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Abstract 
We report on our experience in using a general purpose theorem prover to provide 
mechanical support to deductive analysis of specifications written in the TRIO temporal 
logic, and on applying the resulting tool to a widely known case study in the field of time- 
and safety-critical systems, First, we illustrate the required features for a general purpose 
theorem prover to satisfy our needs, we provide a rationale for our choice, and we briefly 
illustrate how TRIO was encoded into the prover’s logic. Then we present the case study 
used to validate the obtained TRIO prover and to assess the overall approach. Finally we 
discuss the encouraging results of our experiment and provide some technical and 
methodological suggestions to researchers and practitioners willing to use our tool to 
analyze TRIO specifications, or aiming at customizing a general purpose theorem prover 
on any other formal language, especially if based on temporal logics. 
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1. Introduction 

The importance of effective procedures for specification, validation, and verification in 
the development of correct and reliable computer-based systems can hardly be over- 
emphasized, especially in the case of time- and safety-critical systems. Validation and 
verification are most (cost) effective when performed in the initial phases of system 
development, before the costly phases of design and coding take place [Kem85]. This 
emphasizes the importance of the notation adopted for carrying out the specification 
phase, which must support the unambiguous description of the system requirements 
and at the same time allow for the (possibly automated) analysis of such 
specifications. 
Formal methods (i.e., notations, and associated tools, having a strong mathematical 
foundation) have since long been considered a promising approach to address the 
above demands, but at the same time they where the target of many criticisms, 
especially coming from practitioners who were not convinced of their effectiveness in 
improving the quality of the developed products and of their overall convenience, 
notably from an economic viewpoint. In the recent past, however, some sensational 
failures in computer-based systems occurred (such as the Therac-25 accident, the 
Pentium bug, or the Arianne rocket fiasco), soon demonstrated to derive from 
miscarried specification and verification. They provided evidence that the high price of 
applying formal methods is certainly worth while for the most critical applications. 
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In the past years a host of formal languages and methods were introduced for the 
specification and analysis of critical systems, based on mathematical logic, state- 
transition systems, (process) algebras, etc. [H&M961 but no single language, method, 
or tool has gained universal acceptance nor has proved to tackle all problems in all 
application areas. It is now a widespread opinion that every individual notation has its 
own strong and weak points, and that there exist trade-offs among them. 
TRIO, a language and tool set based on temporal logic, was defined and developed at 
Politecnico di Milan0 to support the specification, simulation, analysis and 
verification [MMG92, F&M94, FMM94] of time-critical systems. In particular, in 
[FMM94] we introduced an axiomatization of the logic that allows the specifier to 
formally derive properties of real-time systems from their specification in TRIO, We 
experienced however that formal verification can become difficult and error-prone 
when performed by hand: the likelihood of introducing errors in proofs, because of 
overlooked details or implicit, incorrect assumptions, can grow to the point of 
balancing the benefits of formal proofs. Therefore a strong need arises to provide an 
automated support to formal derivation. On the other hand, automated theorem 
proving is a highly specialized research field where very sophisticated techniques are 
need to obtain that particular combination of power, generality, simplicity, and 
flexibility needed in practical applications. For these reasons we did not consider 
undertaking the development from scratch of a new theorem prover for TRIO; rather, 
we looked for existing tools that could be employed for that purpose. 
The present paper reports on our experience in using a general purpose theorem prover 
to provide a mechanical support to deductive analysis of TRIO specifications, and on 
applying the resulting tool to a widely known case study in the field of time- and 
safety-critical systems. In Section 2 we report a brief summary of TRIO, In 
Section 3 we illustrate the required features for a general purpose theorem prover to 
satisfy our needs, we provide a rationale for our choice of the PVS proof checker 
[SOR93], and we briefly illustrate how TRIO was encoded into the prover’s logic. 
Section 4 presents the case study that we used to validate the obtained TRIO prover 
and to assess the overall approach. The results of our experience, discussed in 
Sections 5 and 6, are encouraging: proofs can be conducted almost at the same level 
of abstraction as in informal manual derivation, but now they are “certified” by the 
tool. On the contrary, one cannot expect, especially for complex proofs, that the 
prover “does it all by itself”: our tool is in fact a proof checker, and the overall line of 
reasoning in a derivation (which, significantly, constitutes the most creative part) 
must still be provided by the user. 
Altogether, we believe that our work provides evidence of the feasibility of the 
approach; in the present paper we supply technical and methodological information to 
researchers and practitioners willing to use our tool to analyze TRIO specifications, or 
aiming at customizing a general purpose theorem prover on any other formal 
language, especially if based on temporal logics. 

2. TRIO: a Shortest Language Overview 

TRIO is a first order logic augmented with temporal operators that allow to express 
properties whose truth value may change over time. The meaning of a TRIO formula 
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is not absolute, but is given with respect to a current time instant which is left 
implicit, The basic temporal operator is called Dist: for a given formula W, Dist(W, 
t) means that W is true at a time instant whose distance is exactly t time units from 
the current instant, i.e., the instant when the sentence is claimed. 
Many other temporal operators can be derived from Dist. In this paper we use the 
following ones. 

Futr(F, d) dEf d20 A Dist(F, d) future 

Past(F, d) dzf d20 A Dist(F, -d) Past 
Lasts(F, d) def Vd’(O<d’<d + Dist(F, d’)) F holds over a period of length d 

Lasted(F, d) dif Vd’(O<d’<d + Dist(F, 4’)) F held over a period of length d 

Until (Al, AZ) dLf 3 (t > 0 A Futr (AZ, t) A Lasts (Al, t) ) 
Al holds until A2 becomes true 

Al w(F) def Vd Dist(F, d) 

AlwF(F) dif Vd (d>O + Dist(F, d)) 

F always holds 
F will always hold in the future 

AlwP(F) dEf Vd (de0 + Dist(F, d)) F always held in the past 

SomP (A) dLf 3d(dcO A Dist(F, d)) F held sometimes in the past 

Som (A) dzf 3d Dist(F, d) Sometimes F held or will hold 

UpToNow (F) dEf 36 ( S > 0 A Past (F, S) A Lasted (F, 6) ) 
F held for a nonzero time interval that ended at the current instant 

Becomes (F) d;f F A UpToNow (-,F) F holds at the current instant but 

it did not hold for a nonzero interval that preceded the current instant 
LastTime (F,t) d$f Past (F, t) A (Lasted (-I F, t) ) 

F occurred for the last time t units ago 

Notice that, for the operators expressing a duration over a time interval (for example 
Lasts), we gave definitions where the extremes of the specified time interval are 
excluded, i.e. the interval is open. Operators including either one or both of the 
extremes can be easily derived from the basic ones we listed above. For notational 
convenience, we indicate inclusion or exclusion of extremes of the interval by 
appending to the operator’s name suitable subscripts, ‘i’ or ‘e’, respectively. A few 
examples regarding the operators Lasts, Lasted, Until, AlwF and SomP follow. 

Lastsie (A, d) def 

d:f 
Vd’(O<d’cd + Dist(F, d’)) 

Lastedii (Al, d) = Vd’(OQi’sd + Dist(F, - d’)) 

Untilie (Al, AZ) dzf 3t (t > 0 A Futr (AZ, t) A Lastsie (Al, t) ) 

AlwFi(F) dzf Vd (d20 + Dist(F, d)) 

SomPi (A) dzf 3d(d<O A Dist(F, d)) 
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3. Encoding TRIO into the Prover’s Logic 

The first choice we had to take in providing automatic support to proofs in TRIO was 
that of a convenient formal theory: an encoding of TRIO formulas and the desired 
reasoning mechanisms (inference rules) in the language of the automatic tool, In 
[FMM94] we introduced a Hilbert-like proof system, based on the use of no~/~llts 
potzens as the only inference rule, which is known to be well suited for studying the 
properties of a logic, but not for constructing readable proofs or for automatic 
theorem proving. 
To the purpose of automation, two principal kinds of proof system are used in 
practice: clausal form coupled with the resolution rule [Wos84], and Gentzen-like 
systems [pra65]. 
Resolution-based procedures find a proof by contradiction, deriving from the premises 
and the negation of the goal a huge number of consequences, until a contradiction is 
found. To improve efficiency, formulas are expressed in a very simple and rigid way, 
as clauses. This reduces the readability, and prevents the user from understanding the 
proofs or the reasons of their failure. We believe that this way it is not adequate to 
support validation and verification, where interaction with the user is fundamental, 
Gentzcn systems, instead, favor the combination of a simple interaction with the 
prover (to direct the proof in the more complex cases) with automated solving of 
simpler subgoals by means of decision procedures. Gentzen systems include a set of 
inference rules that naturally correspond to the meaning of every operator. For 
instance, the sequent 

A I-r, A Al-r, B 
Al-r, AAB 

(where A and B are formulas, A and rare set of formulas and A I- r means that r is 
deducible from A) means that the formula AAB is deducible from a set of hypothesis, 
if and only if so are both A and B. 
This presentation is easily understandable, which helps significantly in designing and 
examining proofs. Besides, these inference rules can be easily used by a prover to 
decompose a proof into a tree of subgoals. For instance, the rule above can be used to 
reduce the deduction of AAB to those of A and B. Furthermore, if a subgoal fails 
because a counterexample can be found for it, the same counterexample falsifies also 
the original goal. 
For the above reasons, we chose a Gentzen-like axiomatization, augmenting the set 
of rules for the predicate calculus with those necessary for dealing with temporal 
aspects. We introduced some basic inference rules for modeling some basic properties 
of the Dist operator (a brief summary of TRIO is reported in the appendix) such as: 

A I- Dist(A,O)_ A I- Dist(A,d) A I- Dist(B,dl 
A I- A A I- Dist(AAB,d) 

and the Temporal Translation rule (TT): 

Dist(A,d) I- Dist(r,dl 
A I- r 
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whose intuitive meaning is that a deduction is still valid if looked from a different 
time instant. 
For apparent reasons of cost and reliability, we aimed at encoding TRIO into a logic 
for which a prover already existed, and at including its proof system in the language 
of that prover. There exist some well known encoding methods, classified as either 
sytttactic or semantic. 
In the syntactic approach, the source fogic is encoded into a base logic, the latter 
being used as a logical metalanguage to represent the formulas of the former, together 
with its inference rules, expressed through proper axioms. This approach is 
particularly powerful, allowing for the representation of every kind of rule, including 
the ‘IT rule. 
However, it complicates even the simplest proofs, for it forces the user to prove in 
the base logic that a sequence of steps forms a valid proof of the source logic, so that 
it is almost unfeasible, unless the prover itself is equipped with some mechanism that 
facilitates this kind of encoding. There is a wide variety of provers and logical 
environments, such as Isabelle pau90], ICLE [Daw92], Mollusc [Ric93] and others, 
which provide a facility of this kind, and have been used successfully for encoding in 
their language several first-order or higher-order logics. 
Unfortunately, all these provers lack powerful decision procedures for arithmetic, 
which are essential when dealing with TRIO, since time is numeric in nature. The 
only prover we found that uses a Gentzen-like deductive system and applies powerful 
decision procedures for Presburger arithmetic and other decidable theories is PVS 
[SOR93], which we adopted for our experiment. Unfortunately, PVS provides no 
facility for syntactic encoding, so we looked for alternative encoding methods. 
In the setnatltic approach the meaning of a formula is expressed in the base logic; this 
can make the proof of the encoded formula in the base logic very different from that in 
the source logic. In this way Hoare Logic and RTTL have been encoded within the 
HOL system [Gor89, CHH93], the Unity logic into the Boyer-Moore prover [Go1901 
and the Duration Calculus (DC) within PVS [SS94]. 
A first choice of a semantic encoding of TRIO in PVS is representing TRIO formulas 
as functions from a temporal domain to booleans [Jef96]. This would make explicit 
the current time instant and we experienced that this encoding seriously jeopardizes 
the readability of proofs. So we looked for a suitable interface to hide the details of 
the encoding, as in the case of DC [SS94]. Unfortunately, the lack of the necessary 
documentation on the PVS prover made it difficult for us to build an interface similar 
to the one available for DC (one of whose constructors was also in the team of PVS 
developers) md, most important, prevented us from providing reliable estimates of the 
feasibility 0” the approach, especially concerning the de-coding from a formula in the 
internal 1og.c back to TRIO. 
For this reason we avoided rhe construction of an interface by using a suppressed state 
encoding, tnat considers TFJO formulas as an uninterpreted type. To provide the usual 
interpretation to TRIO formulas, we introduce the function now from the type TRIO 
formula to booleans. This Function applied to a TRIO formula A has value true iff A 
is true now. This makes the overall system (PVS prover + axioms that realize the 
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encoding) behave exactly as a TRIO prover that applies our proof system as we 
described above. 
To represent the desired inference rules, we introduced axioms that intuitively explain 
the meaning of the various operators, stating for example that norv(A~B) = 
now(A)~low(B). Using these axioms and the inference rules of PVS, it was not 
difficult to implement the desired inference rules for TRIO, through the definition of 
suitable strategies, i.e. rules of the following kind: 

A I-r, now(Dist(A,d)) A I-l?, now(Dist(B,d)) 
A I-r, now(Dist(AAB,d)) 

These rules also allowed us to encode indirectly the TT rule, which does not seem to 
be representable directly in PVS, as the system does not provide means to add an 
external Dist operator to all formulas of a sequent, as required by the TT rule, in a 
single derivation step. 

4. The Case Study 

We validated our approach on the GRC (General Railroad Crossing) problem, which 
was recently used as a benchmark for languages and tools for critical systems analysis 
(for a statement of the problem, see the preface of [H&M96]). In the GRC problem 
several trains travel on railway tracks; a road intersects the tracks, with a bar at the 
crossing blocking vehicle traffic during train passage. For the sake of simplicity every 
train travels in the same direction: the case of trains traveling in both directions can 
be dealt with by symmetry. Two regions R and I, surrounding the crossing, an: 
defined as depicted below. 

train direction I 
b I( I I I I I 

‘< >I 
I R I I 

Fig. 1 The topology of the railroad crossing 

Any finite number of trains can enter or leave any region during any finite time 
interval. The system must simultaneously ensure that the bar be closed whenever a 
train is inside region I (safety property), and that the bar is down only when strictly 
necessary (utility property). 
It takes the train a minimum time dm and a maximum time dM to go from the 
beginning of R to the beginning of I; from hm to hM to go from beginning of I to 
its end (dM 2 dm > 0 and hM 2 hm > 0). The bar can be in two stationary positions, 
open or closed, or it can be moving up or moving down and is operated through 
commands goUp and goDown. 
The following predicates formalize train movements. 
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W) the k-th train is entering R 
W the k-th train is entering I 
1wo the k-th train is leaving I (and therefore R) 

They denote unique events, i.e., they must satisfy the following axioms (expressed 
for event E): 

Vk(E(k) + (AlwP(yE(k)) A AlwF(TE(k)))) 

Le. E(k) is true at most in a single time instant 

Vk(E(k) A k > 1+ SomPi (E(k - 1))) 

i.e. (weak) time monotonicity of parameter k 

Alw(~E(0)) by convention E(0) never occurs 

Informally, RI and IO represent the only input events detected by sensors; the 
occurrence of output events is deduced from the occurrence of the input ones. 
Time dependent variables, CRI, CII, and CIO, count the occurrences of the 
corresponding events RI, II, and IO. These variables are counters, a counter is a time 
dependent variable, that increases for every occurrence of a given event, starting from 
a null initial value. 

(Al) Counter(C,E) dLf 

i 

Alw(Vk(kZl+ (Cc k ~SomPi(E(k))*-SomPi(E(k+l))))) 

A 

Som(C = 0 A AlwP(C = 0)) 
I 

i.e., C is a counter for event E if C is always the value of the highest k for which 
E(k) has occurred, 

(A2) Counter(CR1, RI) A Counter(CII, II) A Counter (CIO, IO) 

i.e., CRI, CII, and CIO are the counter for events RI, II, and IO, respectively. 
The geometry of the region R and the behavior of the trains are formalized below. 

Vk(RI(kJ + 3t(d ,,, < t 5 dM A Futr(II(k), t))) 

if the k-th train enters R now, then the k-th train will enter I between dm and dM 
time units in the future 

Vk(II(k) + 3t(d ,,, I t I dM /\ Past@(k), t))) 

if the k-th train enters I now, it entered R between dm and dM time units in the past 

Vk(II(k) + 3t(h ,,, 5 t 5 hM A Futr(IO(k), t))) 

if the k-th train enters I, then it will exit R between hm and hM time units in the 
future 
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Vk(IO(k) + 3t(h, I t I hM A Past@(k), t))) 

if the k-th train exits R, then it entered I between dm and dM time units in the past 
We assume that the bar, after a goDown or a goUp command (the two commands are 
mutually exclusive) reaches the final position in y time units (y<dm and velocity of 
motion is equal in the two directions). When the bar is moving upwards an opposite 
command goDown may be issued, causing an immediate change in movement 
direction. 
When the bar in the closed state receives a goUp command, it will move upwards for 
y time units or until a goDown is issued. 

(Ml) UpToNow(closed) A goUp + Untili,(mvUp, goDown v Past(goUp, y)) 

A bar in the up position that receives a goDown command moves for y and then 
remains closed until the next goUp command. 

042) 
UpToNow(up) A goDown + LastsiJmvDown, y) A Futr(Untili,(closed, goUp), 7) 

When the bar moving up receives a goDown command it inverts its motion, at the 
same speed reaches again the closed position, and stays there until the next goUp, 

rn3) [ ~z2@;)-+ ( Lastsi,(mvDown* t)h 
Futr(Untrli,(closed, goUp), t) 

) 

After moving up for y time units, if there is no goDown command the bar stays open 
until the next goDown command. 

W4) Lastedi,(mvUp, y)A-~goDown + Untill,(open, goDown) 

Initially, i.e., before any operation takes place, the bar is open (the bar is installed 
before any train arrives). 

WY AlWPi (7goDown) + open 

The bar control strategy computes the number of trains that are possibly in I: 
whenever it becomes positive a goDown command is issued, while whenever it 
becomes 0 a goUp command is issued. Formally, the above train number is CTPI 
=defpaSt(c~, dm) - CR0 (dm in the past operator models maximum speed of trains 
moving from region R to region I). Let CTPIy =def past(CRI, dm-$ - CRO: CTPIy 
account for a forward time shift of y in issuing the command goDown to the bar due 
to the duration of the bar movement. 
The commands issued to the bar are then defined as follows. 

(Cl) goDown H Becomes(CTPIy>O) 

m goUp ti Becomes(CTPI=O) 

These axioms must ensure then safety and utility properties, formalized as follows:’ 
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Safety: (CII > CRO) + closed 

i.e., if the number of trains entered in region I is greater than those who left it, the 
bar is down. 

Utility: Lastedit(CII=CIO, y)~Lastsii(CII=CI0, y+dM -d,)-+open 

i.e., if the number of trains entered in region I is equal to those who left it, the bar is 
up (the constants y and dM-dm+y in the Utility property derive from the delay in bar 
rising upon train exit and from the conservative advance in bar lowering upon train 
enter). 

5. Analysis of the Case Study 

The first verification step consisted of deriving the desired Safety and Utility 
properties. Even with the assistance of the prover, the derivation required a great 
effort; moreover, to facilitate proofs, it was necessary to modify part of the 
specification, as it often happens in a verification activity. 
As an important by-product of verification, we discovered that the strategy for 
governing the bar was incorrect: it allowed for the passage of a train through the 
crossing with the bar not closed, thus violating the Safety property. This constitutes 
a typical combination of verification and validation, whereby the requirements ate 
assessed or found inadequate by the process of proving interesting system properties. 

5.1 System Validation and Verification 

The original control policy was based on the idea that any transition of CTPI from 
zero to a positive value should be anticipated by a similar transition of CTPIy taking 
place y time units before. Therefore, by axiom Cl, when a train is inside region I the 
bar would be closed and Safefy guaranteed. 
We used the prover to check rigorously this idea, by formalizing the reasoning above 
through a sequence of lemmas and trying to prove each of them. We then discovered 
an error, caused by a misunderstanding of the system behavior, when we failed 
proving the following lemma (L7). 

Alw( Becomes(CTPIy>O)H Futr(Becomes(CTPIy > 0,~) ) 

The proof attempt decomposed the original goal into four separate subgoals, some of 
which were derived from the specification. However we could not derive the following 
subgoal: 

Dist(UpToNow(CTP1 = 0), r) I - UpToNow(CTPIy = O), Dist(CTP1 = 0. r) 

Then we tried to falsify it, starting from a partial model that verified the antecedent 
and falsified all the consequent% and then trying to complete it respecting the various 
specification’s axioms. This activity led to a counterexample, showed in Fig. 2, that 
falsified lemma L7 and hence the Safety property. 
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. 
+ dm- 

Bar Position train in I 
y barup 7 

Fig. 2 A counterexample for L7 and Safety 

We note that the time spent on the unfeasible proof was very short, since we quickly 
found the mentioned counterexample. Even more important, both the search of a 
proof and of a counterexample could be seen as parts of a single process, because 
every step of the failed proof is, at the same time, a step in the construction of the 
counterexample. In fact the backward application of an inference rule can be mad both 
as: “To prove the goal I must prove all the subgoals” or “To falsify the goal I can 
falsify one of the subgoals”. 
This fact provides important methodological suggestions, for it shows that there 
exists a systematic way to extract useful indications from the failure of a proof, 
through the construction of a counterexample. 
In our case, the counterexample showed clearly that the problem was originated by the 
fact that the increment’of CTPIy (used for sending a goDown command to the bar) 
was not necessarily from zero to a positive value, for CTPIy could have been already 
positive. 
The counterexample suggested also that the problem could simply be avoided by 
issuing the goUp command when CTPIy, rather than CTPI, becomes zero. Therefore 
axiom C2 was modified into 

G3 goUp TV Becomes(CTPIy = 0) 

which indeed allowed us to prove both Safety and Utility. 
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5.2 Systematic Specifications Support Easy Proofs 

Another interesting methodological issue concerns the specification of the bar. One of 
the key steps in proving the Sufefy property consisted of deriving the following 
lemma (L6): 

goDown A Lastsit (TgoUp, t) A t 2 y + Futr(Lastsii(closed, t - r), r) 

Unfortunately this property, apparently depending only on the behavior of the bar, 
was not deducible exclusively from its specification. A simple counterexample can be 
constructed by considering a situation where the bar is always in the mvDown state 
and the goDown command has been issued periodically an infinite number of times in 
the past. 
In practice this counterexample can be excluded based on the control policy and the 
definition of the counters by showing that there must be a first goDown. Nevertheless 
it showed that the specification was not well modularized. When analyzing properties 
of a non trivial system, modularity is a key issue for mastering complexity, and 
therefore, considering that the extra effort required by this deficiency could not be 
justified, we changed the specification of the bar, to make it more self-contained. 
The need for modularity was not the only reason for changing the specification: even 
if we uncovered all the assumptions adopted in the first version and derived them from 
the specification of other system components, the particular expression of the axioms 
Ml+M5 would still hinder the proofs. 
In fact, one of the most natural ways to conduct a proof is by analyzing the various 
possible cases, Of course, the case analysis must be exhaustive: in our example case, 
we would consider, as the various cases, the possible current system states, using an 
axiom like Alw(open v closed v mvUp v mvDown) to guarantee the exhaustiveness 
of the analysis, Unfortunately, from the fact that the bar is in a given state, say open, 
the axioms do not allow one to draw directly any conclusion on other states. For 
instance, axiom Ml tells what happens if the bar is closed and a goUp is issued, but 
the case when the bar is closed and no goUp is issued is not considered explicitly. 
Similar argument show how difficult it would be to prove the completeness of the 
specification, i.e., that the desired behavior is specified for every bar state and for 
every issued command. 
To overcome these difficulties we adopted a stare-based specification of the bar: for 
each bar state we introduced an axiom describing its starting and ending conditions. 
For instance, the following axiom is relative to the open state (notice that it is 
structured as a set of nested implications with mutually exclusive premises). 
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(- AlwP(-goDown) + SomF 
AlwP(open A -goDown) 
A goDown A mvDown 

h 

/ d2>dlA . 
UpToNow( mvUp) 

A 
~A’wP(YgoDown)~ SdLd2 Past Lastsl,(open hygoDown,d2) 

Futr(goDown?mvDown,d2) 

dl 

This new version of the axioms facilitated the proof of desired properties, and 
increased the confidence in the completeness of the specification. We do not think, 
however, that it would be a generally adequate solution, since it is not sufficiently 
readable, nor it is easy to write; moreover, it does not prevent the introduction of 
inconsistencies. 
We then feel that a further step is needed, from purely state-based specifications to 
tabular specifications, as advocated by [HpSK78] and [HM83]. Applying this idea to 
the description of the bar, we would obtain a table with a row and a column for each 
state; a cell contains the condition under which the system moves from the state 
corresponding to its row to the state of its column. For instance, the row for the qerr 
state would the following, 

open 
open 
TgoDown 

closed mvUp mvDown 
goDown 

stating that if the bar is in the open state and a goDown is issued, it goes into the 
mvDown state; otherwise it remains in the open state. This presentation is easy to 
read and write; moreover, completeness and consistency can be easily guaranteed by 
simple table inspections. In practice, the conditions that appear in the table can be 
arbitrarily complex TRIO formulas referring to the past history of the system, which 
gives enough power to represent more complicated behaviors, as in the case of time- 
outs 
By means of suitable translation rules a set of TRIO axioms could be generated from 
the tables, to be used in proofs. In general, this could be done in a simple and 
convenient way in the case of discrete time domains, but not so easily when time was 
modeled by the set of real numbers. 

I’ 
5.3 Discrete vs. Dense Time Domain 

This is only one of the difficulties arising from adopting the set of reals as the 
temporal domain. For instance we found that, in an informal proof, it was very 
frequent to use expressions like: “the last time in which A happened” or “the next 
time in which A will happen”. When formalizing these concepts in PVS, it was 
necessary to prove, for instance, that there really existed a “last” or “next time” in 
which A happened. To this end, it would have been necessary, first of all, to exclude 
(or severely limit) the possibility of accumulation points of events, introducing a 
considerable amount of extra work. 
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As an example of this kind of complication, to prove the Safety property it was 
necessary to prove the following lemma, called Becomes-CTPIy. 

Alw(4TPIy = 0 + 3t(Past(B ecomes(4YI’PIy = 0), t) A Lastedii (4ZTPIy = 0, t))) 

This lemma states that, if CTPIy is positive, there must be a last time in which it 
became positive (being previously zero), and its correctness should be evident to the 
reader. Despite this, its proof required the introduction of many other lemmas, 
requiring almost a third of the total effort necessary to prove the Safety property. 
With a discrete temporal domain, instead, the proof of this lemma would have been 
straightforward. 
Although many of the required lemmas could be exploited also in future proofs, this 
shows that the higher detail and precision in specifications allowed by modeling time 
as a continuous set does not come for free, having a negative impact on the 
complexity of proving even trivial facts. Therefore, one could use a discrete time 
model as a useful approximation for single-clock systems, keeping the full generality 
of real-valued time for asynchronous systems where events occur arbitrarily close in 
time. 

5.4 Figures of Total Effort 

Concerning the cost of our activity, the proof of the two properties required the 
introduction of 53 intermediate lemmas, reported in about 1000 pages of proof, 
generated by the prover (every step is the result of an interaction with the user: 
intermediate steps done by the prover are not reported), distributed among the various 
theorems and lemmas. 
It is interesting to notice that lemmas concerned with properties of Counters and 
Events, for a total of 258 pages, are completely reusable without modifications. The 
percentage of possible reuse could be increased from 26% to 38%, by generalizing 
some lemmas to cover a broader range of cases. 
The total time required for analysis was slightly more than 3 personmonths, from the 
first serious reading of the original specification to the writing of the last page of 
documentation. The documentation activity took about 3 weeks and produced a 100 
pages summary of the proofs. 
The rest of the time was spent (i) trying to reach a sufficient understanding of the 
system behavior, (ii) searching for a way to formalize our reasoning, and (iii) deriving 
the actual proofs. After a training phase, during which we could hardly produce more 
than 20 pages of proofs in a day, our productivity increased significantly, reaching a 
rate of about 100 pages in a day in the last proofs. All the hard work was concentrated 
in the first two steps, witnessing the adequacy of the tool and of our encoding. 
The effort required for the second phase derived mainly from the adoption of real- 
valued time and from the original description of the bar. In particular, we spent about 
a week analyzing the specification of the bar and providing an alternative 
formalization; then, when the alternative was found, half a day sufficed to complete 
the related proofs. Therefore, we are quite confident that, for adequately trained 
engineers, the effort should be required mainly by the first phase: understanding the 
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system. This does not mean that proofs would become easy and cheap: it only means 
that time would be spent more proficiently. 

6. Conclusions and Future Developments 

We summarize here a few final remarks on the experiment described in the present 
paper and the lessons we learned from it. Regarding the choice of a formal theory for 
our logic, we found that Gentzen-like systems favor human reasoning on the proofs; 
then we chose PVS as a tool for interactive construction of proofs, despite its lack of 
support to a syntactic encoding, mainly because of its powerful decision procedures, 
Overall, our experience can certainly be considered successful. Indeed, the encoding 
and the theory could be effectively employed, in our case study, to prove system 
properties and to disprove false conjectures. Moreover, unsuccessful attempts to derive 
putative theorems led to the construction of counterexamples providing useful 
indications for the correction of incomplete or inconsistent specifications. This 
alternation between system specification, validation, and verification constitutes a 
very useful and effective combination of verification and simulation [M&396]. 
During the analysis activity we realized that modeling time as a continuous set leads 
to significant increase of the complexity of proofs; this however cannon be avoided 
when modeling asynchronous systems. 
On the other hand, the figures presented in the preceding Section 5 show that the 
definition and utilization of this novel approach to system analysis required a 
significant effort, in terms of both human and computing resources. Therefore the 
question arises, as it is often the case with applications of formal methods, whether 
the obtained results were really worth the required effort, and if this method can 
usefully be employed in practical, industrially-sized applications. 
An impartial judgment on this crucial aspect should consider that a significant part of 
the effort spent in the investigation of the GRC case study derived from 
(self)instruction on the PVS tools (that we had never used extensively before) and 
from gaining experience in the use of the TRIO axiomatization and encoding for 
deriving system properties. In fact, even if the figures reported in Section 5 on the 
case study do not include the work to define the encoding of TRIO in PVS, this could 
be effectively validated only when applied systematically to a realistic example. 
We therefore expect significant cost reductions in future applications of the proposed 
method, deriving from: increased knowledge of both the formal and mathematical 
aspects of PVS as well as of its most mundane features of,the tool, which have a 
strong impact on its practical usability. Besides, from the development of our case 
study, we were able to extract some generally useful methodological guidelines. They 
should lead to the definition and construction of libraries of generic reusable 
components (PVS parametric theories) supporting the definition of high-level notions 
(such as states, events, counters, etc.), whose relevant features and properties would 
be pre-defined and proved in advance. 
Even when assuming that all these improvements will be effectively realized and 
applied, we maintain that the analysis of complex, (time) critical systems, especially 
when performed by means of formal correctness proofs, is a difftcult, costly activity 
that requires skilled, well trained personnel. In our opinion these methods can 
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therefore be applied with tangible advantages only to the most critical, non-standard 
kernel components of the developed systems. Recent advances in the technology of 
theorem provers, proof checkers, model checkers, and simulators, have improved the 
state of the art and widened their application area, but have not produced, in our view, 
any dramatic breakthrough. 
We intend to pursue the present approach to the specification, validation, and 
verification of time critical systems along the following lines. 
. Development of other case studies of similar size and complexity, to verify 

our above-reported hypothesis on diminishing costs in successive 
applications; 

. Investigation of alternative, promising approaches to the encoding of TRIO, 
such as the adoption of a semantic encoding coupled with the construction of 
a front-end acting as a parser/unparser of the language [SS94]; 

. Construction of libraries of predefined theories to support reusability, 
modularization, and bottom-up construction of specifications and proofs; 

. Integration of different, complementary tools and methods, in the same line 
as [Rus96], combining theorem-provers not only with model-checkers, but 
also with simulators/history-checkers, as advocated by p&M94, M&396]. 
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