
A formal design of the Hybrid European Rail Traffic
Management System

Paolo Gaspari, Elvinia Riccobene
Università degli Studi di Milano - Italy

elvinia.riccobene@unimi.it

Angelo Gargantini
Università degli Studi di Bergamo - Italy

angelo.gargantini@unibg.it

ABSTRACT
Railway Transportation Management Systems are an emerging
field in the context of advanced distributed software systems. Meth-
ods and techniques supporting rigorous formal design of system
architecture where software components interact with each other
and control physical components are highly demanded to assure
reliability of the system operation.

We present a formal model of the Hybrid ERTMS/ETCS Level 3,
the new standard of the European Rail Traffic Management System,
aiming to replace the different national train control and command
systems by a unique European railway management system.

We use the Abstract State Machine (ASM) formal method to
provide a complete specification of the standard. The model has
been developed through a sequence of model refinement steps
following the incremental way in which requirements describe
train operation.We have exploited the ASMETA tool-set supporting
the ASMs to simulate the abstract models and validate them with
respect to the operational scenarios that are given as part of the
requirements. We discuss ambiguities and inconsistencies of the
requirements, as well as difficulties encountered in the specification
and during scenarios simulation.

CCS CONCEPTS
• Software and its engineering→ Functionality; Formalmeth-
ods; Software safety.

KEYWORDS
Formal design, Hybrid ERTMS/ETCS, Abstract State Machines

ACM Reference Format:
Paolo Gaspari, Elvinia Riccobene and Angelo Gargantini. 2019. A formal
design of the Hybrid European Rail TrafficManagement System. In European
Conference on Software Architecture (ECSA), September 9–13, 2019, Paris,
France. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3344948.
3344993

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ECSA, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7142-1/19/09. . . $15.00
https://doi.org/10.1145/3344948.3344993

1 INTRODUCTION
The ASMETA (ASM mETAmodeling) framework1 [2] provides a
set of tools for ASM model editing, simulation, scenario-based vali-
dation, animation, verification, testing, model review, runtime mon-
itoring, etc. Tools are strongly integrated in order to permit reusing
information about models during several development phases.

2 HYBRID ERTMS/ETCS LEVEL 3 PROTOCOL
This is a short and introductive explanation of the Hybrid ERTMS
Level 3. In the sequel, by the term principles we refer to the require-
ments of the ERTMS HL3 standard given in [9].

The standard has been proposed to optimize the use and oc-
cupation of railways. It proposes the division of the track into
separate entities, each named Trackside Train Detection (TTD). In
addition, each TTD is subdivided into sub-entities called Virtual
Sub-Sections (VSS). A TTD has two possible states: free and occu-
pied with a safety invariant stating that if a train is located on a
TTD, then the state of the TTD must be set to occupied. In addition
to these two states, a VSS may have the unknown or the ambiguous
state. The ambiguous state is used when the information available
to the system suggest that two trains are potentially present on the
VSS. The unknown state is used when the system can guarantee
neither the presence nor the absence of a train on the VSS. For
an optimal safety, Movement Authorities (MA) are evaluated and
assigned to each connected train. The MA of a train designates a
portion of the track on which it is guaranteed to move safely.

The Level 3 of the standard ERTMS foresees an hybrid way to
detect train position and train integrity (i.e., a train not accidentally
split). All trains are under the supervision of an external unit, the
Radio Block Centre (RBC), which knows each train individually
and regularly receives, from the train on-board equipment – called
Train Integrity Monitoring System (TIMS)–, information regarding
train speed, position and integrity (TIMS trains). The hybrid ERTMS
Level 3 foresees also an Euroradio-based communication between
trains and trackside equipment: trains which are disconnected from
the RBC are no longer lost, since they are still visible by means of
this trackside train detection (TTD) system (ERTMS trains).

ERTMS Level 3 Hybrid principle accommodates, therefore, dif-
ferent types of trains including ERTMS trains equipped with the
Train Integrity Monitoring System (TIMS), ERTMS trains without
TIMS, and non-ERTMS trains.

The main document we have referred to for modeling the rail-
ways control system is the standard in [9]. However, since require-
ments are ambiguous and incomplete in some points, very frag-
mented, difficult to understand for someone that is not a domain

1http://asmeta.sourceforge.net/

https://doi.org/10.1145/3344948.3344993
https://doi.org/10.1145/3344948.3344993
https://doi.org/10.1145/3344948.3344993
http://asmeta.sourceforge.net/

ECSA, September 9–13, 2019, Paris, France Gaspari, Riccobene, Gargantini

Figure 1: Modeling process view

main rule r_Main =
par
forall $train in Trains do program($train)
forall $rbc in Rbc do program($rbc)
forall $trackcontrol in TrackController do program($trackcontrol)

endpar

Code 1: Basic train operation

expert, we have also looked for other explanatory material on train
operation and their control [8].

3 MODELING PROCESS
We consider trains moving along the track and operating under the
control of the RBC and the Track Controller. Therefore, principles of
the ERTMS HL3 are captured by the parallel execution of a number
of ASM agents: the Trains, all behaving similarly, the RBC and the
Track controller. Code 1 reports the main rule (i.e., the starting
point of model computation) of the multi-agent ASM2

Each of these agents has very specific tasks, modeled by means
of ASM transition rules:

• the train has different behavior according to its status: inte-
ger3, disconnected, reconnecting, lost integrity; mute timer),
and trains data collection;

• the track controller handles: train chased/chasing, shadow
train, two train in one VSS, train on TTD, Movement Au-
thority of chasing train, ghost train.

All the agents contribute to change of the status of the VSS.
According to the standard, each VSS has to behave accordingly to
a state machine (reported in Fig. 7 at pag. 24 of the principles and
on the right side of Fig. 1) specifying the change of the VSS status.
This state machine is the arrival point of our modeling.

Fig. 1 depicts the idea of our multi-agents ASM behavior, where
the agents trains, RBC and Track controller operate in parallel to
change the status of the VSS, and the state machine describing the
way in which the VSS status must be updated is simply an outcome
of our specification.

2In the ASMETA/AsmetaL textual notation, $x indicates a logical variable. The model
would work also if more than one RBC and Track controller existed.
3An integer train allows the trackside to release infrastructure in rear of the train
based on its position reports.

Each agent’s program has been refined, step by step, starting
from some basic operation till to get the specification of all agent’s
tasks. For example, train behavior is being refined till to capture the
most complex configuration of a train that can be integer, can be
connected/disconnected, can lose integrity, can be chased/chasing,
can be shadow, can be involved in the sweeping of VSS sections.

To understand and specify the agents’ behavior, we started from
the textual description of the principles, and we expressed the text
in terms of transition rules, by supplying the necessary definitions
of domains and functions. In naming functions/domains, we use
an application-oriented language that can be understood by the
stakeholders. An example is shown in Code. 2 that reports the
requirements of train reconnecting in section 3.8.2 of the principles,
and the corresponding ASM rule.

The complete ASM model has been developed by the following
sequence of eight model refinement levels4:

L0 The first model refers to the operation of an integer train,
abstracting from the interaction with the RBC and the Track
Controller (integer_train.asm);

L1 We refine the model at L0 by adding the specification of an
integer train interacting with the RBC (ermts_hl3_integer_
train.asm);

L2 This level introduces the train operation in case it loses
connection to the RBC
(ermts_hl3_integer_disconnected_train.asm);

L3 This level considers an integer and/or disconnected train
that can lose integrity and change its length, and that oper-
ates by interacting with the RBC; we also model the Track
Controller to deal with chased/chasing train status
(ermts_hl3_integer_disco_lostint_lengthchanged.asm);

L4 This level adds to the previous model the specification of
train operation in case of reconnection to the trackside
(ermts_hl3_integer_disco_lostint_lengthchanged_reco.asm);

L5 This level refines the model by adding the specification of
the sweepingmechanism (ermts_hl3_integer_disco_lostint_
lengthchanged_reco_sweep.asm);

L6 This level introduces the use of the timers and control of two
trains in a VSS (ermts_hl3_integer_disco_lostint_length
changed_reco_ sweep_timer.asm);

L7 This level includes all the refinements needed to execute
the scenarios. They have been simulated starting from mod-
els at level L6. In most of the cases, refinements consisted
in specific function/domain instantiation to represent the
train configuration according to the scenario description. In
other cases, refinements were due to handle information and
behavior not considered in the requirements.

During modeling, we needed to introduce some concepts not
directly stated in the principles. For example, to manage situations
as (a) the train is on the conjunction of two subsequent VSS, (b) the
train is split into two trains, (c) estimate the min safe rear end of
the train and express other parameters (as train speed, breaking
factor, etc.), we do not consider a VSS an atomic unit, but we think
it measured in VSS_Units5.

4The models, one for each refinement level, are available on-line at https://sourceforge.
net/p/asmeta/code/HEAD/tree/asm_examples/examples/ermts_etcs/)
5For model initialization a VSS yields 10 VSS_Units.

https://sourceforge.net/p/asmeta/code/HEAD/tree/asm_examples/examples/ermts_etcs/
https://sourceforge.net/p/asmeta/code/HEAD/tree/asm_examples/examples/ermts_etcs/

A formal design of the Hybrid European Rail Traffic Management System ECSA, September 9–13, 2019, Paris, France

3.8.2.1 Train Reconnecting
When a train reconnects after the "mute timer" has expired, the VSS sections set
"unknown" when the "mute timer" expired can be restored based on the following
conditions: (1) the VSS sections where the train is located will become "occupied"
if the train reports "integrity confirmed", no change of train data train length was
reported since the previous position report and there is no shadow train risk. If these
conditions are not fulfilled, these VSS sections will become "ambiguous". (2) ...

macro rule r_Trains_reconnecting($train in Trains, $vss in Vss) =
if not mute_timer($train) and vss_states($vss) = UNKNOWN and
train_inthis_vss($train, $vss) and
contains(train_state($train), NOTCONNECTED)

then
par

if ((trains_confirmed_integrity($train)) and not(length_changed($train))
and not(trains_shadow($train)))

then r_vss_train_occupied[$train]
else r_vss_train_ambiguous[$train]
endif

....

Code 2: Translating text into rules

agent Trains: r_Trains_on_TrackSide[]
macro rule r_Trains_on_TrackSide =
par
forall $position in Vss_Units with $position <= second(ma(self)) and
$position >= first(ma(self)) do
r_Trains_Run[self, vss_related_to_train_position($position)]
r_collect_train_data[self]

endpar

Code 3: Train program

At each level of abstraction, model execution and scenarios sim-
ulation have been a fundamental means to detect how to refine the
model and to better understand the principles (see discussions in
Sect 4). We do not report here the complete specification, but we
provide some excerpts of our models and some hints in order to be
able to read, understand and simulate the entire chain of models
available on-line. Models have been developed and simulated by
mean of the ASMETA framework.

In the following sections we mainly focus on presenting the
structure of agents’ programs in terms of macro call rules, and the
program refinement. Further details (signature and transition rules)
can be found on-line.

3.1 Operation of trains
A train operation is specified by the rule r_Trains_on_TrackSide
(the Trains agent’s program) shown in Code 3. A trainmoves on the
track (rule r_Trains_Run) based on its Movement Authority (MA),
i.e., the permission to run to a specific final location (within the
constraints of the infrastructure). MA is specified by the monitored
function ma: Trains -> Prod(Vss_Units, Vss_Units) that re-
turns, for a train, the pair (starting_position, final_position).
At each step, in order to deal with specific situations (see Sect. 4), a
train stores two subsequent (current and previous) configurations.
Therefore, whilemoving, the train stores (rule r_collect_train_data)
its current vital data (i.e, position, length, speed, and MA, given as
monitored values), and save its previous configuration. The rule
r_Trains_Run is refined along the chain of refined models. At
level L0, it models train operation, abstracting from the interaction
with the RBC and the Track Controller. As shown in Code 4, the

macro rule r_Trains_Run ($train in Trains) = r_Trains_integer[$train]

Code 4: Integer train operation

macro rule r_Trains_Run ($train in Trains, $vss in Vss) =
par
r_Trains_lostintegrity[$train]
r_Trains_integer[$train]
r_Trains_disconnection[$train]
r_Trains_reconnecting[$train, $vss]
r_Trains_connected[$train]
r_Vss_Sweeping[$train, $vss]

endpar

Code 5: Train movement at level L5

rule simply calls the macro r_Trains_integer that specifies the
requirements for an integer train operation given in section 3.5
of [9].

At the refinement level L1, rule r_Trains_Run is refined by
adding the rule r_Trains_connected modeling the operation of a
connected train, and so complementing the integer train operation.
At this level, the rule r_Trains_Run models the train behavior in
its basic configuration, i.e., a train able to:

• calculate the minimum safety distance from a chasing train;
• confirm its integrity if it was connected also in the previous
state;

• manage his mute_timer6;
• move along the track.

At the refinement level L2, the r_Trains_disconnection rule
is added to the rule r_Trains_Run to model the disconnected train
status. The rule r_Trains_disconnection allows managing all
conditions described in sections 3.8.1 and 4.2.1 of the requirements,
i.e., if the train disconnects, then

• the state of the VSS occupied by the train becomes UN-
KNOWN;

• all VSS that are part of the MA of the train become UN-
KNOWN;

• the VSS ahead of the train that are part of its MA become
UNKNOWN until the first free TTD;

• when the disconnect propagation timer expires onto adjacent
VSS, the UNKNOWN state must be propagated, backward
and forward, up to the first free TTD, or up to the VSS
occupied by the train, or up to the VSS of the MA of the
chasing train on the previous TTD.

At the refinement level L3, we include, to the train movement
(r_Trains_Run), the rule r_Trains_lostintegrity concerning
the loss of integrity; it models requirements in section 3.7. The
train that has lost integrity continues to travel on the track, and
the VSS that the train leaves become UNKNOWN. Subsequently,
the VSS will be set to FREE when the entire TTD (the VSS are part
of) becomes free. Particular attention must be paid to a chasing
train having MA that ends in the TTD where the chased train loses
integrity. When a chased train loses integrity, or communicates a

6This task is shared with the RBC till level L6. At level L7, scenario validation showed
the necessity to refine the model and specify only the RBC as the agent responsible of
the mute timer management.

ECSA, September 9–13, 2019, Paris, France Gaspari, Riccobene, Gargantini

// create an Rbc and set its program
agent Rbc: r_Rbc_Supervisor[]
macro rule r_Rbc_Supervisor =
par
r_check_train_status[]
r_check_ghost_propagation_timer[]
r_check_integrityloss_propagation_timer[]
r_check_shadow_train_timer[]
r_check_rbc_trains_connection_collect_data[]

endpar

Code 6: RBC operation

change in length, or the wait integrity timer expires, the state of
the VSS occupied by the train becomes AMBIGUOUS.

At the refinement level L4, rule r_Trains_reconnecting was
added to model the train reconnection (section 3.8.2). This rule fires
if the train is in an UNKNOWN VSS and its mute timer expires; it
manages the following cases:

• if the train confirms integrity, it does not report length
changew.r.t. the previous state, and there is no risk of shadow
trains, then the VSS state becomes OCCUPIED, otherwise it
becomes AMBIGUOUS;

• if the train still has the initial value for starting point of the
MA, then the VSS ahead of the train position becomes FREE;

• if the train confirms its integrity, there is no length change
compared to the previous state, and there is no other train
in the VSS occupied by the train, then the VSS behind the
train becomes FREE.

At the refinement level L5, the rule r_Vss_Sweeping is added to
model the sweeping mechanism of the VSS (section 3.9.1). If a train
had received permission to enter a VSS in state UNKNOWN, it is
in a VSS in state OCCUPIED and there is no risk of shadow trains,
then, when the train leaves the VSS, this VSS becomes FREE. To
model this situation that requires to process a past event, we intro-
duce a presweeping state for a VSS in order to save the necessary
information. Code 5 reports rule r_Trains_Run.

At the refinement level L7, all rules called by r_Trains_Run are
slightly refined to manage differences come out by comparing what
is expressed in the scenarios and what is required in the principles.
We discuss these issues in Sect. 4.

3.2 RBC operation
Introducing the agent RBC (Radio Block Centre) was necessary to
model concepts and events not directly attributable to train behav-
ior, but contributing to change the VSS status. Such information was
initially left abstract and modeled by mean of monitored functions.
However, too many constraints would have been necessary on these
functions to guarantee correct runs. So we decided to model the
RBC and delegate it the control of some train parameters.

Agent RBC is introduced at the refinement level L2. Here the
agent’s program (r_Rbc_Supervisor) consists of the rule r_check_
rbc_trains_connection that controls some parameters, such as
the status of a train (connected or not), the confirmation of train
integrity, the mute timer.

At level L3, the RBC program is extended by the rule r_check_
train_status, used to model the train status communication to

// create a Track Controller and set its program
agent TrackController: r_TrackController[]
macro rule r_TrackController =
par
r_check_trains_chasing_chased[]
r_check_ghost_trains[]
r_check_shadow_trains[]
r_check_ma_of_chasing_trains[]
r_check_two_reporting_trains_inonevss[]

endpar

Code 7: Track Controller operation

the RBC. By train status we mean a series of fundamental infor-
mation for the behavior of the whole system, such as loss of train
integrity, change of train length, status of the train connection with
the RBC, being a shadow train. No additional features (i.e., rules)
are added to the agent program at levels L3, L4, and L5. At the
L6 refinement level we deal with the management of the timers.
Some types of timers are not directly connected to the train, but
to other entities; e.g., the integrity loss propagation timer refers
to the VSS, the ghost propagation timer and the shadow train
timer refer to the TTD. At level L6, the following rules are added
to refine the RBC program: r_check_ghost_propagation_timer,
r_check_integrityloss_propagation_timer, r_check_shadow_
train_timer. Each rule takes care of the start and stop (if fore-
seen by the principles) events of the relative timer, according to
the specifications indicated in sections 3.4.2.3, 3.4.2.4, 3.4.1.4 of the
requirements. Modeling timers management at level L6, strongly
confirmed our intuition on the necessity to model an agent, differ-
ent from the train, that has complete visibility of the timers, and
contributes to change the VSS state during trains movement.

A further refinement step was made upon scenarios simulation.
At level L7, sending further train data (speed, position, MA, length)
to the RBC is added to the rule r_check_rbc_trains_connection,
and the extended rule is renamed r_check_rbc_trains_connection_
collect_data. Code 6 reports the complete RBC agent’s program.

3.3 Track controller
During modeling, we realized that it was appropriate to introduce
an additional agent having the task of handling the interactions
between two trains during their movement on the track. Indeed,
trains, in addition to having their own state (e.g., connected, not
integer, length-chanced), contribute to determine some properties
of the other trains on the track (for example, a shadow train is a non-
connected train that is behind a connected train), and, in turn, con-
tribute to determine the state change of the VSS. Agent Track Con-
troller appears at level L2, when the rule r_check_trains_chasing_
chased is introduced. For each train t, this rule monitors trains
chasing t, according to their relative distance given by the function
confirmed_safe_rear_end.

At the refinement level L4, the rule r_check_two_reporting_
trains_inonevss is added to check if two trains are on the same
VSS (i.e., it checks whether the tail of the forward train occupies
the same VSS of the train head behind it), and sets the VSS status
accordingly.

At the refinement level L6, checks are introduced to determine
whether a train is a ghost or a shadow train (a ghost train is not

A formal design of the Hybrid European Rail Traffic Management System ECSA, September 9–13, 2019, Paris, France

connected and is unknown at the platform, a shadow train is a ghost
train that follows a connected train). VSS status is updated on the
base of the train status bymeans of the rules r_check_ghost_trains
and r_check_shadow_trains that specify requirements 4.2.2 and
4.5, respectively. An extra rule, r_check_ma_of_chasing_trains,
is assigned to the agent Track Controller to limit the MA of a chas-
ing train moving on a VSS in state UNKNOWN (sect. 4.2.1.6).

At the last level of refinement L7, the Track Controller’s program
is refined to add checking of trains on a TTD. In case of negative
feedback, the Track Controller updates the TTD(s) status to FREE.
This task is performed by the r_check_trains_onttd rule. For
the sake of completeness, it must be said that, at level L7, rules in
the Track Controller’s program are slightly refined to handle some
ambiguities emerged during scenarios simulation (see Sect.4).

Code 7 reports the complete Track Controller’s program.

4 SCENARIOS VALIDATION
Scenarios of case study described in [9] were simulated at level L6;
however, some simulations motivated a further refinement level
(L7) as already discussed.

The movement of trains along the track takes place by instan-
tiating, for each train, those monitored functions specifying the
following attributes: (1) the Movement Authority (MA), provided
as starting and ending positions expressed in terms of Vss_Units;
(2) the current Train Position, expressed in terms of Vss_Units;
(3) the current Train Speed, necessary to calculate the min safe
rear end; (4) the Trains Length, expressed in terms of Vss_Units;
(5) the Train status, a sequence of Boolean variables, based on
the scenario to be simulated, describing the status of the train.
Details on scenarios simulation can be found in the material we
make available on-line. For each scenario we provide: (1) a table
(file ERTMS3-Scenarios.xls) reporting values of the monitored
variables at each step of the simulation, and some notes regarding
differences, problems, and unclear situations between description
of the scenarios in [9] and model simulation; (2) a graphical rep-
resentation of the scenario execution: we add a thumb up in case
of successful validation or an alert symbol when scenario simu-
lation differs from scenario description, and some warnings are
reported; (3) the ASM run of the scenario (Code 8 is an excerpt of
file trace_scenario1.txt); it consists of a sequence of states, each
reporting the values of monitored and controlled state functions.
Running interactively ertms_hl3_scenario1.asm
INITIAL STATE:
Rbc={rbc_supervisor}
TrackController={trackcontroller1}
Trains={train1}
Ttd={ttd_10,ttd_20,ttd_30}
Vss={vss_11,vss_12,...,vss_33}
Insert a tuple ... for ma(train1):(1,60)
Insert
<State 0 (monitored)>
length_changed(train1)=false
lost_integrity(train1)=false
ma(train1)=(1,60)
rbc_conn(train1)=true
train_length(train1)=10
train_position(train1)=10
train_speed(train1)=200
wait_integrity_timer(train1)=false
</State 0 (monitored)>
....
<State 1 (controlled)>

scenario trace_scenario1
// load the specification with the desired configuration
load ertms_hl3_scenario1.asm
// check the initial state
check Rbc={rbc_supervisor};
check TrackController={trackcontroller1};
check Trains={train1};
check Ttd={ttd_10,ttd_20,ttd_30};
check Vss={vss_11,vss_12,vss_21,vss_22,vss_23,vss_31,vss_32,vss_33};

// set monitored variabes
set ma(train1):= (1,60);
set train_position(train1):=10;
set rbc_conn(train1):=true;
set train_length(train1):=10;
set train_speed(train1):=200;
set wait_integrity_timer(train1):=false;
set lost_integrity(train1):=false;
set length_changed(train1):=false;

// make a step
step
// check controlled values
check collect_trains_data(train1) = (10,10,200,1,60);
check collect_trains_predata(train1)=(0,0,0,0,0);
...

Code 9: Avalla code of Scenario 1

collect_trains_data(train1)=(10,10,200,1,60)
collect_trains_predata(train1)=(0,0,0,0,0)
confirmed_safe_rear_end(train1)=−5
integrityloss_propagation_timer(vss_11)=false
mute_timer(train1)=false
....
</State 1 (controlled)>

Code 8: Excerpt of simulation of Scenario 1

For further documentation, some of the scenarios have been val-
idated by exploiting the scenario-based validation [4], available
as part of the ASMETA framework. The approach allows to build
a precise scenario against which the developer wants to validate
the model, by setting given values of monitored functions and
checking the updated values of precise locations upon execution
of one or more steps of the ASM. Code. 9 reports an example of
scenario construction for (a part of) the operation scenario 1 in [9].
Scenario starts with a configuration where Train 1 of length 10
moves along a track that is made of 3 TTD joint at positions 10, 20
and 30, and of 8 VSS (from Vss_11 to VSS_33). RBC and TrackCon-
troller are active. Integrity is confirmed (length_changed(train1)
is false) and the train is connected (lost_integrity(train1) is
false). Train 1 receives, as Movement Authority, to move to final
position 60 with a speed of 200. Upon one step, Train 1 is in position
10, moves with speed 200 to the final position 60 and its length has
not changed (values are given by the function collect_trains_da-
ta(train1)).

All the 9 scenarios have been simulated and, apart from scenario
8 that arose some unclear and inconsistent situation between princi-
ples and scenario description, we have been able to reproduce their
description in [9], although, in some cases, scenario description
and simulation are not completely aligned. This does not represent
a limitation of our models, but it is due to the following reasons:

ECSA, September 9–13, 2019, Paris, France Gaspari, Riccobene, Gargantini

(1) Our simulations always require values of the monitored
function MA but they might not be given in the scenario
description. When not available, reasonable MA function val-
ues were deducted from other information of the description.
As a consequence, (𝑎) our simulation steps are not always
fully synchronized with those in the description, and (𝑏)
sometimes we should reassign values to the MA to continue
scenario simulation (it happened for scenarios 3, 6).

(2) According to ASM computations, if a monitored variable 𝑥
causes an update of a controlled variable𝑦, the new𝑦 value is
visible at the next step, while the description of the scenario
reports value of 𝑥 and (new) 𝑦 at the same step: scenario
simulation and description do not appear fully synchronized
but misalignment is only apparent (as for scenarios 6, 9).

(3) Scenarios description refers to particular situation of parts
of the entire system, while model simulation reproducing
that scenario considers the execution of the complete system.
Therefore, to proceed in the simulation we sometimes would
need to know the value of some (monitored) functions that
are not provided by the description (it happened in scenario
3).

5 RELATEDWORK
Different papers propose formal models of railway management
systems, and even a European Technical Working Group on Formal
Methods in Railway Control7 exists with the goal of scientifically
studying future railway control systems. Thus, the related work
discussed here, can not be considered an exhaustive presentation.
We present the most recent work that take in consideration require-
ments of the ERMTS HL3.

Many formal models of the ERMTS HL3 have been developed by
using the B/EventB method [1, 6, 7, 10, 11]. All these contributions
share with us the difficulty of managing the informal requirements
(so that in [1] a simplification of them has been considered), also due
to missing assumptions. They confirm the necessity of a rigorous
description of the system behavior and the necessity of formal vali-
dation. Some approaches uses other system engineering languages,
as SysML/KAOS in [7] or UML in [6], as front-end of B/EventB in
order to develop readable formal specifications (or at least more
readable than plain Event-B), which are easier for domain experts to
understand and validate. Many of these contributions use the model
checker ProB to find invariant violations with counterexamples
[10], and such counterexamples were used to validate scenarios
[11]. However, model checking has a bottleneck in the number of
model variables, and this was a problem for a large model as that
of this case study. Furthermore, a part the work in [7] that uses
animation, in the other contributions it is difficult to check how
the model can reproduce the informal scenarios. Some of these con-
tributions [7, 10, 11] guarantee safety property on the movement
of trains. We have preferred to concentrate on model specification
and validation by simulation, leaving verification as future work.

Among other approaches, in [3], the Spin model checker is used
for modeling and validating the ERMTS HL3. The authors prove a
set of safety properties regarding the correct movement of trains,
and simulate the nine scenarios reported in the requirements. While

7http://www.cs.swan.ac.uk/~csmarkus/ETWG-RC/

modeling, the authors abstracted away many unnecessary require-
ment details and needed to handle with the expressive limitation of
Promela, the input language of the Spin model checker. Although
the approach is more suitable for verification, such Promela models
are usually less readable than notations as ASMs and B.

In [5], a formal model for the ERMTS HL3 is presented by using
Electrum, a lightweight state-based specification language that
extends Alloy. The Analyzer component of Electrum is used to
perform scenario exploration to validate themodel. To achieve these
results, the authors needed to make a number of abstractions. As
us, they abstract continuous aspects of the rail traffic management
domain due to the discrete nature of Electrum.

6 CONCLUSIONS
We have presented the ASM specification of the ERMTS HL3 stan-
dard as originally provided by the ERTMS Users Group. The process
of requirement specification went through a sequence of ASM re-
fined models, and model refinement was the only way to handle the
complexity of the requirements and to develop a formal model able
to simulate all the proposed scenarios. Tool-based model validation
helped to reveal ambiguities and inconsistencies.

Although deeper verification analysis must be performed to
prove refinement correctness and application domain properties,
we believe our specification can be considered a rigorous support
to discuss incompleteness and ambiguities of the requirements and
a formal base for reliable implementation.

REFERENCES
[1] Jean-Raymond Abrial. 2018. The ABZ-2018 Case Study with Event-B. In Abstract

State Machines, Alloy, B, TLA, VDM, and Z, ABZ 2018, Proceedings (Lecture Notes
in Computer Science), M. Butler, A. Raschke, T. Son Hoang, and K. Reichl (Eds.),
Vol. 10817. Springer, 322–337.

[2] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra.
2011. A model-driven process for engineering a toolset for a formal method.
Softw., Pract. Exper. 41, 2 (2011), 155–166.

[3] Paolo Arcaini, Pavel Jezek, and Jan Kofron. 2018. Modelling the Hybrid ERTM-
S/ETCS Level 3 Case Study in Spin. In Abstract State Machines, Alloy, B, TLA,
VDM, and Z, ABZ 2018, Proceedings (Lecture Notes in Computer Science), M. Butler,
A. Raschke, T. Son Hoang, and K. Reichl (Eds.), Vol. 10817. Springer, 277–291.

[4] Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra.
2008. A Scenario-Based Validation Language for ASMs. InAbstract State Machines,
B and Z, 1st Int. Conference (ABZ ’08), Vol. LNCS 5238. Springer-Verlag, 71–84.

[5] Alcino Cunha and NunoMacedo. 2018. Validating the Hybrid ERTMS/ETCS Level
3 Concept with Electrum. In Abstract State Machines, Alloy, B, TLA, VDM, and Z,
ABZ 2018, Proceedings (Lecture Notes in Computer Science), M. Butler, A. Raschke,
T. Son Hoang, and K. Reichl (Eds.), Vol. 10817. Springer, 307–321.

[6] Dana Dghaym, Michael Poppleton, and Colin F. Snook. 2018. Diagram-Led
Formal Modelling Using iUML-B for Hybrid ERTMS Level 3. In Abstract State
Machines, Alloy, B, TLA, VDM, and Z, ABZ 2018, Proceedings (Lecture Notes in
Computer Science), M. Butler, A. Raschke, T. Son Hoang, and K. Reichl (Eds.),
Vol. 10817. Springer, 338–352.

[7] Steve Jeffrey Tueno Fotso, Marc Frappier, Régine Laleau, and Amel Mammar.
2018. Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal
Requirements Engineering Approach. In Abstract State Machines, Alloy, B, TLA,
VDM, and Z, ABZ 2018, Proceedings (Lecture Notes in Computer Science), M. Butler,
A. Raschke, T. Son Hoang, and K. Reichl (Eds.), Vol. 10817. Springer, 262–276.

[8] N. Furness, H. van Houten, L. Arenas, and M. Bartholomeus. 2017. ERTMS level
3: the game-changer. IRSE News View 232 (April 2017).

[9] EEIG ERTMS Users Group. [n.d.]. Principles-Hybrid ERTMS/ETCS Level 3,
13/07/2018. http://www.ertms.be/sites/default/files/2018-07/16E0421C_HL3-
clean.pdf

[10] Dominik Hansen, Michael Leuschel, David Schneider, Sebastian Krings, Philipp
Körner, Thomas Naulin, Nader Nayeri, and Frank Skowron. 2018. Using a Formal
B Model at Runtime in a Demonstration of the ETCS Hybrid Level 3 Concept
with Real Trains. In Abstract State Machines, Alloy, B, TLA, VDM, and Z, ABZ 2018,
Proceedings (Lecture Notes in Computer Science), M. Butler, A. Raschke, T. Son
Hoang, and K. Reichl (Eds.), Vol. 10817. Springer, 292–306.

http://www.cs.swan.ac.uk/~csmarkus/ETWG-RC/
http://www.ertms.be/sites/default/files/2018-07/16E0421C_HL3-clean.pdf
http://www.ertms.be/sites/default/files/2018-07/16E0421C_HL3-clean.pdf

A formal design of the Hybrid European Rail Traffic Management System ECSA, September 9–13, 2019, Paris, France

[11] Amel Mammar, Marc Frappier, Steve Jeffrey Tueno Fotso, and Régine Laleau. 2018.
An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard. In Abstract
State Machines, Alloy, B, TLA, VDM, and Z, ABZ 2018, Proceedings (Lecture Notes

in Computer Science), M. Butler, A. Raschke, T. Son Hoang, and K. Reichl (Eds.),
Vol. 10817. Springer, 353–366.

	Abstract
	1 Introduction
	2 Hybrid ERTMS/ETCS level 3 protocol
	3 Modeling process
	3.1 Operation of trains
	3.2 RBC operation
	3.3 Track controller

	4 Scenarios validation
	5 Related Work
	6 Conclusions
	References

