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ABSTRACT
One of the well-known techniques for model-based test gen-
eration exploits the capability of model checkers to return
counterexamples upon property violations. However, this
approach is not always optimal in practice due to the re-
quired time and memory, or even not feasible due to the state
explosion problem of model checking. A way to mitigate
these limitations consists in decomposing a system model
into suitable subsystem models separately analyzable. In
this paper, we show a technique to decompose a system
model into subsystems by exploiting the model variables
dependency, and then we propose a test generation approach
which builds tests for the single subsystems and combines
them later in order to obtain tests for the system as a whole.
Such approach mitigates the exponential increase of the test
generation time and memory consumption, and, compared
with the same model-based test generation technique applied
to the whole system, shows to be more efficient. We prove
that, although not complete, the approach is sound.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking

General Terms
Verification

Keywords
Test case generation, model-based testing, state explosion
problem, abstraction

∗The work was partially supported by Charles University
research funds PRVOUK.

1. INTRODUCTION
Model-based test generation by model checking is a well-

known technique that allows automatic generation of test
cases from models by exploiting the capability of model
checkers to return counterexamples [18]. Model checkers are
tools that explore the reachable state space of a model and
return a counterexample if a property of interest is violated
in some state. In the context of model-based testing, once
the testing requirements (or testing goals) are represented
by suitable temporal logic predicates, called test predicates,
tests are generated by forcing the model checker to build
counterexamples upon violation of test predicates negation.
Although completely automatic, this technique suffers from
the“state explosion problem”, i.e., the size of the system state
space grows exponentially with the number of variables and
the size of their domains, and it could become intractable.
Finding a test in an enormous state space is still a challenge.

Much of the research in model checking over the past 30
years has involved developing techniques for dealing with
this problem in the context of property verification [14];
however, several of these abstraction techniques (like coun-
terexample guided abstraction [13]) are not suitable for test
generation [31]. Indeed, they can guarantee validity of a
property in the original model if the property is verified in
the abstract model, but they may not guarantee to find the
right counterexample if the property is false. Other classical
abstractions (like slicing [33] or reduction techniques like
finite focus [2] that soundly reduces a state machine) trans-
form the original specification to a smaller one for which it
may be easier to find the desired tests; however, they may
miss parts of the system specification that are necessary for
building the tests.

Our goal was to investigate a possible solution in the
context of those abstraction techniques for test generation
that, following the “divide and conquer” principle, are based
on system [4, 5] or property [26] decomposition. Since model
checkers suffer exponentially from the size of the system,
decomposition brings an exponential gain and allows to test
large systems.

In this paper we present a technique for system decomposi-
tion and a test generation approach where tests for the whole
system are built as combination of tests generated for the
subsystems. The idea was inspired from our previous work
in [8], although the techniques we propose here for model
decomposition and test building are different. A comparison
is discussed in Sect. 6.

We here assume that models from which test cases shall be
derived are given as transition system formal specifications.



Our approach is based on the following intuitions. Given a
system model, a variable dependency graph can be defined on
the base of variable updates given by the model assignments.
Dependency induces an equivalence relation on the set of
model variables and, therefore, variables can be partitioned
into equivalence classes representing the strongly connected
components of the variables dependency graph. According
to the variables decomposition in strongly connected compo-
nents, the transition system can be decomposed in a set of
subsystems that are linked each other by exposing the same
dependency relation of the corresponding strongly connected
components they are built on. For each transition subsys-
tem, the model-based testing approach by model checking
can be used to automatically generate tests, and, at least in
principle, it should be more efficient than the same technique
applied to the global system. The question is how to exploit
the test generation approach applied at subsystem level to
build a test for the system as a whole.

For the way most coverage criteria for transition systems
are defined, given a test predicate tp produced from these
criteria, there exists at least a subsystem containing all the
variables of tp. The test generation for tp starts generating
a test over this subsystem. This test is then extended by
providing suitable test predicates to the other subsystems
in order to build (by merging the test generated for the
subsystems) a test for the whole system covering the original
testing goal.

We here describe how decomposing a transition system
into linked subsystems by exploiting the model variables
dependency. We then give the algorithm to automatically
generate a test covering a given test goal for the global
system by merging tests obtained for the subsystems by
proving them with suitable testing goals.

We prove that the generation technique is sound, even if
not complete. We discuss how to refine the technique to
increase its applicability, even if completeness of the refined
technique is still difficult to achieve.

Results of the technique application on a certain number
of case studies are presented, and these results are compared
with those obtained by applying the same technique without
system decomposition. Experiments show that a significant
benefit is obtained in terms of time and memory.

Note that our approach can be adapted to most state-based
methods, as SCR [18], RSML´e [21], ASMs [19], Event-B [1],
SPIN/Promela [25], NuSMV [12], etc., since they can be
mapped to the formal notation used here.

The paper is organized as follows. Sect. 2 provides some
basic definitions of transition systems and briefly recalls the
model-based test case generation by model checking. Sect. 3
introduces all necessary concepts and definitions regarding
dependency of model variables, variable dependency graph,
and system decomposition into dependent subsystems. The
algorithm for test generation is presented in Sect. 4, where
also soundness and completeness of the technique are dis-
cussed. Experimental results about applicability and gain
achieved in test generation are presented in Sect. 5. Sect. 6
reviews related literature, and Sect. 7 concludes the paper.

2. BASIC DEFINITIONS
We assume that systems are modeled in terms of transition

systems. Therefore, we here provide some basic definitions
adapted from [30]. We also briefly recall the approach of
automatic test generation from models by model checking,

and we introduce coverage criteria suitable for transition
systems.

2.1 Transition System Specifications

Definition 1. (Transition system) A transition system
M is a tuple xA,P,Θy where

‚ A is a first order structure representing the instanta-
neous configuration of the system. A has a first order
signature G including a finite set of variables V “ tv1,
v2, . . . , vnu, a domain Dvi for each variable vi, relations
and functions, and an interpretation function. The sys-
tem state is uniquely determined by the values of the
variables.

‚ P is a program consisting of a sequence of next assign-
ments v11 :“ e1, . . . , v

1
n :“ en, being V 1 “ tv11, . . . , v

1
nu

the variables in the next state. Each ei is a term over
G, possibly containing variables of V and V 1.

‚ Θ “ tv1 “ e01, . . . , vn “ e0nu is the set of initial
assignments, where e0i can contain only variables of V .

Terms ei and e0i in next and initial assignments may contain
conditional expressions. We assume that G may contain a
predefined function randompDq, randomly returning a value
taken from domain D.

Definition 2. (Computational step) Executing the pro-
gram P in a state s consists in evaluating terms e1, . . . , en in
s and assigning the computed values to variables v1, . . . , vn
obtaining the next state s1.

Note that, because of variables dependencies, a set of
assignments cannot be evaluated in any order. For instance
the assignments x1 :“ y1 and y1 :“ x can be evaluated only
in one order. We suppose that P and Θ are well-defined and
thus there always exists an order that permits to evaluate all
the assigned terms (i.e., there are no combinatorial loops [9],
that is cycles of dependencies not broken by delays). For
example, program P “ tx1 :“ y1, y1 :“ x1u is not well-defined
since it contains a combinatorial loop among variables tx, yu.

Definition 3. (System execution) An execution of a
transition system is a finite or infinite sequence of states
s0, s1, . . ., sn such that the initial state s0 is obtained by
evaluating the assignments in Θ and each state si`1 is ob-
tained by executing the program P at state si.

Note that transition systems allow modeling nondetermin-
istic systems. Because of the function random, executing P
twice from the same state s may lead to two different next
states.

Example 1. Consider a locker whose one-digit combination
is 4. If the locker digit is correct, the locker becomes unlocked,
and then the handle can be OPEN ed. Once the digit has
been set to 4, it cannot be changed. The locker is modeled
by the transition system M “ xA,P,Θy shown in Code 1.

Remark 1. Well known state-based formal approaches as
SCR [18], RSML´e [21], ASMs [19], Event-B [1], SPIN/-
Promela [25], and NuSMV [12] can be represented as transi-
tion systems. In some cases, the mapping is straightforward,
while other approaches could require suitable conversions.



signature A:
V “ thandle, locked , digitu
Dhandle “ tOPEN ,CLOSEDu, Dlocked “ boolean,
Ddigit “ t0, . . . , 9u

program P :
handle 1 :“ if locked then CLOSED else randompDhandleq

locked 1 :“ digit 1 ‰ 4
digit 1 :“ if locked then randompDdigitq else digit

initial state Θ:
handle “ CLOSED
locked “ true
digit “ 0

Code 1: Transition system example – Locker

NuSMV specifications, for example, can be easily mapped to
transition systems, since in NuSMV the initialization and the
update of a variable v have the same form of initial and next
assignments of transition systems (i.e., v “ e0 and v1 :“ e).
ASM specifications, instead, require a certain transformation.
An ASM model can be viewed (in its simplest form) as a set
of transition rules of the form if guard then Updates endif
where Updates is a set of updates of locations of the model
signature; in order to describe an ASM as a transition system,
we should collect, for each location l, all its updates and build
a next assignment l1 :“ el where el is a term containing con-
ditional expressions built from the conditions that guard the
updates of l in the ASM model. In SCR, each table can be
easily represented as a conditional assignment. SCR events
that are used as terms can be translated by using the primed
values of variables. For instance, the event @T(x), which
means that x becomes true, is equivalent to x1^ x. Similar
transformations can be devised for the other formalisms.

2.2 Model-Based Testing by Model Checking
In model-based testing [24, 32], the specification describ-

ing the expected behavior of the system is used for testing
purposes.

Definition 4. (Test) A test is a finite system execution
(as defined in Def. 3).

Tests are usually generated for covering some desired sys-
tem behaviors, called testing goals, formally represented by
test predicates.

Definition 5. (Test predicate) A test predicate is a for-
mula over the model, and determines if a particular testing
goal is reached.

The generation of testing goals is usually driven by some
coverage criteria.

Definition 6. (Coverage criterion) A coverage criterion
C is a function that, given a formal specification, produces
a set of test predicates. A test suite TS satisfies a coverage
criterion C if each test predicate generated with C is satisfied
in at least one state of a test sequence in TS .

As coverage criteria for transition systems we can identify:
value coverage (i.e., each value of each variable is covered)
and guard coverage criteria [3] as decision coverage (i.e.,

each decision in P and in Θ is covered both to true and to
false), condition coverage (i.e, each atomic condition in P
and in Θ is covered both to true and to false), and Modified
Condition/Decision Coverage (MCDC ) [10], requiring that
every atomic condition in a decision (found in P or in Θ) is
shown to independently affect the final value of the decision.

Example 2. The value coverage criterion applied to the
transition system shown in Ex. 1 produces the following test
predicates: Fphandle “ OPEN q, Fphandle “ CLOSEDq,
Fplockedq,Fp lockedq, Fpdigit “ 0q, . . . , Fpdigit “ 9q.

Test generation by model checking. A classical technique
for model-based test generation exploits the capability of
model checkers to produce counterexamples [17, 18]. Given
a test predicate tp, the trap property  tp is verified. If
the model checker proves that the trap property is false (tp
is feasible), then the returned counterexample shows how
to cover tp. We call the counterexample witness, and we
translate it to a test. If the model checker explores the
whole state space without finding any violation of the trap
property, then the test predicate is said unfeasible and it is
ignored. In the worst case, the model checker terminates
without exploring the whole state space and without finding
a violation of the trap property (i.e., without producing
any counterexample), usually because of the state explosion
problem. In this case, the user does not know if either the
trap property is true (i.e., the test is unfeasible) or it is
false (i.e., there exists a sequence that reaches the goal), and
the problem of finding a suitable test for that case remains
unsolved.

3. SYSTEM DECOMPOSITION
Variables of a transition system M can be analyzed in

order to discover their dependencies and detect the way the
system M can be modularized in subsystems. We here first
introduce the concepts of variables dependency, dependency
graph, and set of strongly connected variables. Then we
explain how to decompose a transition system.

Definition 7. (Variable dependency) Given two vari-
ables vi, vj P V of a transition system, we say that vi directly
depends on vj if vj (primed or not primed) occurs in ei or in
e0i .

We denote by DirDeppvq the set of variables which v
directly depends on.

Definition 8. (Dependency graph) We call dependency
graph of a transition system M the directed graph DG “

xV,Ey, where V is the set of variables of M and pv, wq P E
iff v directly depends on w, i.e., w P DirDeppvq.

We say that v depends on w if there exists a path from
v to w in DG. The dependency is the transitive closure
of the direct dependency. Note that the dependency graph
can contain cycles, even when a program is well-defined, i.e.,
it does not contain combinatorial loops. For instance, in a
correct program that exchanges two variables x and y by the
assignments x1 :“ y and y1 :“ x, the two variables are both
dependent on the other.
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SCV 1

locked digit
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Figure 1: Variables dependency graph

Definition 9. (Strongly connected variables set) Given
a dependency graph DG “ xV,Ey of a transition system
M , each strongly connected component of DG identifies a
strongly connected variables set (SCV).

Any two variables in one SCV depend one on the other.
Intuitively, they constitute a group of interdependent quan-
tities. Furthermore, some variables in an SCV may also
directly depend on some variables of other SCVs.

Definition 10. (SCV inputs) Given an SCV C, we iden-
tify with IN pCq “

Ť

vPC DirDeppvqzC the inputs of C.

IN pCq represents the inputs of C since it identifies the
direct dependencies (not in C) of the variables of C.

Example 3. Fig. 1 shows the dependency graph and the
two SCVs of the transition system introduced in Ex. 1. Vari-
able handle directly depends on locked and depends on digit .

On the base of the decomposition of system variables in
strongly connected variables sets, we show how to decompose
the transition system.

Decomposition technique. Given a transition systemM “

xA,P,Θy and its dependency graph DG, we can build a
subsystem Mi “ xAi, Pi,Θiy of M for each SCV Ci of DG,
where
‚ Ai is the structure obtained from A by reducing the

set of variables V to Vi “ Ci Y IN pCiq;
‚ Pi contains the next assignments of P for the variables

in Ci; moreover, for each variable v P IN pCiq, Pi con-
tains the next assignment of v in P only if DirDeppvq “
H, otherwise it contains v1 :“ randompDvq;

‚ Θi contains the initial assignments in Θ for the vari-
ables in Ci; moreover, for each variable v P IN pCiq,
Θi contains the initial assignment of v in Θ only if
DirDeppvq “ H, otherwise it contains v “ randompDvq.

Each Mi is a well-formed transition system by construction:
next and initial assignments in Pi and Θi are well-defined
and only contain variables of Vi.

We now establish some dependency relations among sub-
systems. These definitions will be used in the next section
for test building.

Definition 11. (Linking variables) Given two subsys-
tems Mi and Mj , we call linking variables the set of direct
dependencies of variables in Ci from variables in Cj , i.e.,
LpMi,Mjq “ IN pCiq X Cj .

Definition 12. (Subsystems dependency) A subsystem
Mi directly depends on another subsystem Mj if LpMi,
Mjq ‰ H. We denote by DirDeppMiq the set of subsystems
of M which Mi directly depends on.

V1 “

"

handle,
locked

*

M1

V2 “

"

locked,
digit

*

M2

locked

Figure 2: Subsystems dependency graph

The subsystem dependency relation induces an acyclic
dependency graph among subsystems.

Example 4. Let us consider the transition system intro-
duced in Ex. 1. The subsystems obtained through decompo-
sition are M1 “ xA1, P1,Θ1y:

signature A1:
V1 “ thandle, lockedu

program P1:
handle 1 :“ if locked then CLOSED else randompDhandleq

locked 1 :“ randompDlockedq

initial state Θ1:
handle “ CLOSED
locked “ true

and M2 “ xA2, P2,Θ2y:

signature A2:
V2 “ tlocked , digitu

program P2:
locked 1 :“ digit 1 ‰ 4
digit 1 :“ if locked then randompDdigitq else digit

initial state Θ2:
locked “ true
digit “ 0

The linking variables are LpM1,M2q “ tlockedu. The subsys-
tem dependency graph is depicted in Fig. 2.

Remark 2. For the way Mi is built from M , its behav-
ior subsumes the behavior of M restricted to variables Vi.
However, Mi may expose further computations that do not
correspond to any computation of M , since some of the input
variables of Mi in IN pCiq are randomly initialized or up-
dated and, therefore, they could assume values or sequences
of values not allowed in M .

We now provide some definitions to trace back computa-
tions of M from computations of its subsystems.

Definition 13. (State projection) Given a state s of a
transition system and a set of variables L “ tv1, . . . , vku, we
denote by πLpsq the list of values of the variables L in s, i.e.,
πLpsq “ tvv1ws, . . . , vvkwsu.

Definition 14. (Sequence projection) Given a sequence
ρ “ s0, . . . , sn of a transition system and a set of variables L,
the projection of ρ with respect to L is defined as πLpρq “
πLps0q, . . . , πLpsnq.

Definition 15. (Allowed sequence) A sequence ρ is al-
lowed if there exists an execution ρ1 ofM such that πvarpρqpρ

1
q “

ρ, being varpρq the variables occurring in ρ.



Intuitively, a sequence of states is allowed when it is a
projection of a valid execution of the entire system M . An
allowed sequence ρ may not contain the values for every
variable in M , but still, all the variables in ρ correctly behave.

Let ρ be an execution of a subsystem Mi of M . When is
ρ an allowed sequence?

Theorem 1. If DirDeppMiq “ H, then ρ is allowed.

Proof. If a subsystem Mi has no dependencies, its vari-
ables set Vi corresponds to Ci (i.e., IN pCiq “ H); therefore,
since the initial and next assignments of variables in Ci are
the same of M , all the sequences of Mi are allowed.

Theorem 2. If DirDeppMiq ‰ H and πIN pCiqpρq is al-
lowed, then ρ is allowed.

Proof. If Mi has some dependencies, then IN pCiq ‰ H.
The behavior of the variables in IN pCiq corresponds to the
correct behavior as in M by hypothesis. Since the other
variables in Ci are computed as in M , the sequence ρ is a
projection with respect to the variables Vi of a valid execution
of M .

Intuitively, an execution of a subsystem Mi is allowed if
either Mi has no dependencies, i.e., it is a leaf in the graph,
or its inputs represent an allowed behavior, i.e., they force
Mi to behave as M .

4. TEST GENERATION BY SYSTEM DE-
COMPOSITION

We have seen how, exploiting variables decomposition,
a transition system can be decomposed in a set of linked
subsystems. We show now how to apply the model-based
test generation approach by model checking to the single
subsystems and how to merge the subsystems tests in order
to obtain a test for the global system.

Our technique works on test predicates of a particular class
of coverage criteria, called robust, defined as follows.

Definition 16. (Robust criterion) A coverage criterion
C is robust to decomposition iff, for each test predicate tp
produced by C over M , it exists at least one subsystem Mi

of M such that varptpq Ď Vi. Mi is said compatible with tp.

Most of the classical coverage criteria for transition systems,
including all those introduced in Sect. 2.2, are robust. From
now on, we assume that the test predicates are derived from
robust criteria. In case of fragile criteria, techniques for
merging subsystems can be applied, but this is left as future
work.

Given a test predicate tp that we like to cover for M , we
can use as starting point of our test generation technique the
subsystem Mi containing all the variables of tp. Mi and its
dependencies are sufficient to generate a test able to cover tp
(if it exists). If there exists more than one Mi, we choose the
subsystem having fewer (direct and indirect) dependencies.

4.1 Test Generation Algorithm
Our test generation algorithm requires that the subgraph

consisting of Mi and its dependencies is a tree whose root
is Mi. This requirement guarantees that each subsystem
provides input values at most to only another subsystem. If
the graph were not a tree, a subsystem may be required to

Injection Pressure

WaterPressure

(a) Original graph

Injection,Pressure

WaterPressure

(b) Merging upwards

Injection

Pressure,WaterPressure

(c) Merging downwards

Figure 3: Transforming a graph into a tree with
Injection as root

ρi← getWitness(tp)

foreach Mj in DirDep(Mi) inputSeq←getInputSeq(ρi, Mi, Mj)

reqInputsTp←buildTestPredicate(inputSeq)

ρj ←generateTest(Mj, reqInputsTp)

ρi←merge(ρi, ρj)return test ρi

generateTest(Mi tp)

generateTestPart for M
j

finish?

truetruetrue

false

Figure 4: Control flow of the test generation algo-
rithm

provide different values to different subsystems at the same
time, so complicating our test generation approach.

If the subgraph does not have a tree-structure, we keep
on merging adjacent subsystems (among those reachable
from Mi) until Mi becomes the root of a tree. Note that
transforming a graph into a tree having Mi as root can be
performed in different ways. Fig. 3 shows two possible ways
of obtaining the tree: merging the nodes upwards towards the
desired root (as in Fig. 3b), or merging the nodes downwards
away from the desired root (as in Fig. 3c). In the experiments
executed for this paper, we have adopted the latter approach.
However, as future work we plan to avoid the transformation
to a tree and to generate tests directly from the original
dependency graph of subsystems.

The test generation for a test predicate tp is briefly visually
represented in Fig. 4. It consists in a recursive function
generateTest that takes in input a subsystem Mi of M
and a test predicate tp which M is compatible with. The
function generateTest returns as test an allowed sequence
for covering tp over the composition of Mi and its (direct
and indirect) dependent subsystems. The main steps of the
function are the following.

1. It finds ρi, a witness for tp in Mi by using a model
checker.



Algorithm 1 Test generation algorithm generateTest for
a subsystem Mi and its test predicates tp

Require: A subsystem Mi

Require: A test predicate tp for Mi

Ensure: A complete test for Mi and its dependencies
1: ρi Ð getWitnessptp,Miq

2: if ρi “ UNFEASIBLE then
3: return UNFEASIBLE

4: end if
5: for Mj P DirDeppMiq do
6: inputSeq Ð getInputSeqpρi,Mi,Mjq

7: reqInputsTp Ð buildTestPredicatepinputSeqq
8: ρj Ð generateTestpMj , reqInputsTpq
9: if ρj “ UNFEASIBLE_ ρj “ UNKNOWN then

10: return UNKNOWN

11: end if
12: ρi Ð mergepρi, ρjq
13: end for
14: return ρi

2. For each dependency Mj , it generates a partial test
ρj by recursively calling itself. The test ρj of the
subsystem Mj represents the input sequence (inputSeq)
to be given to Mi to exhibit the behavior shown by ρi.

3. It finally merges the obtained tests with ρi in order to
find the final test.

The translation of the input sequence (inputSeq) to a tem-
poral logic predicate to be used as test predicate is performed
by the function buildTestPredicate.

The algorithm is precisely described in Alg. 1 and explained
in the following. The algorithm traverses the dependency
tree in pre-order. As first step, the generateTest function
computes, by means of function getWitness, the test ρi “
si0, . . . , s

i
n to cover the test predicate tp overMi (line 1). If the

test is not unfeasible, it computes all the direct dependencies
of Mi (line 5), and for each Mj of them:

‚ It extracts from the test ρi the input sequence inputSeq
for the linking variables L “ LpMi,Mjq “ tv1, . . . , vku
(see Def. 14) using function getInputSeq (line 6):

inputSeq“πLpρiq“rti
0
1, . . . , i

0
ku, . . . , ti

n
1 , . . . , i

n
kus (1)

‚ Applying function buildTestPredicate to the input
sequence inputSeq (line 7), it computes the test predi-
cate reqInputsTp for Mj , defined as LTL property as
follows:

reqInputsTp “ in0^X pin1 ^X p. . .X pinnq . . .qq (2)

being int ”
Źk
h“1 vh “ ith (t “ 0, . . . , n), and X the

next temporal connective. Note that reqInputsTp is the
LTL characterization of the input sequence inputSeq .
The test predicate has that particular form to obtain a
sequence ρj (in the next step of the algorithm), such
that πLpρiq “ πLpρjq with L “ LpMi,Mjq.

‚ It recursively visits subsystem Mj (calling function
generateTest), using reqInputsTp as test predicate
(line 8); as a result (if any), it gets the test ρj “
sj0, . . . , s

j
n for Mj and its dependencies; note that ρj is

guaranteed to be as long as ρi by the test predicate
construction.

‚ If the returned test ρj is neither unfeasible nor unknown,
the test ρi is merged with ρj through function merge,
obtaining the sequence s0, . . . , sn (line 12) where sh “
sih Y s

j
h (h “ 0, . . . , n), otherwise the test is unknown.

We call this technique StrongTP. Another version of the
technique will be described in the next section, where the
test predicate construction and the merging of the tests are
modified.

Example 5. Let us consider the transition system intro-
duced in Ex. 1, whose decomposition is shown in Ex. 4, and
the test predicate Fphandle “ OPEN q. The test predicate
is covered in M1 by the test

ρ1 “ handle :

s10
hkkkkkikkkkkj

CLOSED

s11
hkkkkkikkkkkj

CLOSED

s12
hkkkikkkj

OPEN
locked : true false false

(3)

The input sequence is tlocked “ trueu, tlocked “ falseu,
tlocked “ falseu. The corresponding test predicate for M2

is:

locked ^X p locked ^X p lockedqq (4)

The test predicate is feasible in M2 and covered by the test

ρ2 “ locked :

s20
hkkikkj

true

s21
hkkikkj

false

s22
hkkikkj

false
digit : 0 4 4

(5)

The test ρ “ ρ1 Y ρ2 for the global system is as follows

ρ“
handle :

s0
hkkkkkikkkkkj

CLOSED

s1
hkkkkkikkkkkj

CLOSED

s2
hkkkikkkj

OPEN
locked : true false false

digit : 0 4 4

Soundness and Completeness
A technique is sound if each produced test is an allowed
sequence (see Def. 15).

Theorem 3. The StrongTP technique is sound.

Proof. Alg. 1 recursively visits all the (direct and indi-
rect) dependencies of subsystem Mi and builds a test se-
quence for each subsystem. By Thm. 1, all the sequences
produced (at line 1) for the subsystem with no dependencies
are allowed: these subsystems are leaves of the dependency
graph (the recursive visit stops when a leaf is reached). If the
leaves are reached, all the sequences built (at line 1) for their
ancestors are allowed by Thm. 2 and the construction of the
test predicate at line 7 of the algorithm. The merging of the
sequences at line 12 produces an allowed sequence because
the common variables between subsystems are guaranteed
to be equal.

To prove completeness of the technique, we should prove
that each test predicate that can be covered on the global
system is also covered by the technique.

Theorem 4. The StrongTP technique is not complete.

Proof. As counterexample, consider a variation of the
Ex. 1 in Code 1 where the next assignment of variable locked
is modified as locked 1 :“ digit ‰ 4 (i.e., the locker becomes
unlocked only after the digit is observed to be 4), and still
consider Fphandle “ OPEN q as test predicate to cover.



In order to cover some test predicates that are not cov-
ered by the StrongTP technique, in the following section we
slightly modify the technique, using a different (and less bind-
ing) version of the test predicate reqInputsTp in Formula 2
and a different way of merging sequences at line 12 of the
algorithm.

4.2 WeakTP Technique
Technique StrongTP requires that sequences built over the

single machines have the same length (by the test predicate
construction) and, therefore, that a given submachine Mi

receives, from its dependencies, the inputs it needs exactly
when it requires them. However, it may be that the dependent
subsystems may not be able to provide the required inputs
exactly when requested, but with some delay (some states
later). We modify technique StrongTP with technique Weak-
TP, in which dependent subsystems of Mi can produce tests
ρj longer than the test ρi produced over Mi, and test ρi is
extended to match the length of tests ρj .

In this technique, the test predicate built with function
buildTestPredicate (from the input sequence in Formula 1)
at line 7 of Alg. 1 is defined as LTL formula as follows:

in0 SXU pin1 SXU . . . pinn´1 SXU innq . . .q

being int ”
Źk
h“1 vh “ ith (t “ 0, . . . , n), and SXU is a

new temporal operator defined as follows: A SXU B ”

A ^X pA U Bq where U is the until temporal connective.
A SXU B means that A is continuously true for at least one
state until B becomes true.

The test ρj “ sj0, . . . , s
j
m, computed at line 8 of Alg. 1 with

the recursive call of function generateTest for covering the
test predicate (if feasible), is at least as long as ρi (i.e., m ě

n). ρj can be split in n` 1 sub-sequences σj0, . . . , σ
j
n having

the same values for the linking variables in LpMi,Mjq “

tv1, . . . , vku, i.e.,

ρj “

σ
j
0

hkkkkkkikkkkkkj

sj0, . . . , s
j
r1´1

in0

,

σ
j
1

hkkkkkkkikkkkkkkj

sjr1 , . . . , s
j
r2´1

in1

, . . . ,

σj
n

hkkkkkikkkkkj

sjrn , . . . , s
j
m

inn

where, in all the states of each σjt , int holds, and 0 ă r1 ă
r2 ă . . . ă rn ď m.

At line 12 of Alg. 1, sequences ρi and ρj must be merged
with function merge. Sequences can be merged only if some
particular states of ρi are stutter prone.

Definition 17. Given a transition system M “ xA,P,Θy,
we call a state s stutter prone if, by executing P from s, we
can obtain s.

For each subsequence σjt longer than one state (i.e., |σjt | ą 1),
state sit of sequence ρi must be stutter prone. If this condition
is not satisfied, the algorithm returns UNKNOWN. Otherwise,
sequences ρi and ρj can be merged as follows:

σ0
hkkkkkkikkkkkkj

s0, . . . , sr1´1,

σ1
hkkkkkkkikkkkkkkj

sr1 , . . . , sr2´1, . . . ,

σn
hkkkkkikkkkkj

srn , . . . , sm “
σ
j
0ˆs

i
0

hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

sj0 Y s
i
0, . . . , s

j
r1´1 Y s

i
0, . . . ,

σj
nˆs

i
n

hkkkkkkkkkkkkkikkkkkkkkkkkkkj

sjrn Y s
i
n, . . . , s

j
m Y s

i
n

(6)

where σt “ σjt ˆ sit (t “ 0, . . . , n), i.e., for each sh of each
σt, sh “ sjh Y sit. Note that we can merge a state sit of ρi
with all the states of σjt in ρj , since sit is stutter prone and,
therefore, can be duplicated as many times as necessary.

signature A:
V “ thandle, locked , digit , cmdu
... Dcmd “ tUP , DOWN , NONEu

program P : ...
cmd 1 :“ randompDcmdq

digit 1 :“ if cmd “ UP then pdigit ` 1q mod 10
elseif cmd “ DOWN then pdigit ` 9q mod 10

initial state Θ: ...
cmd “ randompDcmdq

Code 2: Modified running example

Example 6. The proof of Thm. 4 shows a test predicate
for the global system that cannot be covered with technique
StrongTP (since that technique requires locked to become
false after one step); the same test predicate, instead, can
be covered with technique WeakTP. Using the WeakTP
technique, the test predicate built for M2, starting from the
input sequence of the test for M1 (see Formula 3), is

locked SXU p locked SXU  lockedq

The test predicate is feasible in M2 and the obtained test is

ρ2 “ locked :

σ2
0

hkkkkkkkikkkkkkkj

true true

σ2
1

hkkikkj

false

σ2
2

hkkikkj

false
digit : 0 4 4 4

Note that variable locked remains true in the first two states
and becomes false only in the third state. Therefore, we
require state s10 of sequence ρ1 (see Formula 3) to be stutter
prone; since this is the case, the technique is applicable.

The test ρ “ ρ1 Y ρ2 for the complete system is

ρ “ handle :

σ2
0ˆs

1
0

hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

CLOSED CLOSED

σ2
1ˆs

1
1

hkkkkikkkkj

CLOSED

σ2
2ˆs

1
2

hkkikkj

OPEN
locked : true true false false

digit : 0 4 4 4

Soundness and Completeness
Theorem 5. The WeakTP technique is sound.

Proof. If the technique returns a test, it means that in
sequence ρi “ si0, . . . , s

i
n all the states required to be stutter

prone are so. Therefore, ρi can be extended to a sequence
ρ1i “ si10 , . . . , s

i1
m (by duplicating the states required to be

stutter prone) such that, for all the couples psi1h , s
j
hq, the

values of linking variables LpMi,Mjq are the same: this is
what we actually do in Formula 6. Then, the proof of Thm. 3
already proves that the composition of two sequences ρ1i and
ρj of equal length and with the same values for variables in
LpMi,Mjq is correct.

Theorem 6. The WeakTP technique is not complete.

Proof. As counterexample, consider the modification,
shown in Code 2, of the transition system described in Ex. 1:
a random variable cmd over domain Dcmd “ tUP , DOWN ,
NONEu is introduced to model the transformation of the
variable digit that can be increased/decreased of only one
unit at a time. Fphandle “ OPEN q is still the test predicate
to cover. The subsystems are as shown in Fig. 5.
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Figure 5: Modified running example – Dependency
graph

5. EXPERIMENTS
The proposed technique is in principle more efficient than

the model checking approach applied directly to the global
system, but it requires several assumptions, like that the
system is actually decomposed by using dependency among
variables, which may not hold in practice and the actual
advantages must be experimentally checked. We present
here a series of experiments to validate our approach.

We have performed a set of experiments using a represen-
tative example of NuSMV specifications. NuSMV [12] is a
well-known tool that performs symbolic model checking. It
allows the representation of synchronous and asynchronous
finite state systems, and supports model checking of temporal
properties. A NuSMV specification describes the behavior of
a Finite State Machine (FSM) in terms of a “possible next
state” relation between states that are determined by the
values of variables. Its language can be easily mapped to the
formalism presented in Sect. 2.1. Furthermore, specifications
written in ASM, Statecharts, Event-B, SCR, RSML´e, and
many other notations have been translated in NuSMV in
several previous works [16, 6, 11]. For these reasons, we
chose NuSMV for evaluating our approach.

We have gathered 119 NuSMV specifications including
examples from the NuSMV site and models we have used
in the past for testing a static analysis tool [7]. Then we
have flattened all the models in order to eliminate modules
and parameters. We have reused the parser we have built
for NuSeen1, an eclipe-based framework for NuSMV. To
analyze the dependencies, build the dependency graph, and
compute the strongly connected variables sets, we have used
a feature recently introduced in NuSeen. Fig. 6a shows the
sizes of the considered specifications in terms on number of
BDD variables (for 115 models, because 4 models having
more than 300 BDD variables are not included in the figure):
the majority of models have less than 100 BDD variables,
but there are still models with more than 100 variables.
Our technique, however, works considering the specification
variables; therefore, in Fig. 6b we report the distribution of
variables in the considered models (for 113 models, because
6 models having more than 200 variables are not included
in the figure): the distribution slightly corresponds to the
distribution of BDD variables.

We present here some research questions that guided our
experiments.

How many systems are decomposable by dependency?
We have applied the decomposition technique presented in
Sect. 3 to all the models. Fig. 6c reports the number of
variables for subsystem on average over all the models. Most
of the models (109/119) have on average less than 4 variables
for subsystem. The ideal situation of each subsystem having
only one variable occurs for 33 models which originally have,
on average, 18.12 variables. Only 5 models were completely

1
http://nuseen.sourceforge.net/

not decomposable by our technique. On average, every sub-
system has 1/39th of the variables of the entire system. The
data shows that dependencies among variables can efficiently
guide system decomposition.

How many dependency subgraphs are trees?
One major assumption of the algorithm presented in Sect. 4.1
is that the subgraph including the subsystem Mi and all its
dependencies is a tree. We found that this is true in 52%
of all the subsystems we have examined. In all the other
cases, the subgraph must be transformed in a tree by merging
nodes, as explained in Sect. 4.1. The transformation may
increase the complexity of the SCVs and jeopardize the
advantages of the decomposition: the worst situation would
be when all the subsystems except Mi are merged together,
causing a decomposition of the system only in half. We have
implemented a simple algorithm that merges SCVs until no
more undirected cycles are found and the subgraph becomes
a tree. We have then measured the number of vertexes
and the average of number of variables in each subsystem.
We have found that on average the number of variables for
subsystem raises from 4.36 to 7.63, while the number of
subsystems decreases from 19 to 11. So, the decomposition
is less efficient, but it is still able to reduce the system size
by a factor around 10 even for the 48% of the cases in which
the dependency subgraph is not already a tree (i.e., from an
average of 102 variables in the global system to an average
of 7.63 variables per subsystem).

Does test generation actually benefit from system de-
composition?
We experimented whether the technique presented in Sect. 4
is really useful for test generation. We took three NuSMV
specifications: BombRel, the bomb-release component of the
flight-control software of an attack aircraft [23], SIS, a sim-
plified specification of the control software for the safety
injection component of a nuclear power plant [22], and Lock

a simple digital lock that requires the insertion of the right
sequence of numbers on different keypads in order to un-
lock [28]. Fig. 7 shows the dependency graphs of the three
case studies.

For each specification, we made two versions (v1 and v2)
by increasing the size of the variables domains. For instance,
in SIS the domain of the variable WaterPressure is from 0
to 5000 in version v1, and from 0 to 9000 in version v2. For
BombRel, we choose two different test predicates. The first
one simply requires to observe BombRelease set to on, while
the second one also requires that MissDistance is at least
10; the second test predicate has been built in a way that
technique StrongTP is not able to find a test, but technique
WeakTP is.

Table 1 reports the memory required and time took by the
classical generation over the complete systems (column Com-
plete) and by the proposed generation over the decomposed
subsystems (column Decomposition). For each considered
test predicate, we have used the StrongTP technique when
possible, otherwise we have used the WeakTP technique (this
has always been applicable since all the states required to
be stutter prone were so). The gain differs in the different
specifications: this is due both to the considered test predi-
cate and to the degree of decomposition of the system (the
more the variables are distributed among the subsystems, the
better it is). Using the proposed technique greatly diminishes

http://nuseen.sourceforge.net/
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Figure 6: Data about the models used in the experiments

(a) BombRel (b) SIS (c) Lock

Figure 7: Dependency graphs for the case studies

the required memory and time (column ∆) in all the cases,
except in one case in which the use of memory is increased
probably due to the higher complexity of the test predicate
containing the SXU operator.

Note that our technique might not be able to cover a test
predicate that is feasible: this may weaken the fault detection
with respect to the model checking approach applied directly
to the global system (that, however, might also not be able
to cover the test predicate for the state explosion problem).
Nonetheless, whenever our technique is complete, the fault
detection and the coverage provided by the test cases are
the same as those obtained by using the model checking
approach on the global system.

6. RELATED WORK
Since our approach is based on model checking, one may im-

mediately think of reusing abstraction techniques introduced
for formal verification. For this reason, we initially compare
our work to the research done in the area of abstractions for
property verification.

The cone of influence (COI) technique [15] reduces the
size of the transition graph by removing from the model the
variables that do not influence the variables in the property
one wants to check. In [29], COI is used to reduce the
state space of fFSM models, a variant of Harel’s Statecharts;
models that could not be verified before, have been verified
successfully after its application. COI works well also for
test generation, but only if the variables in the property
to be verified have few dependencies. For subsystems deep
inside the dependency graph, COI is unable to reduce the
specification. Actually, our technique subsumes COI, since
we also remove variables that are not necessary for covering
a test predicate.

The data abstraction technique [15], instead, consists in
creating a mapping between the data values and a small
set of abstract data values; the mapping, extended to states
and transitions, usually reduces the state space, but it may
not preserve properties. In [13], a technique called CEGAR

is presented, to iteratively refine an abstract model. The
technique assures that, if a property is true in the abstract
model, so it is in the initial model; if it is false in the abstract
model, instead, the spurious counterexample may be the
result of some behavior in the abstract model not present in
the original model. The counterexample itself is used to refine
the abstraction so that the wrong behavior is eliminated.
CEGAR is not suitable for testing: indeed, the returned
counterexample usually does not contain all the variables
since the abstraction removes specification parts, and it may
be spurious.

A technique for sequential modular decomposition for prop-
erty verification of complex programs is presented in [27].
The approach consists in partitioning the program into se-
quentially composed subprograms (instead of the typical
solution of partitioning the design into units running in par-
allel). Based on this partition, the authors present a model
checking algorithm for software that arrives at its conclusion
by examining each subprogram in separation. They identify
ending states in the component where the computation is con-
tinued in another component and some information passed to
the next subprogram. The algorithm then tries to formally
prove the property in each component finding the necessary
assumptions about the initial (entering) states of the compo-
nent. The algorithm proceeds backwards until it finds that
the property is true in every sub-component starting from
any initial state of the system. Since the goal is formal veri-
fication, the algorithm must check that the property holds
in any state, while in our approach disproving a property is
not enough since we want to find a counterexample, i.e., a
path leading to interesting states in which a suitable prop-
erty is false. Moreover, we decompose the entire system in
subsystems that run in parallel and not sequentially.

There exist few abstraction techniques that are suitable
for test generation. Reduction techniques like finite focus [2]
soundly reduce the original specification to a smaller one for
which it may be easier to find the desired tests. Finite focus
maps variables with large or unbounded domains to a fixed
subset of possible values. In this case the number of variables



Table 1: Memory consumption (BDD size) and time (seconds)

Specification Test predicate Complete Decomposition ∆

mem. time Technique mem. time mem. time
(max) (sum)

BombRel v1 BombRelease = on 363016 5.8 StrongTP 195885 4.04 -46% -30%
BombRelease = on & MissDistance ě 10 473027 9.0 WeakTP 333677 4.32 -29% -52%

BombRel v2 BombRelease = on 970498 47.4 StrongTP 646327 39.1 -33% -17%
BombRelease = on & MissDistance ě 10 924291 69.1 WeakTP 1058389 40.2 +14% -41%

SIS v1 SafetyInjection = on 547238 6.32 WeakTP 238705 5.68 -56% -10%
SIS v2 SafetyInjection = on 788361 19.5 WeakTP 437094 18.4 -44% -5%
Lock v1 unlock 409813 0.27 WeakTP 1676 0.04 -99% -86%
Lock v2 unlock 547238 6.32 WeakTP 1676 0.08 -98% -98%

to be considered is not reduced but their domains are. In
order to avoid unsound counterexamples, some constraints
must be added and there is not guarantee that the specifi-
cation is actually simpler than the original one. Moreover,
how to reduce domain sets may be a difficult task and no
algorithm is given for that. Finite focus could be used also in
conjunction with our approach when generating the tests for
a single subsystem. In general, our technique is compatible
with all the reduction abstractions.

An approach performing test generation by decomposing
sequential programs, called SMART, is presented in [20].
It proposes a sequential decomposition technique: given a
program calling several functions inside it, these called func-
tions are tested in isolation and complete tests are composed
only at the end. The main difference with our approach
is that tests for sub-functions are not real tests but they
are expressed as summaries using input preconditions and
output postconditions, and then re-used when testing higher-
level functions. The main advantage is that SMART is both
sound and complete compared to monolithic test generation,
while our approaches are only sound. A disadvantage is that
SMART must maintain the summaries and it can solve them
only at the end. Sometimes constraints on some inputs can
not be expressed (for instance a hash function) and some-
times all the collected constraints are very hard to solve,
leaving some issues still open.

The approach we presented in [8] shares with this work
the idea of exploiting system decomposition to tackle the
limitation of model-based test generation by model checking.
It presents a technique to build test for Decomposable by
Dependency Asynchronous Parallel (DDAP) systems, which
are systems composed of several subsystems running in par-
allel and connected together in a way that the inputs of
one subsystem are provided by another subsystem. Apart
sharing the philosophical idea of tacking a problem by de-
composing it into smaller problems, the approaches differ
(1) on the way a system is decomposed, (2) on the class of
obtained dependent subsystems (that in [8] are interleaving
subsystems, while here we have parallel subsystems), and
(3) on the way a test for the whole system is built on the
base of the tests for the subsystems (concatenation of tests
in [8], merging of tests here).

In [4], we proposed a test generation technique for sequen-
tial nets of Abstract State Machines (ASMs), which represent
systems constituted by a set of ASMs such that only one

ASM is active at a time. Given a net of ASMs, a test suite
for every ASM in the net is built, and then the tests are
combined in order to obtain a test suite for the entire system.
The technique has been later extended in [5] for handling
the passing of information between subsystems. Apart the
different notation, the main difference with this work is that
in [4, 5] we suppose to already have the decomposed sub-
systems, whereas here we propose a way to decompose the
global system. Moreover, in [4, 5] the subsystems run in
sequence, while here they run in parallel.

7. CONCLUSIONS
We have proposed a test generation approach by model

checking that decomposes systems into dependent subsys-
tems on the base of the system variables dependency. Such
dependent subsystems coming from the system decomposi-
tion can be viewed as systems linked each other – on the
base of the variables dependency – in a way that (part of)
the inputs of one subsystem are provided by another sub-
system. Therefore, a test of the global system can be built
by suitably merging tests of the single subsystems. Such
approach permits to mitigate the state explosion problem of
model checking since the time and the memory required to
build a test for each subsystem is considerably less than the
time and the memory required when considering the system
globally. The method has been proved to be sound but not
complete, and its efficiency w.r.t. the same model-based
testing approach without system decomposition has been
shown by a number of experiments on NuSMV models.

Currently, we automatically build the dependency graphs,
but not the subsystems and the test predicates. As future
work, we plan to completely automatize our approach and
to consider test predicates possibly involving more than one
subsystem. This will allow us to perform a larger evaluation
on more models across a variety of sizes. Moreover, we plan
to better investigate which is the best solution for merging
the subsystems when their dependency graph is not a tree.
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