is transformed into a corresponding
ASM model (an instance of the AsmM metamodel). In
order to provide a one-to-one mapping (for both the
structural and behavioural aspects), first we had to ex-
press in terms of ASMs the SystemC discrete (absolute
and integer-valued) and event-based simulation seman-
tics. To this goal, we took inspiration from the ASM
formalization of the SystemC 2.0 simulation semantics
in [18] to define a precise and executable semantics of
the SystemC UML profile and, in particular, of the
SystemC scheduler and the SystemC process state ma-
chines (an extension of the UML statecharts for mod-
elling the behaviour of the reactive SystemC processes).
We then proceeded to model in ASMs the predefined
set of interfaces, ports and primitive channels (the Sys-
temC layer 1), and SystemC-specific data types. The
resulting SystemC-ASM component library is available
as target of the UML2AsmM transformation process.

Exploiting the SystemC-ASM component library, a

SystemC module M is mapped into an ASM containing
in its signature a dynamic abstract domain M. This do-
main is the set of instances that can be created by the
corresponding module. Module attributes and ports of
type T are mapped into controlled ASM functions de-
clared in the signature of the ASM corresponding to the
module. Basically, these functions have M as domain,
and T as codomain. Multiplicity and properties (like
ordered, unique, etc..) of attributes and ports are cap-
tured by the codomain types of the corresponding func-
tions. A multi-port of type T, for example, is mapped
into a controlled ASM function with codomain P(T),
i.e. the mathematical powerset of T . A hierarchical
channel is treated as a module. A primitive channel is
mapped, instead, into a concrete sub-domain of the pre-
defined abstract domain PrimChannel, which is part of
the SystemC-ASM component library provided as foun-
dational semantic basis. An event is mapped into an
element of a predefined abstract domain Event.

For the behavioural part, a process (a sc thread or
a sc method) is mapped into an element of a prede-
fined abstract domain Process. A process behaviour
within a module is defined by a named, possibly pa-
rameterized, transition rule declared within the ASM
corresponding to the container module. Moreover,
since in the SystemC process state machines, control
structures (like if-then-else, while loop, etc.) and
process synchronization points (statements like wait,
static_wait, dont_initialize, etc.) are modelled in
terms of stereotyped pseudo-states (junction or choice)
and states, respectively, a one-to-one mapping is de-
fined between the state-like diagram of the process be-
haviour and the basic ASM rule constructs (if-then-else
rule, seq rule, etc.). Some special ASM rule constructs,
however, have been introduced in the SystemC-ASM
component library in order to capture in ASMs the se-
mantics underlying all possible forms of synchronization
calls (which require dealing with the ASM agent rep-
resenting the SystemC scheduler). In particular, the
infinite loop mechanism of a thread has been modelled
with a specific design pattern of ASM rule constructors.

As example of application of such mapping, Fig. 3
shows the UML notation, the SystemC code, and the
resulting ASM (in AsmetaL) for a module.

Basic simulation The AsmetaS simulator interprets
ASM models (as instances of the AsmM metamodel).
It can be used in a standalone way to provide basic
simulation of the overall system behaviour. As key
features for model validation, AsmetaS supports axiom
checking (to check whether axioms expressed over the
currently executed ASM model are satisfied or not),
consistent updates checking for revealing inconsistent
updates, random simulation, and configurable logging
facilities to inspect the machine state. Axiom check-
ing and random simulation allow the user to perform a

(A)
class MyModule:
public sc module{
// an attribute of type T
T myAttr;
// a port
sc port<C> myPort;
// an operation
void myOp(..) {..}
//constructor
M(...) {...}

... }

(B)

asm MyModule
signature:
dynamic abstract domain M
//controlled functions
controlled myAttr: M−>T
controlled myPort: M−>C

definitions:
// named transition rules
rule r myOp(...) = ...
rule r initM($m in M,..) = ...
...

(C)

Figure 3. A UML module (A), its SystemC code
(B) and its corresponding ASM (C)

draft system validation with minimal effort.

Scenario-based functional validation The As-
metaV validator is based on the AsmetaS simulator and
on the Avalla modelling language. This last provides
constructs to express execution scenarios in an algo-
rithmic way as interaction sequences consisting of ac-
tions committed by the user actor to set the environ-
ment (i.e. the values of monitored/shared functions),
to check the machine state, to ask for the execution
of certain transition rules, and to enforce the machine
itself to make one step (or a sequence of steps by step
until) as reaction of the actor actions. AsmetaV reads
a user scenario written in Avalla (see Fig. 2), it builds
the scenario as instance of the Avalla metamodel by
means of a parser, it transforms the scenario and the
AsmetaL specification which the scenario refers to, to
an executable AsmM model. Then, AsmetaV invokes
the AsmetaS interpreter to simulate the scenario. Dur-
ing simulation the user can pause the simulation and
watch the current state and value of the update set at
every step, through a watching window. During sim-
ulation, AsmetaV captures any check violation and if
none occurs it finishes with a “PASS” verdict. Besides
a “PASS”/“FAIL” verdict, during the scenario running
AsmetaV collects in a final report some information
about the coverage of the original model; this is use-
ful to check which transition rules have been exercised.

5 The Simple Bus case study

The Simple Bus case study is a well-known trans-
actional level example, designed to perform also cycle-
accurate simulation. It is made of about 1200 lines of
code that implement a high performance, abstract bus
model. The complete code is available at the official
SystemC web site [20].

The Simple Bus system was modelled [23] in a for-

ward engineering flow using the SystemC UML profile.
The UML object diagram in Fig. 4 shows the internal
collaboration structure of the objects involved in a spe-
cific configuration of the Simple Bus design: three mas-
ter blocks (a blocking master master_b, a non-blocking
master master_nb, and a monitor master_d; two slave
memories (one fast, mem_fast and one slow, mem_slow);
a bus connecting masters and slaves; an arbiter with
a priority-based arbitration to select a request to serve
and with bus-locking support; a clock generator C11.
Every master submits read/write requests to the bus
at regular time instants. The designer assigns a unique
priority to each master: master_nb has priority 3, while
master_b has priority 4. Masters can issue a request at
the same time, so the arbiter must choose one request
according to some deterministic rules. In the simplest
case, precedence is accorded to the device with higher
priority2, in our case the non-blocking master has pri-
ority 3 which is higher (following a decreasing order)
than the priority 4 of the blocking master. When a
master occupies the bus, an incoming request is there-
fore queued and served later in a different time instant,
or served from the next clock cycle if it has a higher pri-
ority (and the current request will be terminated later).

Figure 4. Simple Bus – UML object diagram

To illustrate the typical use of the Avalla language
in writing validation scenarios, below we report two
scenario examples and their related validation results
for the Simple Bus design. The first scenario shows
how high level modelling tools like AsmetaV/Avalla are
helpful to abstract and stand out monitoring and de-
bugging functionality, typically embedded within the
SystemC design (in our case within the master_d mon-
itor, the arbiter, and the bus) by inserting C++ code
lines, thus further alleviating the designers’burden of

1Note that all connectors are intented as stereotyped with
«sc connector».

2Two devices can not have the same priority, so the determin-
ism is assured.

writing code. The second scenario shows instead how
to validate the fairness of the arbitration rules adopted
for scheduling the masters requests.

Scenario s1: At given time instants, the memory lo-
cations between the address 120 and the address 132 are
read (directReadBus). The actual values must match
the expected values.

scenario s1 load Top.asm
step until time = 0 and phase = TIMED NOTIFICATION;
check directReadBus(bus, 120) = 0

and directReadBus(bus, 124) = 0
and directReadBus(bus, 128) = 0
and directReadBus(bus, 132) = 0;

step until time = 1600 and phase = TIMED NOTIFICATION;
check directReadBus(bus, 120) = 16

and directReadBus(bus, 124) = 0
and directReadBus(bus, 128) = 0
and directReadBus(bus, 132) = 0;

Scenario s2: At time 0, the master_nb (with
priority 3) issues a read request(status = SIM-
PLE_BUS_REQUEST and do_write = false) at address
56 (address = 56), and the master_b (with priority
4) issues a burst read request from address 76 to 136.
At time 15, the bus must serve the master with higher
priority, i.e. the master_nb, and complete it (status
= SIMPLE_BUS_OK). At time 30, the master_nb issues a
write request at address 56. At time 45, the bus serves
again the master_nb ignoring for the second time the
still pending read request of the master_b.

scenario s2 load Top.asm
step until time = 0 and phase = TIMED NOTIFICATION;
check (exist $r00 in Request with priority($r00) = 3

and do write($r00) = false
and address($r00) = 56
and status($r00) = SIMPLE BUS REQUEST);

check (exist $r01 in Request with priority($r01) = 4
and do write($r01) = false
and address($r01) = 76
and end address($r01) = 136
and status($r01) = SIMPLE BUS REQUEST);

step until time = 15 and phase = TIMED NOTIFICATION;
check (exist $r02 in Request with priority($r02) = 3

and status($r02) = SIMPLE BUS OK);
step until time = 30 and phase = TIMED NOTIFICATION;
check (exist $r03 in Request with priority($r03) = 3

and do write($r03) = true
and address($r03) = 56
and status($r03) = SIMPLE BUS REQUEST);

step until time = 45 and phase = TIMED NOTIFICATION;
check (exist $r04 in Request with priority($r04) = 3

and status($r04) = SIMPLE BUS OK);

Both scenarios ended with verdict PASS and allowed a
coverage of all ASM rules of the Simple Bus model.

6 Related work

In [21], the authors present a model-driven develop-
ment and validation process which begins by creating
(from a natural language specification of the system re-
quirements) a functional abstract model and (still man-
ually) a SystemC implementation model. The abstract

model is described using the Abstract State Machine
Language (AsmL) – another implementation language
for ASMs. Our methodology, instead, benefits from
the use of the UML as design entry-level and of model
translators which provide automation and ensure con-
sistency among descriptions in different notations (such
those in SystemC and ASMs). Moreover, these last
can remain hidden to the designer, making the process
completely transparent to the user who do not want
to deal with them. In [21], a designer can visually ex-
plore the actions of interest in the ASM model using
the Spec Explorer tool and generate tests. These tests
are used to drive the SystemC implementation from
the ASM model to check whether the implementation
model conforms to the abstract model (conformance
testing). The test generation capability is limited and
not scalable. In order to generate tests, the internal
algorithm of Spec Explorer extracts a finite state ma-
chine from ASM models and then use test generation
techniques for FSMs. The effectiveness of their method-
ology is therefore severely constrained by the limits in-
herited from the use of Spec Explorer. The authors
themselves say that the main difficulty is in using Spec
Explorer and its methods for state space pruning/explo-
ration. The ASMETA ATGT tool that we want to use
for the same goal exploits, instead, the method of model
checking to generate test sequences, and it is based on
a direct encoding of ASMs in PROMELA, the language
of the model checker SPIN [14].

The work in [12] also uses AsmL and Spec Explorer
to settle a development and verification methodology
for SystemC. They focus on assertion based verifica-
tion of SystemC designs using the Property Specifica-
tion Language (PSL), and although they mention test
case generation as a possibility, the validation aspect is
largely ignored. We were not able to investigate care-
fully their work as their tools are unavailable. More-
over, it should be noted that approaches in [21, 12],
although using the Spec Explorer tool, do not exploit
the scenario-based validation feature of Spec Explorer.
Indeed, in [11, 5] was shown how Spec Explorer allows
scenario-oriented modelling.

In [15], a model-driven methodology for development
and validation of system-level SystemC designs is pre-
sented. The development and validation flow is en-
tirely based on the specification of a functional model
(reference model) in the ESTEREL language, a state
machine formalism, and on the use of the ESTEREL
Studio development environment [1] for the purpose of
test generation. The proposed approach concentrates
on providing coverage-directed test suite generation for
system level design validation.

Authors in [7] provide test case generation by per-
forming static analysis on SystemC designs. This ap-
proach is limited by the strength of the static analy-

sis tools, and the lack of flexibility in describing the
reachable states of interest for directed test generation.
Moreover, static analysis requires sophisticated syntac-
tic analysis and the construction of a semantic model,
which for a language like SystemC (built on C++) is
difficult due to the lack of formal semantics.

The SystemC Verification Library [20] provides
API for transaction-based verification, constrained and
weighted randomization, exception handling, and HDL-
connection. We aim, however, at developing formal
techniques to augment SystemC verification.

The Message Sequence Chart (MSC) notation [17],
originally developed for telecommunication systems,
can be adapted to embedded systems to allow valida-
tion. For instance, in [10] MSC is adopted to visualize
the simulation of SystemC models. The traces are only
displayed and not validated, and the author report the
difficulties of adopting a graphical notation like MSC.
Our approach is similar to that presented in [13], where
the MSCs are validated against the SDL model, from
which a SystemC implementation is derived. MSCs are
also generated by the SDL model and replayed to cross
validation and regression testing.

7 Conclusions and future work

We proposed a scenario-based validation approach
to system-level design by the use of the SystemC UML
profile (for the modelling part) and the ASM formal
method and its related ASMETA toolset (for the vali-
dation part). We have been testing our validation tech-
nique on case studies taken from the standard SystemC
distribution, like the Simple Bus presented here, and on
some of industrial interest. Thanks to the ease in rais-
ing the abstraction level using ASMs, we believe our
approach scales effectively to industrial systems.

In the future, we want to integrate AsmetaV with
the ATGT tool of the ASMETA toolset to be able to
automatically generate some scenarios by using ATGT
and ask for a certain type of coverage (rule coverage,
fault detection, etc.). Test cases generated by ATGT
and the validation scenarios can be transformed in con-
crete SystemC test cases to test the conformance of
the implementations with respect to their specification.
Moreover, we plan to support system properties for-
mal verification by model checking techniques. This re-
quires transforming ASM models into inputs for model
checkers, for example SPIN.

References

[1] Esterel Studio. www.estereltechnologies.com.
[2] The ATL language. www.eclipse.org/m2m/atl/.
[3] Eclipse Modeling Framework. www.eclipse.org/emf/.
[4] The ASMETA toolset. http://asmeta.sf.net/, 2006.
[5] M. Barnett et al. Validating use-cases with the AsmL

test tool. In QSIC Int. Conference on Quality Software,
p. 238–246. IEEE, 2003.

[6] E. Börger and R. Stärk. Abstract State Machines: A
Method for High-Level System Design and Analysis.
Springer Verlag, 2003.

[7] F. Bruschi, F. Ferrandi, and D. Sciuto. A framework
for the functional verification of SystemC models. Int.
J. Parallel Program., 33(6):667–695, 2005.

[8] The Enterprise Architect: www.sparxsystems.com.au/
[9] A. Gargantini, E. Riccobene, and P. Scandurra. A

metamodel-based simulator for ASMs. In Proc. of the
14th Int. ASM Workshop, 2007.

[10] T. Kogel. et al. Virtual Architecture Mapping: A
SystemC based Methodology for Architectural Explo-
ration of System-on-Chip Designs. In A. D. Pimentel
and S. Vassiliadis (Eds.), Computer Systems: Architec-
tures, Modeling, and Simulation. SAMOS, LNCS 3133,
p. 138–148, Springer-Verlag, 2004.

[11] W. Grieskamp, N. Tillmann, and M. Veanes. In-
strumenting scenarios in a model-driven development
environment. Information & Software Technology,
46(15):1027–1036, 2004.

[12] A. Habibi and S. Tahar. Design and verification of
SystemC transaction-level models. IEEE Transactions
on VLSI Systems, 14:57–68, 2006.

[13] M. Haroud et al. HW accelerated ultra wide band MAC
protocol using SDL and SystemC. In IEEE Radio and
Wireless Conference, p. 525–528, 2004.

[14] G. J. Holzmann. The Model Checker SPIN. IEEE
Trans. Softw. Eng., 23(5):279–295, 1997.

[15] D. Mathaikutty, S. Ahuja, A. Dingankar, and
S. Shukla. Model-driven test generation for system level
validation. In HLVDT’07: High Level Design Valida-
tion and Test Workshop, p. 83–90, 2007. IEEE.

[16] OMG. The Meta Object Facility, formal/2002-04-03.
[17] Message Sequence Charts (MSC) ITU-T. Z.120, 1999.
[18] W. Müller, J. Ruf, and W. Rosenstiel. SystemC

Methodologies and Applications. Kluwer Academic
Publishers, 2003.

[19] The Object Managment Group (OMG). www.omg.org.
[20] Open SystemC Initiative. http://www.systemc.org.
[21] H. D. Patel and S. K. Shukla. Model-driven valida-

tion of SystemC designs. In DAC’07: Proc. of the 44th
Design Automation Conference, p. 29–34, New York,
2007. ACM.

[22] OMG, Query/Views/Transformations, ptc/07-07-07.
[23] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio.

A UML2 Profile for SystemC 2.1. STMicroelectronics
Technical Report, April 2007.

[24] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio.
A model-driven design environment for embedded sys-
tems. In DAC’06: Proc. of the 43rd Design Automation
Conference, p. 915–918, New York, 2006. ACM.

[25] E. Riccobene, P. Scandurra, A. Rosti, and S. Boc-
chio. A Model-driven co-design flow for Embedded Sys-
tems. Advances in Design and Specification Languages
for Embedded Systems (Best of FDL’06), 2007.

[26] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio.
Designing a unified process for embedded systems. In
Fourth Int. workshop on Model-based Methodologies for
Pervasive and Embedded Software. IEEE Press, 2007.

[27] T. Gröetker and S. Liao and G. Martin and S. Swan.
System Design with SystemC. Kluwer, 2002.

[28] OMG. The Unified Modeling Language. www.uml.org.
[29] M. Y. Vardi. Formal Techniques for SystemC Verifica-

tion; Position Paper. In DAC’07: Proc. of the 44rd De-
sign Automation Conference, p. 188–192. IEEE, 2007.

