
An Eclipse-based environment

for conformance testing by FSMs

Angelo Gargantini, Marco Guarnieri, and Eros Magri

Dip. di Ing. dell'Informazione e Metodi Matematici, Università di Bergamo, Italy
angelo.gargantini@unibg.it,0guarnieri.marco0@gmail.com,erosmagri@gmail.com

Abstract. Finite state machines (FSMs) represent a very simple yet
widely used formalism. They are used to model simple protocols or even
complex systems in an abstract way. Java classes often behave like FSMs.
For these reasons, FSMs are often used in conformance testing, which
consists in checking that a real implementation conforms with its spec-
i�cation given in terms of a FSM. In this paper, we show how Eclipse-
related technologies, like GMF and PDE, can be used to build an editor
and test generator for FSMs. We present a complete environment which
contains: (1) a graphical editor based on a metamodel for FSMs, (2) an
extensible framework for test generation from FSMs according to several
coverage criteria, and (3) an API that can be used to test Java classes
against their speci�cations given as FSMs.

1 Introduction

Finite State Machines (FSMs) are a simple notation which permits the descrip-
tion of systems with a �nite number of states and simple transitions between
them. Although they are quite simple, they are frequently used to model systems
or system parts, also because they provide an appealing and intuitive graphical
notation. Even the behavior of very complex systems is often represented in an
abstract way by means of FSMs. FSMs have been used to model protocols, se-
quential circuits, and parts of programs. In particular, Java classes which have
a simple behaviour leading to a �nite number of states can often be modeled
by FSMs, for instance by using the well known state pattern [9]. Lately, several
authors proposed to extract �nite state machines from source code [8].

For these reasons, FSMs are widely used in conformance testing [11]. In
conformance testing, one assumes that the speci�cation S is given in terms
of a FSM and wants to check whether the implementation I behaves like its
speci�cation, i.e. I conforms to S. The speci�cation is built by the designer, and
a test sequence (or a set of test sequences) is derived form it in order to check if
the implementation behaves as prescribed by the test sequences (called checking
sequences).

In conformance testing with FSMs, we address the following issues. First,
although there is standard mathematical de�nition of FSMs, there is no stan-
dard tool for designing them. Some tools which are used in practice, do not o�er
graphical editors (as the State Machine Compiler [3]). We investigate the use

of the Eclipse framework, in particular GMF, to build a prototype editor for
FSMs. The desired editor must feature a graphical notation similar to that al-
ready de�ned for the FSMs and possibly be integrated in the IDE used daily by
the developers. Second, we want to introduce a framework for test generation.
Since there are plenty of algorithms for test generation from FSMs [10,11], the
framework must allow to add new algorithms in an incremental way. To this aim,
we investigate the use of the Eclipse plugin framework in which test generation
algorithms can be introduced as extensions of particular extension points. Third,
we assume that the test sequences may be used to test Java code. We address
the issue of using the test sequences generated to check the conformance of a
Java class. In this paper, we assume that the user has a certain access to the
source code and he/she may be able to slightly modify it in order to ease the
conformance testing.

The paper is structured as follows. Section 2 presents the notation of �nite
state machines used in this paper, namely the Mealy FSMs. Section 3 gives an
overview on how we created the editor using the GMF framework, while Section
4 presents how we introduced the test generation algorithms. Finally Section 5
presents the architecture of the tool. Section 6 presents related works and Section
7 presents our conclusions and ideas for future works.

2 Background

A Mealy machine M is a �nite state machine whose outputs depend on the
current state and on the input received. It is de�ned as the following tuple
M = 〈I,O, S, s0, δ, λ〉, where, more in detail,
I is the set of input symbols,
O is the set of output symbols,
S is the set of states,
s0 is the initial state and it belongs to S
δ : S × I −→ S is the state transition function,
λ : S × I −→ O is the output function,
and I, O, S are all �nite non empty sets. The transition and output functions
describe the FSM behavior, that is, when a the FSM M is currently in a state
s ∈ S and it receives an input i ∈ I, it moves to the new state s′ ∈ S where
s′ = δ(s, i), producing the output o ∈ O where o = λ(s, i). A FSM can be
represented also as a state transition diagram, that is a graph in which vertexes
represent states, edges represent transitions and each transition can be labeled
with an input and output symbols. Fig. 1 depicts an instance of FSM (used in
the following also for test generation) with an intuitive graphical notation.

Given two input or output sequences a and b, we use the notation a.b to
identify the result of the concatenation of a with b. We de�ne an input sequence
i∗ = i1.i2. . . . ik of input symbols and an output sequence o∗ = o1.o2. . . . oj of
output symbols. A variation of the state transition function is δ∗ : S × I∗ −→ S
that takes as input the current state s1 and i∗ that moves M successively to
si+1 = δ(si, ii) for each input into the sequence i∗. We can also de�ne the

s1

a/0

��

b/1

��
s2

b/1
//a/1

''
s3 a/0
ww

b/0

XX

Fig. 1. An instance of FSM M (taken from [11])

function λ∗ : S × I∗ −→ O∗ that takes as input the current state s1 and i∗

and returns the associated output sequence. Another way to represent a Mealy
FSM is using a tuple M = 〈I,O, S, T 〉 where I,O, S have the same meaning as
above and T represents the set of transitions, where each transition is de�ned as
the tuple < s, i, o, s′ > where s is the source state, s' is the target state, i and
o are respectively the input and output symbols. We use this de�nition when
introducing the metamodel for the FSMs.

A FSMM may also have a status message, which is a particular input which
signals as output the current state of the machine and it does not move the
machine from the current state. Moreover, a FSM may also have a reset message,
which moves the machine to its initial state. Classical FSMs have no �nal states.

A classical use of FSMs is for conformance testing [12], which can be described
as follows. Given two di�erent FSMs, a �rst one Ms, that acts as speci�cation
and for which we known the state transition diagram, and a second oneMi, that
acts as implementation of the �rst one and for which we can only observe its
behavior, we want to test if Mi correctly implements Ms, that is we want to
detect defects into the implementation Mi with respect to Ms. The two classical
kinds of failures considered in this paper are:

transfert fault : a transition t in Ms that starts from ss and ends on se is
implemented in Mi with a transition t′ that starts from ss and ends on s′e
where se 6= s′e,

output fault : a transition t in Ms that starts from ss and ends on se with an
output o is implemented in Mi with a transition t′ that starts from ss and
ends on se with an output o′, where o 6= o′.

The testing process is divided into three phases. In the �rst one we generate
an input sequence i∗ from Ms and compute the expected output sequence o∗ by
applying i∗ to Ms, while in the second phase we test the implementation Mi,
applying to it the input sequence i∗ and obtaining the real output sequence o′∗.
In the last phase, in order to check that the implementation Mi conforms to
the speci�cation Ms, we compare the real output sequence o′∗ and the expected
output sequence o∗; if o′∗ is equal to o∗, then the implementation Mi conforms
to the speci�cation Ms.

In the following, we introduce some assumptions about Ms and Mi. First we
assume thatMs is minimal, that is for every pair of states s and s' intoMs must
exists a sequence of inputs i∗ for which λ(s, i∗) 6= λ(s′, i∗). We also assume that
Ms is strongly connected and completely speci�ed, that is for each state s ∈ S
and for each input i ∈ I both the function λ(s,i) and δ(s,o) are speci�ed. The
last assumption is that Mi doesn't change during the testing and that the set of
input I of Mi is equal to the one of Ms.

The classical test generation algorithms implemented into our tool are [10]:

State cover set: This method provides only state coverage and it generates
the testing sequence simply visiting the FSM graph using the Dijkstra's
algorithm and adding status message after each input.

Transition Tour: This method provides both state and transition coverage. It
uses transition tour, that is a sequence of state transitions that begins and
ends on the initial state. We assumed that the FSM is strongly connected
and thus we can compute one transition tour that visits all the transitions
in the machine, by simply solving the Direct Chinese Postman Problem [14]
on the graph of the �nite state machine. Once that we have computed the
sequence of inputs that provides the transition tour we put a status message
after each input to obtain the testing sequence.

W method: This method can be used when the FSM doesn't support the status
message but it supports only the reset message. Instead of the status message
we use a characterizing sequence extracted from a characterizing set, that is
a set of input sequences such that for every pair of distinct states s and t
there exists an input sequence x∗ for which λ(s, x∗) 6= λ(t, x∗). The method
uses the characterizing set and the transition cover set, that is a set of input
sequences such that for each state s ∈ S and each input i ∈ I, there exist
two input sequences x∗ and y∗ such that x∗ = y∗.a and δ(si, y

∗) = s (where
si is the initial state of the FSM), to build the testing sequence.

WP method: This method computes the testing sequence in two di�erent
phases. Into the �rst one the input for the FSM consists into the concatena-
tion of a state cover set with a characterizing set, while for the second phase
it use a identi�cation sets. An identi�cation set Wi for the state si is a set of
input sequences such that for each state sj ∈S (where i 6=j) exists an input
sequence x∗ into Wi such that λ(si,x

∗) 6= λ(sj,x
∗) and no subset of Wi has

this property. The main advantage of the Wp method is that it can build a
shorter testing sequence than W method.

3 Building an Editor for FSMs

The �rst goal of our project is to build a prototype graphical editor for FSMs.

We base the construction of the Editor on the Graphical Modeling Framework
(GMF) that is a framework within Eclipse, that provides tools for developing
graphical editors based on the Eclipse Modeling Framework (EMF) and Graph-
ical Editing Framework (GEF). Starting point is a model speci�cation, called

metamodel, from which Eclipse Modeling Framework generates a set of Java
classes for the model and �nally a basic editor.

State

 name: String

Transition

 input: String

 output: String

 tail: State

 head: State

Fsm

 initialState: State

 supportStateInput: Boolean

 supportResetInput: Boolean

1

*

1

*

Fig. 2. FSM Metamodel

The metamodel represents the
model for the language for which the
editor is built. It describes the lan-
guage in an abstract way by means
of a class diagram (in a classical Ob-
ject Oriented way). Figure 2 shows the
metamodel for FSMs. To be more pre-
cise, the metamodel de�nes the fol-
lowing entities:

� State: represents the states of
the FSM and has attribute:

• name type String which is the
unique name assigned to the
state

� Fsm: it contains the main features of the �nite state machine and owns (by
composition) a set of States and Transitions. Its main attributes are:

• initialState of type State, identi�es the initial state of the machine
• supportStateInput of type Boolean, contains the information that the
machine supports or not the state input.

• supportResetInput of type Boolean, contains the information that the
machine supports or not the reset input.

� Transition represents a transition and its attributes are:

• input type String containing the input value of the transition
• output type String which is the output value of the transition
• head type State identi�es the state where the transaction starts
• tail type State identi�es the state where the transaction comes

The metamodel is also called domain model and after creating it, we de�ne
and build:

� Domain Generation Model, enabling the generation of all the editor code.
� Graphical De�nition Model, which allows to establish what are the essential

components of the diagram.
� Tooling De�nition Model, de�ning the tools for drawing the diagram.
� Mapping model, that links the Domain Model, the Graphical Model and the

Tooling Model.
� Diagram Editor Generation Model, that generates the GMF graphical editor,

in addition to the code generated with the Domain Model.

Fig. 3. Editor's screenshot

The graphical editor obtained al-
lows the user to easily draw FSM
charts, using its two tools:

� �State� which allows to draw a
state with its name

� �Transition� which allows to draw
a transition between two states
with the respective values of in-
put and output

The properties of the FSM and of
States and Transitions can be modi-
�ed by using the properties view. Fig-
ure 3 shows a screenshot of the editor.

4 Test generator

We choose to implement the test generator part of our tool as an Eclipse plugin
for two reasons: (1) we want to integrate design, implementation, and testing
of FSMs into the same environment and (2) the developer may extend the test
generation by introducing new algorithms as eclipse plugins. In this way, our
tool and Eclipse can provide the developer with an environment to work with
FSMs, from the beginning to the end of the development lifecycle, into the same
application, avoiding switching between di�erent applications.

FsmUnit

FsmUnit.Diagram

FsmUnit.
ConformanceTester

FsmUnitApi

Fig. 4. Components Diagram

Our application is composed of several components, some of them provide
only the model of the FSM and the di�erent test generators and others that
provide the user interface and the graphical editor. More in detail, as shown in
Figure 4, the components are:

FsmUnit: This component contains the de�nition of the EMF model.
FsmUnit.Diagram: It implements the FSMs editor, as explained in the pre-

vious section.

FsmUnitAPI: It contains the implementations of the algorithms that generate
the test sequences.

FsmUnit.ConformanceTester: uses both FsmUnitAPI and FsmUnit.Diagram
to integrate the test generation algorithms into the graphical user interface.
This component is presented in Section 5.

All the test generators for the methods introduced in Section 2 are imple-
mented in the FsmUnitAPI component. This component exposes the following
interfaces:

IFsmBuilder: represents the interface of a builder that allows the user to build
a FSM in an incremental way.

IVisitor: represents the interface of a visitor that can visit an IFsm object and
all the entities into the model.

ITestGenerator: represents the interface of the test generators, both for state
and transition coverage. It declares a method to compute the sequence of
inputs and another one to compute the list of expected outputs. All the test
generators were implemented following the Strategy pattern.

Our architectural choice presents more than one advantage. A �rst one is
that separating the API from the graphical user interface, we provide a solution
that can be implemented using di�erent editors to build Finite State Machines
(another solution could be, for example an editor based on xText). The API
component provides developers with a logical model to implement and work
with FSMs. Another advantage is that our solution provides a very easy way to
add new test generators, using algorithms and criteria di�erent from the ones
already implemented into the API.

To add new test generators, we create the FsmUnitAPI.coverageCriteria ex-
tension point.

Listing 1. De�nition of FsmUnitAPI.coverageCriteria Extension Point

<element name="criteria">
<complexType>
<attribute name="class" type="string" use="required">

<meta.attribute kind="java"
basedOn=":it.fsmunitapi.fsm.testgenerators.ITestGenerator"/>

</attribute>
<attribute name="description" type="string" use="required"/>
<attribute name="name" type="string" use="required"/>
<attribute name="kindOf" use="required">
<simpleType>

<enumeration value="stateCoverage"/>
<enumeration value="transitionCoverage"/>

</simpleType>
</attribute>

</complexType>
</element>

Fig. 5. FsmUnitAPI provides its extension point to declare new test generators. Fs-
mUnit.ConformanceTester uses Eclipse's extension points for the GUI.

It has four di�erent attributes, as shown in the listing 1:

Class : it is the full quali�ed name of the class that implements the test gen-
erator. This class must implement the ITestGenerator interface.

Description: it is a brief description of the test generation algorithm. This
description will be shown into the preference page.

Name: contains the name of the test generator.
KindOf: it is the kind of coverage criteria. If its value is �stateCoverage� the

generator provides only state coverage, if it's �transitionCoverage� the gen-
erator provides transition coverage, and obviously also state coverage.

Listing 2 shows as example of the use of the CoverageCriteria extension point,
the extension used to add the test generator that implements the W Method
algorithm.

Listing 2. Example of use of FsmUnitAPI.coverageCriteria Extension Point

<criteria
class="it.fsmunitapi.fsm.testgenerators.internal.WMethodTestGenerator"
description="Transition coverage with W Method."
kindOf="transitionCoverage"
name="WMethodTestGenerator">

</criteria>

The Figure 5 shows the complete structure of extensions and extension points.
Both our components FsmUnitAPI and FsmUnitDiagram are Eclipse plugins,
and the �rst one provides the extension point FsmUnitAPI.coverageCriteria.

Into our tool we provide the implementation of four test generation al-
gorithms that uses the above-mentioned extension point: (i) State cover set
(ii) Transition Tour (iii) W method (iv) Wp method.

Number Input sequence Expected output
sequence

Number Input sequence Expected output
sequence

1 r.A 0 8 r.B.B.A.B 1.1.0.0

2 r.B 1 9 r.B.A.A 1.1.1

3 r.A.A 0.0 10 r.B.A.B 1.1.1

4 r.A.B 0.1 11 r.B.B.A 1.1.0

5 r.B.A 1.1 12 r.B.B.B 1.1.0

6 r.B.B 1.1 13 r.B.B.B.A 1.1.0.0

7 r.B.B.A.A 1.1.0.0 14 r.B.B.B.B 1.1.0.1
Table 1. Testing sequences

Table 1 reports the sequence of inputs and expected outputs that our proto-
type computes using the W method on the FSM presented before in the Figure
1. In the table, we use the input r to represent the reset input.

5 Conformance Unit Testing

The component FsmUnit.ConformanceTester integrates the FsmUnitAPI and
the FsmUnit.Diagram. It adds a simple menu where the user can recall the
various features of the plugin and a section in the preferences of eclipse in order
to change the appearance of the editor and choose the algorithm used to perform
the desired test coverage.

The developer, during design phase, draws the graph of the Finite State
Machine S. He can then generate a testing sequence that can be used during
the testing phase to prove that an implementation conforms to a FSM speci�-
cation S. To perform the conformance testing our tool provides three di�erent
approaches.

1. The �rst approach consists in testing if another FSM conforms to the
original one S, by simply executing the testing sequence on it. So, �rst the
user builds another model of the FSM I, then he/she executes on it the testing
sequence and �nally he/she compares the expected output sequence and the real
output sequence. If the two sequences are equal, than I conforms to S.

2. A second approach, that we call FsmUnit test, consists in executing the
testing sequence at runtime on a �.class� �le that contains the bytecode of a
class that implements S. First we dynamically load the class, then we execute on
it the testing sequence and we compare real output sequence and the expected
output sequence. If the two sequences are equal, the implementation conforms
to the speci�cation. Note that in this case, the test sequence obtained from the
FSM which is abstract (i.e. it does not depend on the implementation) must be
translated into a concrete test sequence in some Java code.

3. The third approach is to create a JUnit test that check if a class that
implements the Finite State Machine conforms to the speci�cation. As the two
cases mentioned before if the expected output sequences equals the real output
sequence the implementation conforms to the speci�cation.

If the developer wants to apply approaches 2 and 3, the class under test must
implement ITestableFsm and satis�es the contracts de�ned in it. ITestableFsm
signals that the class implements a Finite State Machine and it is provided in the
FsmUnitAPI component.The interface provides the contract of four methods:
void init() to initialize the implementation of the Fsm,
void executeInput(IInput input) that executes the input, moves the Fsm to

a new state and generates a new output. This method translates the input
of the FSM to the right method call of the class under test.

List<IOutput> executeInputSequence(List<IInput> seq) that executes
a sequence of inputs,

IOutput getLastOutput() that returns the last generated output.

Number Input sequence Expected Obtained Number Input sequence Expected Obtained
sequence output output sequence output output

sequence sequence sequence sequence

1 r.A 0 0 8 r.B.B.A.B 1.1.0.0 1.0.0.0

2 r.B 1 1 9 r.B.A.A 1.1.1 1.1.1

3 r.A.A 0.0 0.0 10 r.B.A.B 1.1.1 1.1.0

4 r.A.B 0.0 0.0 11 r.B.B.A 1.1.0 1.0.0

5 r.B.A 1.1 1.1 12 r.B.B.B 1.1.0 1.0.0

6 r.B.B 1.1 1.0 13 r.B.B.B.A 1.1.0.0 1.0.0.0

7 r.B.B.A.A 1.1.0.0 1.0.0.0 14 r.B.B.B.B 1.1.0.1 1.0.0.1
Table 2. Test results

Basically, the developer has two di�erent ways to implement the ITestableFsm
interface. The �rst one is to generate a new class only for testing purposes
that wraps the preexistent class and maps all the inputs and outputs from the
methods of the interface to the methods of the real class. While the �rst approach
is useful if one wants to add the support for FsmUnit testing to an existent class,
a better approach is to develop the class directly using the methods provided by
the ITestableFsm interface and integrate them into the class.

For instance, if we write a Java class that implements the FSM presented
in Figure 1 and we want to test it, we need only to implement the interface
ITestableFsm, provided by the FsmUnitAPI component, and in order to run a
FsmUnit test on it, we only need to select the class and apply to it the testing
sequence.

Suppose that our implementation has an output fault on the transition from
state S2 to state S3 and we have as result of the test the output sequence in
the Table 2. It can be seen quite clearly that the implementation of the class
has a fault because the expected output sequence is not equal to the obtained
output sequence (the error is in bold). If the test is executed using a FsmUnit
test our prototype highlight the fault into the Eclipse IDE, while if the test is
executed using the JUnit generated by our tool the fault is detected using JUnit
assertions.

6 Related work

Several tools exist for editing and programming with FSMs. State Machine Com-
piler [3] is a tool that allows developers to de�ne FSMs, using a speci�c language,
and then the tool automatically generates the source code that implement those
FSMs. StateForge is another tool [4] that allows developers to de�ne Finite State
Machines using XML and to generate automatically the source code that imple-
ment them. The Unimod project, [5], provides both a Java FSM metamodel, a
tool to validate some simple properties on FSMs and an Eclipse plugin that al-
lows developers to draw FSMs. These tools are di�erent from our tool primarily
because they do not o�er any support to the conformance testing phase. There
exist several academic and research tools that are capable of generating tests
from FSMs (or Extended FSM) [6]. However, they require speci�cations written
in speci�c notations and no one includes an editor for FSM. Most of them are
no longer maintained and used. For instance, TSG [1] supports test generation
of FSM by several classical algorithms but it is distributed only as binary for
an old SunOS. Another frequently cited tool, TAG, [13] is no longer distributed.
These tools do not support directly testing of programs. Other more recent tools
target also program testing. For instance, ModelJUnit [2,15] is a Java library
that extends JUnit to support model-based testing for Finite State Machine.
Models are extended �nite state machines that are written in Java, following a
template which requires the user to implement the Java inteface FsmModel in a
similar way as our approach explained in Section 5.

7 Conclusions and Future Work

In this paper, we have presented an approach supported by a prototype tool
for conformance testing based on Finite State Machines. We have developed
a graphical editor for FSMs using GMF, which is based on the de�nition of a
metamodel for FSMs and it is largely automatically generated by creating several
GMF artefacts. We found this approach very powerful and convenient in order to
build a working prototype for a graphical editor for FSMs. Since several testing
criteria have been de�ned for FSMs and new ones may be introduced, we have
exploited the plugin development environment of Eclipse to de�ne a suitable
extension point which permits the de�nition and implementation of several test
generation algorithms which can be easily integrated in the tool. We have already
implemented several basic classical test generation algorithms which we found
in literature. We plan to extend the tool beyond test case generation including
support to debug and animate the models. For instance, the results produced
by a failed test case could be visualized on the FSM models to facilitate the
understanding of the failure.

We have started using our tool for conformance testing of Java classes. In
this case the Java code must be modi�ed in order to be executed with the test
sequences generated. We plan to extend the use of our tool with Java by de�ning
the links between Java method invocations and FSM inputs in an external �le or

by annotating the original Java code, together with AspectJ for monitoring the
method calls. This approach would minimize the modi�cations of the original
code. A similar approach is taken by the MOP tool for run time monitoring of
Java code [7], which however does not tackle the part of generation of tests, since
it assumes that the Java code in checked against its speci�cation (given as FSM)
during its use.

References

1. TSG:FSM-based test sequence generator. http://www.site.uottawa.ca/~ural/

tsg/, 1997.
2. modeljunit. http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/, 2011.
3. SMC - the state machine compiler. http://smc.sourceforge.net/, 2011.
4. StateForge - �nite state machine diagram and code generators. http://www.

stateforge.com/, 2011.
5. Unimod - executable uml. http://unimod.sourceforge.net/, 2011.
6. A. Belinfante, L. Frantzen, and C. Schallhart. Model-Based Testing of Reactive

Systems, chapter Tools for Test Case Generation, pages 391�438. Number 3472 in
Lecture Notes in Computer Science. Springer, 2005.

7. Feng Chen and Grigore Ro³u. Java-MOP: A monitoring oriented programming
environment for java. In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS,
volume 3440 of Lecture Notes in Computer Science, pages 546�550. Springer, 2005.

8. James C. Corbett, Matthew B. Dwyer, John Hatcli�, Shawn Laubach, Corina S.
P s reanu, Robby, and Hongjun Zheng. Bandera: extracting �nite-state models
from java source code. In Proceedings of the 22nd international conference on

Software engineering, ICSE '00, pages 439�448, New York, NY, USA, 2000. ACM.
9. Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

10. Angelo Gargantini. Conformance testing. In Manfred Broy, Bengt Jonsson, Joost-
Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors, Model-Based

Testing of Reactive Systems, volume 3472 of Lecture Notes in Computer Science,
pages 87�111. Springer, 2004.

11. D. Lee and M. Yannakakis. Principles and methods of testing �nite state machines
- A survey. In Proceedings of the IEEE, volume 84, pages 1090�1126, 1996.

12. K. Naik and P. Tripathy. Software Testing and Quality Assurance: Theory and

Practice, chapter Test Generation from FSM Models, pages 265�. John Wiley &
Sons, 2008.

13. Q.M. Tan, A. Petrenko, and G. von Bochmann. A test generation tool for speci�ca-
tions in the form of state machines. In Communications, 1996. ICC 96, Conference

Record, Converging Technologies for Tomorrow's Applications. 1996 IEEE Inter-

national Conference on, volume 1, pages 225 �229 vol.1, jun 1996.
14. Harold W. Thimbleby. The directed chinese postman problem. Softw, Pract. Exper,

33(11):1081�1096, 2003.
15. Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Ap-

proach. Morgan-Kaufmann, 2006.

