
Design and Development of

an Extensible Test Generation Tool based on

the Eclipse Rich Client Platform

Angelo Gargantini1 and Gordon Fraser2

1 Università degli Studi di Bergamo, Italia
angelo.gargantini@unibg.it

2 Saarland University � Computer Science
Saarbrücken, Germany

fraser@cs.uni-saarland.de

Abstract. In aspiration of automated software testing, a common task
is the derivation of test cases from models. The wealth of di�erent test
criteria, model formalisms, and testing strategies makes reusability of
such test generation tools a very challenging task. Leveraging the �exi-
bility o�ered by the Eclipse Rich Client Platform, we present a new test
generation tool that achieves reusability by abstracting from speci�c de-
tails of the test generation, and by matching these features with Eclipse
extensions. The resulting tool allows the con�guration of di�erent back-
ends for extracting tests from models, input languages, test strategies,
and test criteria via plug-ins.

1 Introduction

Software testing remains the prevalent method to determine and to improve the
quality of software. As exhaustive testing is impossible, coarser test criteria are
used in practice. Because these criteria can only give an intuition of quality but
never prove the absence of errors, researchers have come up with a great number
of di�erent criteria with di�erent characteristics.

It is possible to interpret most of these criteria in a common framework that
allows leveraging the power of modern model checking tools as vehicles for test
generation: A test criterion is represented as a set of temporal logic formulas, for
which the model checker can e�ciently derive witnesses and counterexamples,
serving as test cases. This o�ers a nice theoretical framework for test generation,
but to instantiate this framework in practice requires a number of decisions: input
language, test strategy, model checking tool, test criteria � a tool that commits
to a particular choice of these decisions is likely to be unusable for many other
practical applications.

Clearly, there is a need for an extensible tool for test generation that allows
customization with respect to many di�erent aspects. In this paper we present
ExTGT (EXtensible Test Generation Tool), a test generation tool that can be
customized in terms of plug-ins, thus allowing adaptation to many di�erent prac-
tical settings. The implementation of ExTGT leverages from the possibilities

o�ered by the Eclipse Rich Client Platform. It o�ers a powerful environment
which de�nes a set of extension points so building a family of test generation
tools, each de�ning its own extensions as plug-ins for ExTGT. In the classical
Eclipse style, ExTGT itself is a collection of extensions both for the Eclipse
platform and for its own extension points.

This paper is organized as follows: Section 2 gives a general overview of model
based testing based on model checking techniques. Section 3 contains the details
of the implementation of the Eclipse based test generation tool, and shows how
ExTGT has been extended. Finally, Section 4 concludes the paper and gives an
outlook on how ExTGT will be further extended in the future.

2 Model based Test Generation by Model Checking

ExTGT is a model based testing tool: A test model describes the desired be-
havior, and test case generation means sampling execution paths of this test
model. To perform this test generation, ExTGT uses model checking. A model
checker is a formal veri�cation tool which takes as input a model and a property,
and then exhaustively veri�es whether the property holds on the model or not.
A nice feature of model checkers is their ability to derive counterexample and
witness sequences � these sequences are essentially test cases.

While model checking is an industrially accepted technique in the hardware
domain, it is also very useful in the software domain. Model checking can be used
to automatically prove certain properties on programs, but this is not su�cient to
replace software testing in general. The applicability of model checking is limited
by the scalability of the chosen model checking techniques, and so veri�cation
of software is currently limited to small programs. Model checking as part of a
software development cycle is often more practical when applied to more abstract
artifacts such as models and formal speci�cations. However, proving correctness
of such an artifact with regard to certain properties does not automatically
prove correctness of the actual system. Therefore, model checking cannot replace
software testing. This is even true if exhaustive veri�cation of a program's source
code is possible � the actual system depends on many additional factors such as
the compiler, the hardware and software environment, other components, etc.
Consequently software testing cannot be replaced by model checking.

Counterexample generation is one of the most useful aspects of model check-
ers in practice. From a software testing point of view, counterexamples essen-
tially are test cases. Mapping counterexamples to automatically executable test
cases is usually a straight forward task, although the exact details depend on the
system under consideration. Callahan et al. [7] and Engels et al. [13] initially pro-
posed to use model checkers to automatically generate test cases. Many di�erent
techniques to systematically derive test cases with model checkers have been pro-
posed since then. A large body of work considers test case generation based on
coverage criteria. Here, the idea is to represent each coverage item described by
the criterion as a temporal logic property (trap property or test predicate), such
that any counterexample to the property is a test case that covers the underlying

File
parser

Testing
criteria

Model checker test
ASM

Specification

Test generator

Test predicate/
Trap property

Test suite

Test predicates

Fig. 1. Test Generation by Model Checking: A speci�cation is parsed and serves as
source for both, test predicates and model for the model checker. Test generation is
performed by querying the model checker with the model and one test predicate at a
time.

coverage item. Speci�cation based structural coverage criteria are dominant in
the literature [21, 22, 28], although some work has also been done on property
based coverage criteria [17,31,34], and Hong et al. [25] describe control �ow and
data �ow coverage criteria. Combinatorial coverage, where test cases for all pairs
or tuples of input/state variables are required, is considered in [8, 26].

A similar approach is possible using mutation: In general, mutation describes
a process where small changes are introduced in software artifacts in order to
measure the quality of existing test sets, or in order to help generating new
test cases that can detect these changes. Mutation can be applied to model
checker speci�cations in order to automatically generate mutation adequate test
suites. This has originally been proposed by [1, 3], and recently been re�ned
by [27] and [20]. Mutation is sometimes also applied to models in order to force
counterexample generation with respect to safety properties [2, 16].

Testing with software model checkers has been considered by [5], who use
the model checker Blast [23] to create test cases from C code. Test cases can
be generated with regard to predicates (i.e., safety properties), and locations in
the source code. Consequently, it is possible to derive test cases for code-based
coverage criteria. [33] use the Java PathFinder [32] model checker to derive test
cases in a similar manner.

2.1 Test generation process

The test generation process employed by ExTGT is depicted in Figure 1: A
speci�cation �le containing the Abstract State Machine [6] is read by the tool
component parser. Starting from the ASM speci�cation, according to the testing

criteria de�ned, the tool builds a set of test predicates. Note that automated
test case generation requires formalization of the test objective (e.g., satisfaction
of a coverage criterion), which can be seen as a set of test requirements (e.g.,
one test requirement for each coverable item). Each test requirement can be
formalized as a temporal logical test predicate. Therefore, every testing criterion
produces in practice a list of test predicates; this step can easily be automated.
The test generator takes a test predicate at the time (following an ordering
policy [15] or following user requests), builds the trap property, and call the
model checker to get the counter example for that trap property. The counter
example is converted to a test and given back to the test generator which extracts
other useful information (for example the coverage of other test predicates). The
test generation process by model checking is iterated until the desired test suite
satis�es all feasible coverage goals.

Similarly, in fault based testing, test predicates are generated from the origi-
nal conditions by applying mutation operators [20]. In this approach, the testing
criteria de�nes a list of test predicates for every mutation operator.

3 Design and Development of an Extensible Test

Generator Tool

Eclipse RCP allows developers to use the Eclipse platform to create �exible and
extensible desktop applications. Eclipse itself is built upon a plug-in architecture
and plug-ins are the smallest deployable and installable software components of
Eclipse. This architecture allows the Eclipse applications to be extended by third
parties. Eclipse RCP provides the same modular concept for stand-alone appli-
cations. An Eclipse RCP application can decide to use parts of the components
provided by Eclipse, like editor, menus and so on. It is even possible to design
headless Eclipse based applications which use only the Eclipse runtime.

Eclipse provides the concept of extension points and extensions to facilitate
that functionality can be contributed to plug-ins by further plug-ins � plug-ins
which de�ne extension points open themselves up for other plug-ins. Such an
extension point de�nes a contact how other plug-ins can contribute. The plug-in
which de�nes the extension point is also responsible for evaluating the contri-
butions. Therefore the plug-in which de�nes an extension point both de�nes the
extension point and has some coding to evaluate contributions of other plug-ins.

A plug-in which de�nes an �extension� contributes to the de�ned �extension
point�; the contribution can be done by any plug-in. Contributions can be code
but also data contributions, e.g., help context. Extensions to an extension point
are de�ned in the plug-ins via the �le �plugin.xml� using XML.

The ExTGT core is itself a plug-in which provides several extensions to
standard Eclipse components, like view, perspectives, menus, editors and so on.
Moreover, ExTGT de�nes several extension points, presented in Section 3.1,
which allow the addition of new functionalities, and it provides several exten-
sions of the de�ned extension points as explained in Section 3.2. This setting is
depicted in Fig. 2

Extensions Extension points

EXTGT

eclipse
Menus,
view, ...

Test
generation
features

Fig. 2. ExTGT extensions and extension points: ExTGT de�nes its extension points
based on common features of test generation tools. ExTGT is itself a plug-in to Eclipse
and provides several extensions to standard Eclipse components such as views, perspec-
tives, etc.

3.1 Extension points

ExTGT de�nes several extension points (see Figure 2), which are brie�y ex-
plained in this section. In our approach each extension point has a reference
abstract class or interface which is required to be extended or implemented by
the extension of that extension point. The extension points are as follows:

extgt.asmSpecReader: This extension point allows to introduce several parsers
for ASM speci�cations. Indeed, although the Abstract State Machine formal-
ism is precisely de�ned in theory [6], several dialects exist for writing ASMs,
and the designer can add the capability to read new formats by extending
the class AsmSpecReader and introducing new parsers.

extgt.coverageBuilders: This extension point allows to de�ne new coverage
criteria. A coverage criterion is de�ned by the interface AsmCoverageBuilder
which, given an ASM speci�cation, builds a list of test predicates.

extgt.faultExpression: This extension point allows to introduce new mutation
operators, which must extend the FaultExpressionVisitor class. Every
extension must de�ne a method which takes an expression e and returns the
possible faulty implementations of e.

extgt.generatorMethod: New test generator methods can be introduced by
extending the class TestGeneratorMethod. A TestGeneratorMethod is able
to generate a test sequences starting from a test predicate by exploiting the
model checking counter example feature.

3.2 Extensions

ExTGT provides a set of extensions for the extension points introduced in
Section 3.1 (see Figure 2):

� The extension point extgt.AsmSpecReader has been extended by AsmetaL-

Loader in order to read Asmeta speci�cations as de�ned by Gargantini et
al. [19], and by AsmGoferLoader to read AsmGofer [29] speci�cations.

� extgt.coverageBuilders has been extended by BasicRuleVisitor, Com-
pleteRuleVisitor, RuleUpdateVisitor, and MCDCCoverage which com-
pute the classical structural coverage as de�ned by Gargantini and Ric-
cobene [18]. Combinatorial testing is introduced by the extension Pair-

wiseCovBuild [9], while fault based testing is de�ned by the Pluggable-

FaultBasedCov extension [20].
� extgt.faultexpression has been extended by all the faults de�ned by Gar-
gantini [20], which are: [ENF] Expression negation fault (it consists in replac-
ing a sub expression with its negation), [LNF] literal negation fault, [MLF]
missing literal fault, [ST0/1] Stuck at 0 or at 1 fault, [ASF] Associative Shift
fault, and [ORF] Operator Reference fault.

� extgt.generatorMethod is extended by several plug-ins, each implementing
the test generation by a di�erent model checker. ExTGT currently supports
Spin [24], an explicit state model checker, the BDD and SAT based model
checker SAL [11] (only for combinatorial testing), HySAT [14], a satis�ability
checker for Boolean combinations of arithmetic constraints over real- and
integer-valued variables which can also be used as a bounded model checker
for hybrid (discrete-continuous) systems, and the Yices [12] SMT solver.

3.3 Architecture

ExTGT is built upon ATGT, a tool for test generation we have developed
over the last years [4]. ATGT is compound of several packages as shown in
Figure 3, and it comes in two variants: atgt_cli for a command line version,
and atgt_swing, which o�ers a graphical user interface. Although ATGT was
developed well before ExTGT, it already uses several projects, each de�ning a
functionality. In terms of packages,ExTGT only needed a new package extgt_-
rcp, which de�nes the RCP application but which re-uses all the code already
implemented by ATGT. Note that many graphical elements in ExTGT were
reused from atgt_swing by using the Swing-SWT bridge.

3.4 Testing

Besides the usual JUnit tests for functional testing, to test ExTGT we use
SWTBot [30]. SWTBot is an open-source Java based UI/functional testing tool
for testing SWT and Eclipse/RCP based applications.

SWTBot provides several APIs that are simple to read and write. The APIs
also hide the complexities involved with SWT and Eclipse. Furthermore, SWT-
Bot provides its own set of assertions that are useful for SWT.

tgt_lib

structural mcdc fault

Coverage criteria

spin hysat yices

Model checkers

atgt

atgt_swing atgt_cli

extgt_rcp

SAL

component=
eclipse project

depends

Legend

Fig. 3. ExTGT projects: ExTGT reuses many of the components of the ATGT code
base [4]. These components mainly cover di�erent model checkers and test criteria.

Listing 1. A snippet of an SWTBot test case as was used to test ExTGT.

// t e s t the opening o f a f i l e
@Test
public void openFi l e () throws Exception {

SWTBotMenu f i l emenu = bot .menu(" F i l e ") ;
SWTBotMenu openm = f i l emenu .menu("Open") ;
openm . c l i c k () ;
. . .

}

The SWTBot tests were de�ned in a separate project, each in a di�erent
Java class. The methods to test the application consists in a sequence of com-
mands simulating the use of the application. For example, Listing 1 illustrates a
fragment of a test that opens a speci�cation �le:

3.5 ExTGT at work

A screenshot of ExTGT is presented in Figure 4. The user is not aware that
ExTGT is an Eclipse-based application since it is not an Eclipse plug-in but
a real stand alone application and has limited reuse of the classical Eclipse
workbench elements.

The user loads the ASM speci�cation in the tool. For instance, Listings 2
reports the speci�cation of a Cruise Control system in AsmetaL.

Listing 2. AsmetaL Speci�cation of a Cruise Control

// the c ru i s e c on t r o l module
asm c ru i s eCont r o l
import StandardLibrary
signature : // dec l a r e un i v e r s e s and f unc t i on s

enum domain CCMode = {OFF| INACTIVE|CRUISE|OVERRIDE}
enum domain CCLever = {DEACTIVATE| ACTIVATE|RESUME}
dynamic controlled mode : CCMode
dynamic monitored l e v e r : CCLever
dynamic monitored igOn : Boolean
dynamic monitored engRun : Boolean
dynamic monitored brake : Boolean
dynamic monitored f a s t : Boolean

definit ions :
// AXIOMS
axiom i nv_ign i t i on over engRun : (engRun imp l i e s igOn)
axiom inv_too fas t over f a s t : (f a s t imp l i e s engRun)

//Rules
main rule r_CruiseControl =
i f not igOn then mode := OFF
else i f not engRun then mode:= INACTIVE
// igOn and engRun
else par

i f mode = OFF then mode := INACTIVE endif

i f mode = INACTIVE and not brake and not f a s t
and l e v e r = ACTIVATE then mode := CRUISE

endif

i f mode = CRUISE then

i f f a s t then mode := INACTIVE
else i f brake or l e v e r = DEACTIVATE

then mode := OVERRIDE
endif endif

endif

i f mode = OVERRIDE and not f a s t and not brake and
(l e v e r = ACTIVATE or l e v e r = RESUME) then mode := CRUISE

endif

endpar

endif

endif

// i n i t i a l s t a t e
default in i t s1 :

function mode = OFF
function l e v e r = DEACTIVATE
function igOn = f a l s e
function engRun= f a l s e
function brake = f a l s e
function f a s t = f a l s e

Fig. 4. Screenshot showing ExTGT in action: The coverage view shows the available
test predicates, and ExTGT also shows the speci�cation and details of the currently
selected test predicate.

Fig. 5. Choosing a model checker plug-in in ExTGT: The user does not need to be
aware of the extension points and extensions, but gets to see the e�ects in various
options.

The user does not need to know which plug-ins are installed, but the appli-
cation is aware of the extensions de�ned by its extension points. For example,
the choice of the model checker is presented by the user by means of the simple
pull-down menu shown in Figure 5.

In this case the application searches the list of the extensions de�ned as
extgt.generatorMethod and builds the list of the available methods to be pro-
posed to the user. After selecting a test generator method and the desired test
predicates, the user can run the test generator of ExTGT to obtain the desired
test cases.

4 Conclusions and Future Work

The Eclipse RCP framework has allowed us to use the Eclipse platform to create
a �exible and extensible test generator tool, reusing some of the code we pre-
viously developed for ATGT. We plan to de�ne new extensions, like the use of

further model checkers such as NuSMV [10] as test generator method. We plan
also to de�ne new extension points, for example the ordering policies in which
test predicates are taken by the test generator. A major extension point we are
planning to de�ne is the speci�cation notation to make ExTGT able to read
not only ASM speci�cations, but also other formal notations like SCR or UML
state machines.

Acknowledgments Angelo Fumagalli and Matteo Foiadelli developed the initial
prototype of EXTGT. Laura Bottanelli developed the hysat module.

References

1. Paul Ammann and Paul E. Black. A Speci�cation-Based Coverage Metric to
Evaluate Test Sets. In HASE '99: The 4th IEEE International Symposium on
High-Assurance Systems Engineering, pages 239�248, Washington, DC, USA, 1999.
IEEE Computer Society.

2. Paul Ammann, Wei Ding, and Daling Xu. Using a Model Checker to Test Safety
Properties. In Proceedings of the 7th International Conference on Engineering of
Complex Computer Systems (ICECCS 2001), pages 212�221. IEEE, 2001.

3. Paul E. Ammann, Paul E. Black, and William Majurski. Using Model Checking
to Generate Tests from Speci�cations. In Proceedings of the Second IEEE Inter-
national Conference on Formal Engineering Methods (ICFEM'98), pages 46�54.
IEEE Computer Society, 1998.

4. ATGT Abstract State Machines test generation tool project. http://cs.unibg.

it/gargantini/software/atgt/.
5. Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak

Majumdar. Generating Tests from Counterexamples. In Proceedings of the 26th
International Conference on Software Engineering (ICSE'04, Edinburgh), pages
326�335. IEEE Computer Society Press, 2004.

6. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

7. John Callahan, Francis Schneider, and Steve Easterbrook. Automated Software
Testing Using Model-Checking. In Proceedings 1996 SPIN Workshop, August 1996.
Also WVU Technical Report NASA-IVV-96-022.

8. Andrea Calvagna and Angelo Gargantini. A Logic-Based Approach to Combina-
torial Testing with Constraints. In Tests and Proofs, volume 4966 of Lecture Notes
in Computer Science, pages 66�83. Springer-Verlag, 2008.

9. Andrea Calvagna and Angelo Gargantini. A formal logic approach to constrained
combinatorial testing. Journal of Automated Reasoning, 2010.

10. Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
NUSMV: A New Symbolic Model Veri�er. In CAV '99: Proceedings of the 11th
International Conference on Computer Aided Veri�cation, pages 495�499, London,
UK, 1999. Springer-Verlag.

11. Leonardo de Moura, Sam Owre, Harald Rueÿ, John Rushbyand N. Shankar, Maria
Sorea, and Ashish Tiwari. Sal 2. In Rajeev Alur and Doron Peled, editors,
Computer-Aided Veri�cation, CAV 2004, volume 3114 of Lecture Notes in Com-
puter Science, pages 496�500, Boston, MA, July 2004. Springer-Verlag.

12. B. Dutertre and L. de Moura. The Yices SMT solver. Technical report, SRI
Available at http://yices.csl.sri.com/tool-paper.pdf, 2006.

13. André Engels, Loe Feijs, and Sjouke Mauw. Test Generation for Intelligent Net-
works Using ModelChecking. In Ed Brinksma, editor, Proceedings of the Third
International Workshop on Tools and Algorithms for the Construction and Analy-
sis of Systems. (TACAS'97), volume 1217 of Lecture Notes in Computer Science,
pages 384�398, Enschede, the Netherlands, April 1997. Springer-Verlag.

14. Martin Fränzle and Christian Herde. Hysat: An e�cient proof engine for bounded
model checking of hybrid systems. Form. Methods Syst. Des., 30(3):179�198, 2007.

15. Gordon Fraser, Angelo Gargantini, and Franz Wotawa. On the order of test
goals in speci�cation-based testing. Journal of Logic and Algebraic Programming,
78(6):472�490, July 2009.

16. Gordon Fraser and FranzWotawa. Property Relevant Software Testing with Model-
Checkers. SIGSOFT Software Engineering Notes, 31(6):1�10, 2006.

17. Gordon Fraser and Franz Wotawa. Complementary criteria for testing temporal
logic properties. In Catherine Dubois, editor, Proceedings of theThird International
Conference on Tests And Proofs (TAP), volume 5668 of Lecture Notes in Computer
Science, pages 58�73, Zurich, Switzerland, 2009. Springer.

18. A. Gargantini and E. Riccobene. Asm-based testing: Coverage criteria and auto-
matic test sequence generation. JUCS - Journal of Universal Computer Science,
7(11):1050�1067, nov 2001.

19. A. Gargantini, E. Riccobene, and P. Scandurra. A metamodel-based language and
a simulation engine for abstract state machines. Journal of Universal Computer
Science (JUCS), 14(12):1949�1983, 2008.

20. Angelo Gargantini. Using model checking to generate fault detecting tests. In
International Conference on Tests And Proofs (TAP), Zurich, Switzerland on 12-
13 February 2007, volume Lecture Notes in Computer Science (LNCS), pages 189�
206, 2007.

21. Angelo Gargantini and Constance Heitmeyer. Using Model Checking to Generate
Tests From Requirements Speci�cations. In ESEC/FSE'99: 7th European Software
Engineering Conference, Held Jointly with the 7th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, volume 1687, pages 146�162. Springer,
1999.

22. Gregoire Hamon, Leonardo de Moura, and John Rushby. Generating E�cient Test
Sets with a Model Checker. In Proceedings of the Second International Conference
on Software Engineering and Formal Methods (SEFM'04), pages 261�270, 2004.

23. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Soft-
ware Veri�cation with Blast. In Model Checking Software: 10th International
SPIN Workshop, Portland, OR, USA, May 9-10, 2003. Proceedings, pages 235�
239. Springer-Verlag, 2003.

24. Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng.,
23(5):279�295, 1997.

25. Hyoung S. Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A Temporal Logic
Based Theory of Test Coverage and Generation. In Proceedings of the 8th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2002), volume 2280 of Lecture Notes in Computer Science,
pages 151�161. Springer Verlag Gmbh, 2002.

26. D. Richard Kuhn and Vadim Okun. Pseudo-Exhaustive Testing for Software. In
30th Annual IEEE / NASA Software Engineering Workshop (SEW-30 2006), 25-28
April 2006, Loyola College Graduate Center, Columbia, MD, USA, pages 153�158.
IEEE Computer Society, 2006.

27. Vadim Okun, Paul E. Black, and Yaacov Yesha. Testing with Model Checker:
Insuring Fault Visibility. In Nikos E. Mastorakis and Petr Ekel, editors, Proceedings
of 2002 WSEAS International Conference on System Science, Applied Mathematics
& Computer Science, and Power Engineering Systems, pages 1351�1356, 2003.

28. Sanjai Rayadurgam and Mats P. E. Heimdahl. Coverage Based Test-Case Gener-
ation Using Model Checkers. In Proceedings of the 8th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems (ECBS
2001), pages 83�91, Washington, DC, April 2001. IEEE Computer Society.

29. J. Schmid. AsmGofer. http://www.tydo.de/AsmGofer.
30. Swtbot - ui testing for swt and eclipse. http://www.eclipse.org/swtbot/.
31. Li Tan, Oleg Sokolsky, and Insup Lee. Speci�cation-Based Testing with Linear

Temporal Logic. In Proceedings of IEEE International Conference on Information
Reuse and Integration (IRI'04), pages 493�498, 2004.

32. Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model
Checking Programs. In ASE '00: Proceedings of the 15th IEEE international con-
ference on Automated software engineering, pages 3�11, Washington, DC, USA,
2000. IEEE Computer Society.

33. Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test Input Generation
with Java PathFinder. In ISSTA '04: Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 97�107, New
York, NY, USA, 2004. ACM Press.

34. Michael W. Whalen, Ajitha Rajan, Mats P.E. Heimdahl, and Steven P. Miller.
Coverage Metrics for Requirements-Based Testing. In ISSTA'06: Proceedings of
the 2006 International Symposium on Software Testing and Analysis, pages 25�36,
New York, NY, USA, 2006. ACM Press.

