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Abstract. Regular expressions are widely used to describe and docu-
ment regular languages, and to identify a set of (valid) strings. Often
they are not available or known, and they must be learned or inferred.
Classical approaches like L* make strong assumptions that normally do
not hold. More feasible are testing approaches in which it is possible only
to generate strings and check them with the underlying system acting as
oracle. In this paper, we devise a method that starting from an initial
guess of the regular expression, it repeatedly generates and feeds strings
to the system to check whether they are accepted or not, and it tries to
repair consistently the alleged solution. Our approach is based on an evo-
lutionary algorithm in which both the population of possible solutions
and the set of strings co-evolve. Mutation is used for the population evo-
lution in order to produce the offspring. We run a set of experiments
showing that the string generation policy is effective and that the evolu-
tionary approach outperforms existing techniques for regular expression
repair.

Keywords: regular expression · mutation testing · software repair · evo-
lutionary approach

1 Introduction

Regular expression (regexps) are widely used to describe regular languages and
to identify a set of (valid) strings. However, in some cases they are not available.
Consider, for example, a method that accepts strings in an unknown format
or a service that validates some inputs according to some rules only partially
documented. In such cases, the user may have a good candidate regexp C for
these inputs but still (s)he wants to check if C is correct and, in case it is not,
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(s)he wants to learn or infer the correct regexp representing the language of the
System Under Learning (SUL) starting from C. Having a formal representation
or model of the SUL input format, enables several engineering activities like
verification and validation, test-case generation, and documentation.

Consider, for example, a web service that accepts a time t presumably in
HH:MM format and converts t into different time zones (if t is in the cor-
rect format). The user formulates an initial guess about the time format, e.g.,
[0-2][0-3]:[0-5][0-9], but still one wants to test if the initial guess is correct
and, in case some faults are found, to repair it and learn the correct regexp.

Classical approaches like the L* algorithm [2], solve this problem by querying
the SUL for checking string acceptance and equivalence of the alleged solution.
However, L* is based on several strong assumptions (e.g., the possibility to check
equivalence of regexps) that rarely hold in practice. Indeed, in general, there is no
way for a tester to know whether a regexp is equivalent to the language accepted
by the SUL, and the only information (s)he can gather is the acceptance of a
given string. In the example above, the server code may not be accessible, or
may not be using any regexp internally. The only available action is calling the
time server with a string at a time and see whether it is accepted or not. The
general problem we tackle here is to build a model of some unknown regular
language based only on sets of positive and negative classifications [9].

Under the weaker assumption of performing only acceptance queries, syn-
thesizing or repairing a regexp with a symbolic method like L* becomes un-
practical. For this reason, evolutionary algorithms have been widely used in this
ambit [6,16]. They take a given data set DS (strings and their evaluation) and
build the regexp that gives the largest number of right evaluations of the strings
in DS . Genetic programming and operations like crossover and genetic muta-
tions are used in [6], while in [16] mutation operators similar to those we use in
this paper are employed. These mutation operators try to mimic possible faults
done by programmers [4].

Another assumption regards strings construction. In passive learning meth-
ods [7], the set of strings together with their labels is given before the inference
method is started; in active learning [8,10], strings are assumed to be continu-
ously generated, and most of these methods like [8] aim at synthesizing a regexp
from scratch.

We presented an approach based on active testing and mutation in [3]. In that
work, we assumed that a human user is used as oracle, so we severely limited the
number of strings to be evaluated. In case of an automatic oracle, this limitation
can be partially relaxed, as calling the oracle to properly label strings is not very
expensive (however, a constraint over the maximum number of queries one can
execute may still exist).

In this work, we propose an evolutionary approach that aims at learning a
regexp modeling the set of strings accepted by the SUL. The following assump-
tions make this active learning approach different from existing methods:

– The user has an initial guess of the regexp (s)he wants to learn. In this
way, (s)he can provide the learning algorithm with some domain knowledge



about the structure of the language of the SUL. Furthermore, this allows
our technique to consider more possibly good solutions, as it does not have
to consider very wrong solutions at the beginning. The more accurate the
guess, the more likely should our process be to converge to a right solution.

– Strings are continuously generated and fed to the SUL that acts as oracle and
gives an almost immediate answer (no user is involved, differently from [3]).
In this way, the population of possible solutions co-evolves with the test
suite.

Upon building the initial population on the base of an initially guessed reg-
exp, the process iterates through a sequence of steps, and at each iteration:

– it generates meaningful strings, that show the differences among the solu-
tions in the population. Specifically, it generates strings able to distinguish
pairs of members of the population and invokes the SUL for assessing the
classifications of these strings;

– for each member of the population, a fitness value is computed in terms of
generated strings it evaluates correctly;

– some members of the current population are selected as parents of the pop-
ulation of the next iteration;

– the new population is obtained by mutation of the parents, using suitable
operators.

As the fitness is subject to change over time and may be very unstable (at least at
the beginning), it is not suitable to be used as termination condition. Therefore,
we decided to stop the process after a given timeout decided by the user.

Experiments show that, under the assumption that the initial guess of the
user is reasonable, the approach, on average, is able to completely repair (i.e.,
find a regexp capturing the SUL language) 81.3% of the initial regexps and
improve 99.8% of them. Also in the case in which the initial guess of the user is
not very good, 25.4% of initial regexps are totally repaired, and 83.5% improved.

Paper structure Sect. 2 provides basic definitions on regexps and their
mutation operators. Sect. 3 presents our evolutionary method for learning a
regexp modeling the language of the SUL. Sect. 4 describes the experiments
we did to evaluate the approach, both on an existing web service and on some
benchmarks. Finally, Sect. 5 reviews some related work, and Sect. 6 concludes
the paper.

2 Background

We focus on regular expressions from formal automata theory, i.e., only regular
expressions that describe regular languages. The proposed approach is indeed
based on the use of the finite automaton accepting the language described by a
regular expression.

Definition 1 (Regular expression). A regular expression ( regexp), defined
over an alphabet Σ, can be recursively defined as follows. (i) The empty string



ε and each symbol in Σ is a regular expression; (ii) if r1 . . . rn are regular ex-
pressions, then op(r1, . . . , rn) is a regular expression where op is a valid operator
(see below). The regexp r accepts a set of words L(r) ⊆ Σ∗ (i.e., a language).

We also use r as predicate: r(s) if s ∈ L(r), and ¬r(s) otherwise.
As Σ we support the Unicode alphabet (UTF-16); the supported operators

op are union, concatenation, intersection, repeat, complement, character range,
and wildcards (e.g., any char or any string).

Acceptance can be computed by converting r into an automaton R, and
checking whether R accepts the string. In this paper, we use the library dk.brics.-

automaton [19] to transform a regexp r into an automaton R and perform stan-
dard operations on it.

For our purposes, we give the notion of a string distinguishing two languages.

Definition 2 (Distinguishing string). Given two languages L1 and L2, a
string s is distinguishing if it is a word of their symmetric difference L1⊕L2 =
L1 \ L2 ∪ L2 \ L1.

We define a function genDs(r1, r2) that returns a distinguishing string be-
tween the languages of two regexps r1 and r2. genDs builds two automata for r1
and r2, makes the symmetric difference (using union, intersection, and comple-
ment of automata) and returns a string accepted by the difference. If r1 and r2
are equivalent, it returns null.

2.1 Conformance faults

In this section, we describe how to compare the language characterized by a
developed regexp with the language accepted by the SUL. We suppose to have
a reference oracle that represents the language of the SUL. Formally:

Definition 3 (Oracle). An oracle sul is a predicate saying whether a string is
accepted or not. We identify with L(SUL) the set of strings accepted by the SUL.

The oracle can be queried and it must say whether a string belongs to L(SUL)
or not, i.e., whether it must be accepted or rejected. Usually, the oracle is a
software procedure that can be called and that checks whether a given string
should be accepted or not. The oracle may use a regexp and some string matching
code in order to evaluate strings, but this internal mechanism is unknown during
the process.

A correct regexp is indistinguishable from its oracle (i.e., they share the same
language), while a faulty one wrongly accepts or wrongly rejects some strings.

Definition 4 (Conformance Fault). A regexp r (allegedly representing the
language of SUL) contains a conformance fault if and only if ∃s ∈ Σ∗ : r(s) 6=
sul(s), i.e., there is a string s which is wrongly evaluated by r with respect to its
reference oracle sul .



A fault shows that the user specified the regexp r wrongly, maybe misun-
derstanding the semantics of the regexp notation or the SUL documentation. In
this case, r must be repaired in order to learn the correct regexp describing the
language accepted by SUL.

Finding all conformance faults would require to test all the strings in Σ∗,
which is unfeasible. Therefore, the first problem is how to select strings to be
used as tests. Randomly is an option that we will explore in the experiments, but
we propose an alternative method based on distinguishing strings. The second
problem is what to do when a fault has been found and how to repair a faulty
regexp. In the following, we try to answer these two questions by proposing a
testing and repair approach.

Theorem 1. Let r1 and r2 be two regexps that are not equivalent, and s a
distinguishing string returned by genDs(r1, r2), then either r1 or r2 will contain
a conformance fault.

To check which of the two regexps contains a fault, we can test s with the
oracle and see which one wrongly evaluates s. If we find that r1 is faulty, we can
say that r2 fits better to the oracle than r1 with the string s, and r2 should be
preferred to r1.

Note that even if r2 fits better than r1 with s, on other strings r1 may fit
better than r2 and r2 may still contain other conformance faults. For this reason,
it is important to keep track of the generated strings in the whole test suite.

How to choose suitable r1 and r2? In this paper, we assume that r1 and r2
belong to the population of possible solutions, which evolves over time. More-
over, following a fault-based approach, we claim that the syntactical faults that
are more likely done by developers are those described by fault classes. If such
assumption holds, possible solutions should be generated using a mutation ap-
proach as explained in the following.

2.2 Mutation

Our approach is based on the idea that regexps can be repaired by slightly
modifying them. In the process, we try to remove faults by applying mutation
operators. A mutation operator is a function that, given a regexp r , returns a
list of regexps (called mutants) obtained by mutating r (possibly removing the
fault); a mutation slightly modifies the regexp r under the assumption that the
programmer has defined r close to the correct version (competent programmer
hypothesis [20]).

We use the fault classes and related mutation operators proposed in [4]; for
example, some operators change metachars in chars (and the other way round),
change quantifiers, modify/add character classes, etc. In the following, given a
regexp r , we identify with mut(r) the set of its mutants.



3 Proposed approach

We here explain the technique that users can apply in order to discover the
regexp describing the language accepted by a SUL.

In our approach, they specify a regexp ri representing their initial guess.
Starting from this, they want to validate ri and possibly automatically modify
it in order to find a regexp rf that correctly captures the language of the SUL. In
order to learn the correct regexp, we propose an approach based on evolutionary
algorithms [11]: it can be understood as an optimization problem in which dif-
ferent solutions (population) are modified by random changes (by mutation) and
their quality is checked by an objective (fitness) function. The process consists
in the following phases:
1. Initial population. Initially, starting from the user’s regexp ri , a population
P of candidate solutions is created.

2. Then, the following steps are repeatedly executed:
(a) Evaluation. Each member of the population P is evaluated using a

given fitness function.
(b) Termination. A termination condition is checked to decide whether

to start the next iteration or to terminate. If the termination condition
holds, the candidate with the best fitness value is returned as final regexp
rf .

(c) Selection. Some members of P are selected as parents (collected in the
multi-set PAR) of the next generation.

(d) Evolution. Parents PAR are mutated to obtain the offspring to be used
as population in the next iteration.

In the following, we describe each step in details.

Initial population The size M of the population is a parameter of the evo-
lutionary algorithm. In our approach, we set M to H · |operators(ri)|, where
operators is a function returning the operators of a regexp, and H a parame-
ter of our approach. In the experiments, we set H=100. The initial population
contains ri and M -1 mutants randomly taken from mut(ri).

Evaluation In this step, the quality of the candidates in P is evaluated using
a fitness function being the objective of our search. Usually, the fitness function
is complete as it precisely identifies when a candidate is totally correct. In our
approach, instead, the fitness function is only partial; indeed, to learn the regular
language accepted by the SUL, we can only rely on the knowledge of the SUL
evaluation of a finite set of strings. We therefore define the fitness function as
follows.

Definition 5 (Fitness function). Given a regexp r and two sets A and R of
strings accepted and rejected by the SUL, the fitness value of r is defined as:

fitness(r , A,R) =
|{s ∈ A | r(s)}|+ |{s ∈ R | ¬r(s)}|

|A ∪R|



Algorithm 1 Evaluation step: Test generation and fitness update

Require: P : population
Require: sul : oracle of the SUL
1: A← ∅: strings Accepted by the oracle
2: R← ∅: strings Rejected by the oracle
3: startGenTimeout()
4: for each pi, pj ∈ P do
5: if genTimeout then
6: return
7: end if
8: if ∃s ∈ (A ∪R) : pi(s) 6= pj(s) then
9: continue

10: end if

11: ds ← genDs(pi, pj)
12: if ds 6= null then
13: sulEv ← sul(ds)
14: if sulEv then
15: A← A ∪ {ds}
16: else
17: R← R ∪ {ds}
18: end if
19: updateFitness(P, ds, sulEv)
20: end if
21: end for

Note that the fitness value depends on strings that are known to be accepted
and rejected by the SUL (contained in A and R). Since the possible strings are in-
finite, finding meaningful strings to be used for fitness computation is extremely
important. Since the fitness function is used to evaluate and rank regexps con-
tained in P , we try to generate strings able to show the differences among the
different candidates. Thanks to Thm. 1, if such strings are generated as those
distinguishing regexps of the population P , the fitness value can better differen-
tiate the elements in P . Moreover, A and R should not be too small, in order to
avoid a too partial fitness evaluation. At each iteration, we therefore enlarge the
sets A and R by generating new strings, using the procedure described in Alg. 1.
The approach tries to generate a distinguishing string for each pair of members
pi and pj of the population, as follows:

1. Since generating strings for each pair of candidates could be computationally
too expensive, we fix a timeout genTimeout after which the test generation
for the current generation terminates (line 6).

2. If the timeout does not occur, the algorithm first checks whether there is
already a string able to distinguish the two regexps (line 8) and, if so, it
continues with the next pair of regexps (line 9).

3. Otherwise, a string ds is generated using function genDs that picks a string
from the symmetric difference of the languages of two regexps [4] (line 11).

4. If the two regexps are equivalent, no string is produced; otherwise, ds is
submitted to the oracle sul of the SUL and its evaluation recorded in sulEv
(line 13).

5. According to the string evaluation, ds is added either to A or R (lines 15
and 17).

6. Finally, the fitness of each member of the population is updated by consid-
ering the new string ds with its correct evaluation sulEv (line 19).

Note that, as new strings are generated in each iteration, the fitness value of
a candidate may change in different evolutions.



This phase corresponds to the testing part of our approach, in which strings
are generated to be used as tests, and collected in A and R representing the test
suite.

Termination condition In this step, the process decides whether to terminate
or continue with another iteration. For this, different termination conditions can
be specified. A classical termination condition is usually related to the fitness
function (when it reaches 1 or a given threshold). In our context, however, the
fitness function is partial as it only considers a finite subset of all the possible
strings that can be evaluated; it is therefore not particularly suitable as termi-
nation condition. The only reasonable termination condition that we can impose
is related to the computation time: after a given timeout, we terminate the pro-
cess. The timeout represents the effort that the user can spend in learning the
language accepted by SUL.

When the process terminates, the member of the population P with the
highest fitness is returned as final regexp rf .4

Selection In this step, starting from population P , a multiset of parents PAR of
size p is built, being p a parameter of the evolutionary process. Different selection
strategies have been proposed in literature, as truncation, roulette wheel, and
rank [11]. We here use the truncation selection that selects the first n = dK · |P |e
members of the population with the highest fitness value, where K is a parameter
specifying a percentage of the population; in the experiments, we use K=5%.
Then, the first n elements are added to PAR as many times as necessary to reach
the size p.

Evolution In this step, the population (called offspring) for the next generation
is built starting from the parents in PAR. In order to build the offspring, we
mutate all the regexps r in PAR using function mut, as defined in Sect. 2.2. We set
an upper boundM to the new population size. If the mutation operators generate
at most M mutants, we take all of them as the new population; otherwise, we
randomly select M of them.

The mutation operators applied by mut [4] resemble the edit operations a
user would make on the initial regexp ri to repair it. If ri is not too faulty, the
mutation operators should be sufficient to repair it; the assumption that the user
has defined a software artefact (in this case, a regexp) close to the correct one
is know in literature as competent programmer hypothesis [20].

This is the repair part of the approach, that possibly removes syntactical
faults.

4 Experiments

To validate our approach, we need to select some SULs that we can query and
a set of regexps to be used as initial guesses ri . We have performed two types

4 If there is more than one regexp with the highest fitness, the process randomly selects
one.



Table 1: regexps used as ri in the experiment with the real web service

id expression length # oper.

r1i [0-9]{4}-(1[0-2]—0[1-9])-(3[01]—0[1-9]—[12][0-9])T(2[0-3]—[01][0-9]):([0-5][0-9]):([0-5][0-9])(\.[0-

9]+)?(Z)?

109 45

r2i (-?([1-9][0-9]*)?[0-9]{4})-(1[0-2]—0[1-9])-(3[01]—0[1-9]—[12][0-9])T(2[0-3]—[01][0-9]):([0-5][0-9]):([0-

5][0-9])(.[0-9]+)?(Z)?

126 54

r3i ([0-9]{4})-?(1[0-2]—0[1-9])-?(3[01]—0[1-9]—[12][0-9])(2[0-3]—[01][0-9]):?([0-5][0-9]):?([0-5][0-9]) 99 41

r4i (2[0-3]—[01][0-9]):([0-5][0-9]):([0-5][0-9])(\.[0-9]+)?(Z—[+-](2[0-3]—[01][0-9]):[0-5][0-9])? 93 37

r5i ([0-9]{4}(((\-)?(00[1-9]—0[1-9][0-9]—[1-2][0-9][0-9]—3[0-5][0-9]—36[0-6]))?—((\-)?(1[0-2]—0[1-

9]))?—((\-)?(1[0-2]—0[1-9])(\-)?(0[1-9]—[12][0-9]—3[01]))?—((\-)?W(0[1-9]—[1-4][0-9]5[0-3]))?—((\-

)?W(0[1-9]—[1-4][0-9]5[0-3])(\-)?[1-7])?)?)

235 90

of experiments. In the first one, the SUL is a real web service for which we
want to learn a regexp representing the language the SUL accepts. This type
of experiment is useful to assess the viability of our approach, but suffers from
several limitations discussed below. In the second type of experiments, we have
simulated a SUL in a controlled environment and this has allowed us to better
estimate the effectiveness of our method.

The process has been implemented in Java using Watchmaker [26] as evo-
lutionary framework. Experiments have been executed on a Linux machine, In-
tel(R) Core(TM) i7, 16 GB RAM. Code, benchmarks, and results are available
online at https://github.com/fmselab/evo_regexp_learn.

4.1 Learning the language of a real web service

In this experiment, we want to discover the format of dates and times accepted
by the API services of the timeanddate.com web site. That site offers, among
other services, a time API service that does time zone conversions. When the
user calls that service, (s)he must provide the date and time in ISO format (as
it is claimed on the web site) and the service will convert from one time zone to
another one. The conversion can be obtained by calling a web service like
https://api.xmltime.com/converttime?fromid=750&toid=146

&iso=DATETIME;version=2&accesskey=KEY&expires=TIMESTAMP

&signature=SIGNATURE.
If {DATETIME} is in the wrong format (or the query is incorrect), the web service
returns an error code, otherwise it returns a json message with the conversion
of {DATETIME}.

We have performed the experiment with 5 initial regexps (see Table 1) we
found on the Internet representing possible ISO dates and times5 and called
our approach to test and repair them w.r.t. the web service. We executed the
approach with 7 combinations of its two parameters, the total timeout (used in

5 The ISO 8601 format does not come with an official regexp and it is regularly
updated, so several versions exist.

https://github.com/fmselab/evo_regexp_learn
https://www.timeanddate.com/


Table 2: Results of the experiment with the real web service
(a) Aggregated by approach set-
ting

TO (s) avg avg avg fitness
total gen # str # gen of rf

180 10 835.4 7.2 0.99

180 30 1272.8 3.6 0.99

300 30 1478.6 6.4 0.99

300 60 2114 3.8 0.99

600 30 1831.2 11.6 1

600 60 2769.6 7 0.99

600 120 3445.6 3.8 1

(b) Aggregated by ri (average)

ri id # str # gen # failures in ri fitness of rf

r1i 1914.0 7 115.4 0.99

r2i 1975.7 6.4 195.7 0.98

r3i 2450.6 6.1 219.9 1

r4i 2662.9 7.4 161.2 1

r5i 816.3 4 106.2 0.99

the termination phase) and the timeout genTimeout on string generation (see
Alg. 1 and Sect. 3). Table 2a reports, for each setting, the results in terms of
average number of generated strings, average number of generations, and average
final fitness. As expected, increasing the total timeout allows testing more strings
against the SUL. Moreover, for a given total timeout, increasing genTimeout
allows generating more strings, but decreases the number of generations. The
final fitness of the returned final regexp rf is always almost 1. However, in this
case, even when the fitness is 1, the only assurance that we have is that rf
evaluates correctly all the generated strings; we cannot be sure that the final
regexp rf actually represents the language accepted by the service since we do
not have access to the server internals.

Table 2b reports the results aggregated by ri (average across the approach
settings) with also the average number of strings wrongly evaluated by ri . We
observe that the highest number of strings is generated for r3i and r4i , while
the lowest number is generated for r5i . This is probably related to the size of ri
(length and number of operators in Table 1): bigger regexps as r5 produce big
populations requiring more time in the evolution phase (during mutation) and
in the fitness update during the evaluation phase. We observe that all the initial
guesses of regexps were wrong, as proved by the number of generated strings
that are evaluated differently by the initial regexp ri and by the SUL.

When starting from r3i and r4i , the process always terminates with a regexp
rf having final fitness 1. In these cases, the final regexp evaluates correctly all
the generated tests. However, as said before, since we do not know exactly the
language of the SUL, it is impossible to check if the final regexps are completely
correct (even when their fitness is 1). For this reason, we perform the experiments
described in Sect 4.2 with a known SUL language.

4.2 Controlled experiment

In this experiment, we assume that the SUL itself is defined by a regexp rSUL,
unknown to the user, but available to us. In this way, we can measure the quality



of the final regexp rf w.r.t. the initial regexp ri , by comparing both of them to
the correct regexp rSUL representing the SUL.

We have taken as SULs 20 different matching tasks (e.g., email addresses,
credit cards, social security numbers, zip codes, Roman numbers, etc.) from two
websites [25,24]. For each task, we have taken a regexp as rSUL and another reg-
exp developed for the same matching task as initial regexp ri . We have randomly
chosen the two regexps (ri and rSUL) in a way that they are never equivalent
(i.e., a repair is necessary) and moreover, they are also syntactically quite dif-
ferent (i.e., the repair is not trivial and the competent programmer hypothesis
may not hold).

The initial regexps ri are between 17 and 279 chars long (60.65 on aver-
age) and have between 7 and 112 operators (26.25 on average). All the regexps
operators are considered, as shown in the results reported online.

In order to evaluate our approach, we introduce a measure of the reduction
of conformance faults in the final regexp rf . In order to check whether the final
regexp rf captures the regular language described by the SUL, we check the
equivalence between rf and rSUL. For non-totally repaired regexps, we need to
count the number of conformance faults. We use the measure Fr that counts
the number of strings that a regexp r does not evaluate correctly (i.e., wrongly
accepts or wrongly rejects). Since the number of such strings is possibly infinite,
we have to consider only strings of length up to n. The number of faults of a
regexp r is defined as follows, where Ln(rx)=L(rx) ∩ (

⋃n
i=0Σ

i):

Fn
r = |Ln(r)⊕ Ln(rSUL)|

In order to know whether the repaired regexp rf is better than the initial regexp
ri , we compute ∆F=Fn

rf
-Fn

ri with a fixed n. In the experiments, we set n=100
to restrict the evaluation to the strings of length n up to 100. If ∆F < 0 or
the final regexp rf is totally repaired, the process has improved the original
regexp; if ∆F=0, the process did not remove any conformance fault (or removed
and introduced faults equally); otherwise, ∆F>0 means that the process has
worsened the regexp by introducing more faults.

To better evaluate the approach, we measure the fault reduction (FR) as
percentage change of the number of faults between the final and initial regexps
rf and ri :

FR =
Fn
rf
− Fn

ri

Fn
ri

∗ 100

As done in the experiment with the real SUL (see Sect. 4.1), we performed
a series of experiments by varying the two main parameters of the proposed
approach, the total timeout and the timeout genTimeout on string generation;
in total, we experimented with 7 combinations of these two parameters. We
executed 10 runs of each experiment, and all the reported data are the averages
of the 10 runs. In all the experiments, we fix the parameters of the evolutionary
algorithm as follows: in the selection phase, we use truncation with K=5%,
and as multiplicative factor H for the population size we use 100. Table 3a



Table 3: Bench
(a) Results

TO (s) Rep Impr Wor avg avg avg
total gen (%) (%) (%) FR # str # gen

180 10 25 85 0 -53.9 1075.2 14.9
180 30 23.5 81.5 3.5 -26 1202.8 8.1
300 30 25.5 85 0 -53.6 1343.8 12.4
300 60 24 82 3 -37 1415 10.1
600 30 28.5 85 0 -54 1471.7 21.2
600 60 28 83.5 1.5 -44.3 1577.7 15.9
600 120 23 82.5 2.5 -35.8 1603.1 13.5

AVG 25.4 83.5 1.5 -43.5 1384.2 13.7

(b) Results using random strings

TO (s) Rep Impr Wor avg avg avg
total gen (%) (%) (%) FR # str # gen

180 10 0.5 16.5 82.5 1.9e+296 49964.2 6.6
180 30 0 22.5 73 9.6e+288 81408.9 3.1
300 30 0 16.5 79.5 3.8e+296 114560.6 4.5
300 60 0 24 72 9.6e+288 162314.8 2.8
600 30 0 16.5 82.5 1.9e+296 133290.6 6.8
600 60 0 26 71.5 1.3e+294 176726.8 4.3
600 120 0 18.5 77 3.8e+296 250812.2 2.9
AVG 0.1 20.2 76.9 1.6e+296 138439.7 4.4

(a) Fault reduction – Bench (b) Fault reduction – MutBench

Fig. 1: Fault reduction

reports the experimental results in terms of percentage of completely repaired
(Rep) regexps, percentage of improved (Imp) regexps (i.e., for which the number
of faults decreased), percentage of worsened (Wor) regexps (i.e., for which the
number of faults increased), average fault reduction (FR) among the regexps,
average number of generated strings, and average number of generations of the
evolutionary algorithm. The execution time corresponds to the total timeout
(TO total).

In the following, we analyse the results using different research questions.

RQ1 Is the proposed process able to learn the regular language of the SUL?
What is the improvement in terms of fault reduction?

First of all, we are interested in checking whether the proposed approach
is able to learn the regular language of the SUL. From Table 3a, we observe
that, with any setting, we are always able to completely repair around 25.4%
of the regexps, and improve around 83.5%. With some settings, the process can
also worsen the regexp (maximum 3.5%). However, on average, the number of
faults is always decreased; Fig. 1a shows the distribution of the fault reduction
among the regexps for each setting. We notice that the process worsens some
regexps when the timeout for string generation (TO gen) is higher; it seems that
generating too many strings for one generation is not beneficial and it is more
productive to spend time in evaluating new generations.



RQ2 Is using distinguishing strings effective?

We are here interested in investigating if using distinguishing strings gener-
ated among the mutants is effective. In order to do this, in Alg. 1, instead of
generating distinguishing strings, we generate random strings. The maximum
number of strings that can be generated (if the timeout does not occur) is still

C
|P |
2 . Table 3b reports the results by using random strings. We observe that the

approach is almost never able to totally repair the regexp: it at most improves
26% of the benchmarks, and it always worsens at least 71.5% of them. We can
also observe that, since the test generation is fast, many more strings are gen-
erated (from 1 to 2 orders of magnitude more); however, their fault-detecting
capability is much lower than that of the distinguishing strings. This confirms
that targeting conformance faults among mutants in the search is effective.

RQ3 How many distinguishing strings are generated? How long does the SUL
take to evaluate them?

Differently from [3], we assume that calling the SUL (acting as oracle) is not
very expensive and, so, there is not urgency to limit the number of string evalua-
tions. However, in some settings (e.g., database query), calling the SUL may have
a non-negligible cost. We here try to assess such cost. In the experiments (see
Table 3a), we at most generate 1603 strings with one setting having the highest
timeout of 600 secs (10 mins). If we assume that invoking the SUL for a single
input is expensive and takes 1 sec (we used such delay between two queries in
the experiment of Sect. 4.1 to wait for the service response and to avoid queries
were interpreted as DoS attacks), the evaluation of the strings takes 26.7 mins;
therefore, in this case, the total time would be 36.7 mins.

RQ4 How are the results if the competent programmer hypothesis hold?

Benchmark set Bench has been built by taking regexps pairs ri and rSUL that
are very different from each other (the average Levenshtein distance between the
initial regexp ri and the oracle rSUL is 36.65). However, fault-based approaches
usually assume the competent programmer hypothesis, stating that the user de-
fined a regexp close to the correct one (different for one or few syntactic faults).

Therefore, we want to assess the process effectiveness under the assump-
tion of the competent programmer hypothesis. We built another benchmark
set, MutBench, as follows. We took each oracle regexp rSUL of Bench and we ran-
domly mutated it introducing n faults (with n = 1, . . . , 3), obtaining three faulty
versions of the oracle. In this way, MutBench contains 60 pairs of regexps. The
regexps are between 38 and 277 characters long (111.7 on average) and contain
between 5 and 59 operators (26.82 on average). Then, we have experimented
with our approach using MutBench; Table 4a reports the aggregated results for
the experiments. Regarding RQ1, we observe that the results are much better
than the benchmark Bench. Any timeout configuration is able to totally repair
at least 78.5% of the regexps, and all of them improve more than 99.5% of the
regexps. Fig. 1b reports detailed results of fault reduction.



Table 4: MutBench
(a) Results

TO (s) Rep Impr Wor avg avg avg
total gen (%) (%) (%) FR # str # gen

180 10 79.8 99.7 0.3 -87.5 797.5 1010.3
180 30 78.7 99.7 0.3 -80.3 871.9 4177.6
300 30 79.8 99.5 0.5 -79.7 974.5 1446
300 60 78.5 100 0 -99.7 1042.6 3373.9
600 30 86 99.8 0.2 -90.1 1130.9 10843.4
600 60 83.7 100 0 -99.9 1128.7 7667.9
600 120 82.3 99.8 0.2 -90.3 1191.8 7578.8

AVG 81.3 99.8 0.2 -89.6 1019.7 5156.8

(b) Results using random strings

TO (s) Rep Impr Wor avg avg avg
total gen (%) (%) (%) FR # str # gen

180 10 0.3 35.3 62.5 1.9e+294 41721 6.4
180 30 0.2 31.8 62.8 9.4e+293 70417 3.1
300 30 0.5 34.2 64.3 6.3e+293 92685.4 4.6
300 60 0.2 33.8 61.5 3.1e+293 126599 2.9
600 30 0.8 35.5 63.7 1.6e+294 121126 7
600 60 0.2 33.7 64 7.1e+292 158346 4.5
600 120 0.5 31.5 63.7 6.2e+293 191531.7 2.9

AVG 0.4 33.7 63.2 8.6e+293 114632.3 4.5

Table 5: Results of a state-of-the-art approach IA [3]

Benchmark Rep Impr Wor avg avg avg
(%) (%) (%) FR (%) # str time (s)

Bench 19 65.5 3 6e+283 636.8 61.5
MutBench 77 97.3 0 -96 447.2 140.6

We also evaluated the approach using randomly generated strings on MutBench,
and the results are reported in Table 4b. Results are slightly better with bench-
mark MutBench than with Bench (compare the results in Table 3b), but still
almost no regexp is repaired and at most only 35.5% of the regexps are im-
proved.

RQ5 Does the proposed approach improve the state of the art?

A related approach that just relies on interactive string evaluation of the SUL
is the one we presented in [3] (from now on, called IA). IA is quite different from
the current evolutionary approach (from now on, called EA), as it does not have
a population of candidates, but a single candidate; when a mutant better than the
current candidate is found, the candidate is changed; the repairing process stops
when no better mutant is found. Four policies are proposed for choosing the new
candidate (Greedy, MultiDSs, Breadth, and Collecting). The only similarity with
EA is that candidates are generated by mutation and fault-detecting strings are
used as tests.

We applied IA to the benchmarks Bench and MutBench, using the setting
Breadth that in [3] showed, on average, the best performance in terms of fault
reduction. Table 5 shows the results for the two benchmarks. We observe that
for MutBench (i.e., if the competent programmer hypothesis holds), IA has a
good performance, similar to the one of EA (cfr. with Table 4a); however, EA
with the best setting can completely repair 9% more regexps. For Bench, EA has
an even better performance (cfr. with Table 3a); it totally repairs from 4% to
9.5% more regexps, improves from 16% to 19.5% more regexps, and worsens (in
the worst case) almost the same number of regexps. IA is meant for interactive



testing with a user and, therefore, it tries to generate not too many strings; for
this reason, it always produces fewer strings and takes less time than EA.

We checked if the results are statistically significant by performing the Wilcoxon
signed-rank test6 between the results of EA and IA. Regarding totally repaired
(Rep) and improved (Impr) regexps, EA is significantly better, while there is
no significant difference for worsen regexps (Wor) and fault reduction (FR). As
expected, EA is worse in terms of number of generated strings (# str), as IA is
designed to generate few strings.

We conclude that a conservative approach as IA should be used if there are
constraints on time and number of strings (usually, when the oracle is the user),
while our approach EA should be used when the oracle can be called several
times (as our SUL).

RQ6 How does our approach compare with L*?

The classical algorithm for learning regexps is L*. L* starts from the strong
assumption of having the possibility to check the equivalence of a regexp w.r.t.
the SUL. This assumption is unpractical so there exist several attempts to use
L* in combination with approximate equivalent checkers. These methods are
generally based on conformance testing methods: some tests are generated from
the current hypothesis and executed over the SUL and, if they are all equally
accepted or rejected by using membership queries, then the hypothesis is con-
sidered equivalent to the SUL. Conformance checking can be expensive though,
since methods like the W-method, Wp-method, or UIO-method require an ex-
ponential number of tests, although they can provide some guarantees (e.g.,
assuming the target system has at most N additional states). Other approxi-
mate methods randomly generate a maximum number of tests but they cannot
guarantee correctness. To study the feasibility of using L* with an approximate
equivalent checker, we have executed L* using LearnLib [23,14] over the regexps
of Bench. For each oracle regexp rSUL in Bench, we have tried to learn it using
L* with different equivalence checkers: different versions of the random equiva-
lence checker (between 10 and 106 tests of length between 10 and 102) and three
versions of the W-method (with exploration depth from 1 to 3); we restrict the
alphabet to the readable range of ASCII, because using Unicode would make
L* unusable. Table 6 reports results for 6 versions of the random method and
all the 3 versions of the W-method. It shows the percentage of times that L* is
better/worst than the best setting of EA (600-30 in Table 3a) in terms of final
number of faults in the final regexp rf ; moreover, it reports the average number
of strings (i.e., tests) and average execution time across the benchmarks. We ob-
serve that increasing the number of tests and their length in the random method
does not improve the learning capability of L*; the W-method does improve the
learning capability by increasing the exploration depth, but at the expenses of
an exponential number of tests.

6 We checked that the distributions are not normal with the non-parametric Shapiro-
Wilk test.



Table 6: L* results (R-n-m: random method with m tests of length up to n.
W-n: W-method with exploration depth n)
Eq. Comparison with EA avg avg
checker better (%) worse (%) # str time (s)

R-10-102 35 61.75 200.75 0.01
R-10-104 35 61.75 10100.75 0.02
R-10-106 34.75 62.25 1042574.6 1.93
R-102-102 35 61.75 200.75 0
R-102-104 35 61.75 10100.75 0.16
R-102-106 34.75 62.25 1076471.6 16.72

Eq. Comparison with EA avg avg
checker better (%) worse (%) # str time (s)

W-1 35 61.75 53491.45 0.17
W-2 37 58.50 6.47×106 15.55
W-3 38 56.25 1.93×108 2668.81

EA 600–30 1471.7 600

5 Related work

A first set of related works regards the use of the L* algorithm [2] and its variants
for specification mining which shares many similarities with regexp learning. In
the L* algorithm, a Student tries to learn an unknown regular automaton S by
posing two types of queries to a teacher. In a membership query, the student
gives a string t and the teacher tells whether it is accepted by S or not. In a
conjecture query, the student provides a regular automaton S′ and the teacher
answers yes if S′ corresponds to S, or with a wrong string t (as our distinguish-
ing string) otherwise. L* can be used also to learn a black-box system SUL by
replacing the ability of the teacher to test conjectures by a random sampling.
This works only under the strong assumptions that the Student gets an ap-
proximately correct hypothesis with high probability and the problem of testing a
conjecture against randomly drawn strings is sufficiently tractable [2]. Lee and
Yannakakis [15] showed how to use L* for conformance testing, to check if an
FSM I implements a specification S with n states, and to repair I if a fault
has been found. Nevertheless, serious practical limitations (like the number of
states and the types of faults) are associated with such experiments (see [15]
for a complete discussion). A more recent survey on automata learning can be
found in [13], and a survey on the usage of model learning for testing can be
found in [1].

For these reasons, genetic and evolutionary algorithms for regular expression
learning are preferred instead. They are mainly used for automatically synthe-
sizing a regular expression from sets of accepted/rejected strings. Bartoli and
al. [7] propose a passive approach for synthesizing a regular expression auto-
matically, based only on examples of the desired behavior, i.e., strings described
by the language and of strings not described by the language. The approach is
improved in [8] by proposing an active learning approach aimed at minimizing
the user annotation effort: the user annotates only one desired extraction and
then merely answers extraction queries generated by the system. Differently from
them, we do not start from scratch by generating the initial population, and we
do not use predefined set of accepted/rejected strings.

Another approach for regexp synthesis from a set of labeled strings is Re-
LIE [16]. It is a passive learning algorithm that, given an initial regexp and a
set of labeled strings, tries to learn the correct regexp. It performs some regexp



transformations (a kind of mutation); however, it is not an evolutionary algo-
rithm, as it exploits a greedy hill climbing search that chooses, at every iteration,
the regexp with the highest fitness value.

We share some ideas with our previous work [3]. Mutation operators and
use of automata is in common with that paper. However, in [3] we did not use
an evolutionary algorithm, but a greedy approach very similar to [16]. More-
over, we assumed that the oracle is the user and the approach was meant to be
interactive. For this reason, we tried to generate very few strings. In RQ5, we
demonstrate that the current evolutionary approach is much more efficient in
repairing regexps. We believe that a population-based evolutionary algorithm is
able to reduce the risk of being stuck in local optimum since possible solutions
are continuously evaluated and generated.

The idea of co-evolving the population of solutions together with the tests is
not new; e.g., the approach in [28] evolves software artefacts and test cases in
tandem.

Our approach has some similarities with automatic software repair [27,5,21,18,22]
and automatic repair of specifications [12].

6 Conclusions and Future Work

In the paper, we proposed an evolutionary approach to learn the regexp modeling
the unknown language accepted by a given system. The user gives an initial
guess of a regexp, and the approach tries to learn the correct regexp by evolving
a population of possible solutions obtained by mutation. The fitness function is
based on the strings a candidate evaluates correctly. The testing strings evolve
together with the population: at each evolution step, they are built as those
strings able to distinguish the population members. Experiments have been done
on a case study of a real web service, and on some benchmarks. Results show
that the approach, on average, is able to completely repair 81.3% of the initial
regexps and improve 99.8% of them. Even if the initial guess of the user is not
accurate, 25.4% of initial regexps are totally repaired, and 83.5% improved.

In the evaluation, we used a given setting for the parameters of the evolu-
tionary approach. As future work, we plan to use a tool as irace [17] to find the
best setting.

Our approach could be adapted for regexp synthesis (but not passive) as
well, e.g., by taking as ri the first random string that is accepted by the SUL.
Although the experiments suggest that starting from a very faulty regexp makes
finding the correct solution very hard, we are interested to experiment also with
this use of our technique.

We plan to improve the fitness in several directions: considering readability,
weighting differently false negative and false positive, and making the fitness
more sensitive to minor improvements by introducing a measure of partial ac-
ceptance.
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