
An Abstraction Technique for Testing
Decomposable Systems by Model Checking

Paolo Arcaini1, Angelo Gargantini1, and Elvinia Riccobene2

1 Dipartimento di Ingegneria, Università degli Studi di Bergamo, Italy
{paolo.arcaini,angelo.gargantini}@unibg.it

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

Abstract. Test generation by model checking exploits the capability
of model checkers to return counterexamples upon property violations.
The approach suffers from the state explosion problem of model checking.
For property verification, different abstraction techniques have been pro-
posed to tackle this problem. However, such techniques are not always
suitable for test generation. In this paper we focus on Decomposable
by Dependency Asynchronous Parallel (DDAP) systems, composed by
several subsystems running in parallel and connected together in a way
that the inputs of one subsystem are provided by another subsystem. We
propose a test generation approach for DDAP systems based on a decom-
positional abstraction that considers one subsystem at a time. It builds
tests for the single subsystems and combines them later in order to ob-
tain a global system test. Such approach avoids the exponential increase
of the test generation time and memory consumption. The approach is
proved to be sound, but not complete.

1 Introduction

Test generation by model checking is a well-known technique that exploits the
capability of model checkers to efficiently explore the state space and build a
counterexample when a property is falsified by the model. One main problem
is the “state explosion problem”, i.e., the size of the system state space grows
exponentially w.r.t. the number of variables and the size of their domains. Much
of the research in model checking over the past 30 years has involved developing
techniques for dealing with this problem in the context of property verifica-
tion [8]. There exist several abstraction techniques (like counterexample guided
abstraction [7]) that address this problem for property verification, but they are
not suitable for test generation [19]. Indeed, they can guarantee validity of a
property in the original model if the property is verified in the abstract model,
but they may not guarantee to find the right counterexample if the property is
false. Other classical abstractions (like slicing [21] or reduction techniques like
finite focus [1] that soundly reduces a state machine) reduce the original spec-
ification to a smaller one for which it may be easier to find the desired tests;
however, they may miss parts of the system specification that are necessary for
building the tests.

The approach presented here can be viewed in the context of those abstrac-
tion techniques for test generation that, following the “divide and conquer”
principle, are based on system [2,3] or property [16] decomposition. Since model
checkers suffer exponentially from the size of the system, decomposition brings
an exponential gain and allows to test large systems.

In this paper we focus on systems that can be decomposed in two (or more)
subsystems that run asynchronously in parallel but such that (part of) the in-
puts of one subsystem are provided by another subsystem. For such systems,
we propose a test generation approach based on model checking, exploiting the
decomposition by dependency abstraction. The approach consists in generating
the tests for the single subsystems and combining them later, in order to build
a test for the whole system. The generation is performed by considering the
dependency relation, starting from the “most” dependent subsystem, to the in-
dependent subsystem. Such approach permits to exponentially reduce the test
generation time and the memory consumption with respect to the basic approach
that builds a test for the whole system.

Section 2 provides some background on Kripke structures with inputs, on
their representation in the model checker NuSMV. Test case generation by model
checking is also briefly recalled in this section. Section 3 introduces DDAP sys-
tems, i.e., systems having two components in a dependency relation, and Sec-
tion 4 proposes a test generation approach for them. Section 5 extends the ap-
proach to n-DDAP systems, i.e., systems having more than two components.
Preliminary experiments are presented in Section 6. Section 7 reviews some re-
lated literature, and Section 8 concludes the paper.

2 Background

We here report some basic concepts regarding the formal structure and the test
generation approach by model checking that represent the fundamentals of the
theory of DDAP systems, developed in Sections 3, 4, and 5.

2.1 Kripke structures

In this paper we use Kripke structures with inputs [15], that can be conveniently
used to represent reactive systems.

Definition 1 (Kripke structure with inputs). A Kripke structure with in-
puts is a 6-tuple M = 〈S, S0, IN ,OUT , T,L〉 where
– S is a set of states;
– (S0 ⊆ S) 6= ∅ is the set of initial states;
– IN and OUT are disjoint sets of atomic propositions;
– T ⊆ S×P(IN)×S is the transition relation; given a state s and the applied

inputs I, the structure moves to a state s′, such that (s, I, s′) ∈ T .
– L : S → P(OUT) is the proposition labeling function.

2

Definition 2 (Input sequence). An input sequence for a Kripke structure
with inputs is a (possibly infinite) sequence of inputs I0, . . . , In, . . . with Ii ∈
P(IN).

Definition 3 (Trace). Given an input sequence I0, . . . , In, . . ., a trace for a
Kripke structure with inputs is a sequence s0, I0, s1, . . . , sn, In, sn+1 . . . such that
s0 ∈ S0 and (si, Ii, si+1) ∈ T .

Definition 4 (Test). A test for a Kripke structure with inputs is a finite trace
s0, I0, s1, . . . , sn−1, In−1, sn.

We define the set of atomic propositions as AP = IN ∪OUT and CTL/LTL
formulae are defined over AP .

Kripke structures with inputs differ from classical Kripke structures because
the inputs are explicitly not part of the state and cannot be modified by the
machine. However, since for every Kripke structure K with inputs there is a
corresponding Kripke structure K ′ without inputs [5], all the model checking
techniques can be still applied.

2.2 Encoding Kripke structures with inputs in NuSMV

NuSMV [6] is a well-known tool that performs symbolic model checking. It allows
the representation of synchronous and asynchronous finite state systems, and the
analysis of specifications expressed in Computation Tree Logic (CTL) and Linear
Temporal Logic (LTL). A NuSMV specification describes the behavior of a Finite
State Machine (FSM) in terms of a “possible next state” relation between states
that are determined by the values of variables. A variable type can be Boolean,
integer defined over intervals or sets, or an enumeration of symbolic constants.
A state of the model is an assignment of values to variables.

There are two kinds of variables: state variables, declared in the section VAR,
and input variables, declared in the section IVAR. The value of state variables
can be determined in the ASSIGN section in the following way:

ASSIGN var := simple expression −− simple assignment
ASSIGN init(var) := simple expression −− init value
ASSIGN next(var) := next expression −− next value

A simple assignment determines the value of variable var in the current state,
the instruction init permits to determine the initial value(s) of the variable,
and the instruction next is used to determine the variable value(s) in the next
state(s).

Input variables represent inputs of the system, and their value cannot be
bound as done for state variables. They can only be used to determine the next
value of state variables.

A DEFINE statement (DEFINE id := exp) can be used as a macro to syn-
tactically replace an identifier id with the expression expr.

NuSMV offers another more declarative way of defining initial states and
transition relations. Initial states can be defined by the keyword INIT followed

3

by characteristic properties that must be satisfied by the variables values in the
initial states. Transition relations can be expressed by constraints, through the
keyword TRANS, on a set of current state/next state pairs.

Temporal properties are specified in the LTLSPEC (resp. CTLSPEC) sec-
tion that contains the LTL (resp. CTL) properties to be verified.

NuSMV can be used to describe Kripke structures with inputs. The inputs are
modeled as input variables (IVAR), and the outputs as state variables (VAR)
or definitions (DEFINE).

In this paper we use NuSMV, but the approach is general and applicable to
any model checker.

2.3 Model-based test generation by model checking

In model based testing [14,20], the specification describing the expected behavior
of the system is used to generate tests that exhibit some desired system behaviors
(testing goals). Test goals can be formally represented by test predicates.

Definition 5 (Test predicate). A test predicate is a formula over the model,
and determines if a particular testing goal is reached.

A classical technique for model-based test generation exploits the capability
of model checkers to produce counterexamples [10,12]. If a test predicate can be
expressed as a CTL/LTL formula over the model states, then a test suite covering
the test goals corresponding to a desired coverage criterion can be generated as
follows.
1. The test predicates set {tp1, . . . , tpn} is derived from the specification ac-

cording to the desired testing goals. Test predicate structure depends on the
particular desired coverage criteria [11].

2. For each test predicate tpi, the trap property ¬tpi is verified. If the model
checker proves that the trap property is false (tpi is feasible), then the re-
turned counterexample shows how to cover tpi. We call the counterexample
witness, and we translate it to a test. If the model checker explores the
whole state space without finding any violation of the trap property, then
the test predicate is said unfeasible and it is ignored. In the worst case,
the model checker terminates without exploring the whole state space and
without finding a violation of the trap property (i.e., without producing any
counterexample), usually because of the state explosion problem. In this case
the user does not know if either the trap property is true (i.e., the test is
unfeasible), or it is false (i.e., there exists a sequence that reaches the goal).

Note that the specification is used also to produce a test oracle to assess the
correctness of the implementation.

Example 1. Consider as example a simple system in which there is a statement
like if C then A possible test goal, requiring that the condition is covered
by at least a test, can be formalized by the LTL test predicate F(C), requiring
that C is eventually true. If the model checker finds a counterexample for the
trap property !F(C), such counterexample leads the system to a state where C
is true and, therefore, it is the desired test.

4

+ +

- -

upP upQ

downP downQ

lock P lock Q

unlockedP unlockedQ

=4? =2?

Fig. 1: DDAP system – SafeLock

3 DDAP systems

In this paper we focus on Decomposable by Dependency Asynchronous Paral-
lel (DDAP) systems. A DDAP system is composed of two subsystems, running
asynchronously in parallel, such that (part of) the inputs of the dependent sub-
system are provided by the other subsystem which runs independently. Formally,
DDAP systems are defined as follows.

Definition 6 (Dependency). Given two Kripke structures with inputs P =
〈SP , S0

P , INP , OUTP , TP , LP 〉 and Q = 〈SQ, S0
Q, INQ , OUTQ , TQ, LQ〉, Q

depends on P if OUTP ∩ INQ 6= ∅.

Definition 7 (DDAP system). A DDAP system 〈P,Q〉 is a system having
two components P , Q satisfying the following properties:
– P = 〈SP , S0

P , INP , OUTP , TP ,LP 〉 and Q = 〈SQ, S0
Q, INQ ,OUTQ , TQ,LQ〉

are two Kripke structure with inputs;
– Q depends on P , but P does not depend on Q;
– only one system at a time is active (interleaving asynchronous parallelism).

We call D = OUTP ∩ INQ the dependency set of the DDAP system.

Example 2. Fig. 1 shows an example of DDAP system (called SafeLock). The
safe lock system is composed by two locks, P and Q, which work in sequence.
Both locks have two buttons (upP and downP, upQ and downQ) that change the
digit of the lock. Lock P becomes unlocked (i.e., unlockedP = true) only if the
digit is equal to the stored correct value (in the example, the value 4). Lock Q
becomes unlocked (i.e., unlockedQ = true) only if the digit is equal to the stored
correct value (in the example, the value 2) and if P is unlocked. So the safe lock
is unlocked when Q is unlocked.

Lock P has as inputs INP = {upP, downP} and as output OUTP = {digitP0,
. . . , digitP9, unlockedP}. It has ten different states (sp0, . . . , s

p
9), distinguished

by the value of the digit; LP (sp4) = {digitP4, unlockedP} and LP (spi) = {digitPi}
for i = 0, . . . , 3, 5, . . . 9.

5

LockQ has as inputs INQ = {upQ, downQ, unlockedP} and as output OUTQ =
{digitQ0, . . . , digitQ9, unlockedQ}. It has eleven different states (sq0, . . . , s

q
9,

and s̃q2), distinguished by the value of the digit and of unlockedQ; LQ(s̃q2) =
{digitQ2, unlockedQ}, and LQ(sqi) = {digitQi} for i = 0, . . . , 9.

The output unlockedP of lock P is connected to the corresponding input of
lock Q, i.e., the dependency set is D = {unlockedP}.

Definition 8 (DDAP input sequence). The input set of a DDAP system
K = 〈P,Q〉 is the set INK = INP ∪ (INQ \D). An input sequence for the DDAP
K is a sequence J0, . . . , Jn such that Ji ∈ P(INK).

We define the concept of a trace of a DDAP system, reflecting the fact that
only one component makes a move at each step, and that, when the dependent
component moves, it reads some of its inputs from the outputs of the independent
component.

Definition 9 (DDAP trace). Given an input sequence J0, . . . , Jn, . . . for a
DDAP system 〈P,Q〉, a trace is the sequence (p0, q0), J0, (p1, q1), . . . , (pn, qn),
Jn, (pn+1, qn+1), . . . such that:
(1) p0 ∈ S0

P and q0 ∈ S0
Q;

(2) ((pi, Ji∩INP , pi+1) ∈ TP ∧qi = qi+1)⊕((qi, (Ji∩INQ)∪(LP (pi)∩D), qi+1) ∈
TQ ∧ pi = pi+1).

Requirement (2) specifies that either the component P moves from pi to pi+1

and Q remains still in state qi = qi+1, or component Q moves from qi to qi+1

and P remains still in state pi = pi+1. When Q moves, it reads some of its inputs
from the outputs of P (i.e., LP (pi) ∩D).

Example 3. For the safe lock system SafeLock, the input set is INSafeLock = {upP,
downP, upQ, downQ}. Assuming that the both locks are initialized to 0, a possible
trace leading to the state in which the global lock is unlocked is: (sp0, s

q
0), {upP},

(sp1, s
q
0), {upP}, (sp2, s

q
0), {upP}, (sp3, s

q
0), {upP}, (sp4, s

q
0), {upQ}, (sp4, s

q
1), {upQ},

(sp4, s̃
q
2).

Note that DDAP systems can be extended to systems with more that two
subsystems, as shown in Section 5.

3.1 Encoding DDAP systems in NuSMV

NuSMV permits to split a model in different modules and run several module
instances in the main module. Modules instances can be run in a synchronous
or asynchronous way. Asynchronous modules instances are created through the
keyword process; at each step, one process is nondeterministically chosen and
executed, while the other processes do not run and so do not change their state.

A DDAP system can be easily encoded in NuSMV. Subsystems P and Q are
defined as two NuSMV modules, as described in Section 2.2, and asynchronously
instantiated in the main module (as processes procP and procQ), so that only

6

MODULE lockP
DEFINE keyP := 4;
IVAR −− INP

upP: boolean;
downP: boolean;

VAR −− OUTP

digitP: 0 .. 9;
DEFINE −− OUTP

unlockedP := digitP = keyP;−− D = OUTP ∩ INQ

ASSIGN
init(digitP) := 0;
next(digitP) :=

case
upP & !downP: (digitP + 1) mod 10;
downP & !upP: (digitP + 9) mod 10;
TRUE: digitP;

esac;
’

Code 1: Lock P

MODULE lockQ
DEFINE keyQ := 2;
IVAR −− INQ

upQ: boolean;
downQ: boolean;
unlockedP: boolean; −− D = OUTP ∩ INQ

VAR −− OUTQ

digitQ: 0 .. 9;
DEFINE −− OUTQ

unlockedQ := digitQ = keyQ & unlockedP;
ASSIGN

init(digitQ) := 0;
next(digitQ) :=

case
upQ & !downQ: (digitQ + 1) mod 10;
downQ & !upQ: (digitQ + 9) mod 10;
TRUE: digitQ;

esac;

Code 2: Lock Q

MODULE main
VAR

procP: process lockP;
procQ: process lockQ;

TRANS procP.unlockedP = procQ.unlockedP;

Code 3: DDAP system SafeLock

one subsystem is executed at a time. The connection between P outputs and
Q inputs is established by a TRANS declaration in which each output x of P
belonging to the dependency set (i.e., x ∈ OUTP ∩ INQ) is linked with the
corresponding input of Q (i.e., procP.x = procQ.x). In the sequel, we refer to
this global model as whole model.

Example 4. We have encoded the running case study SafeLock in NuSMV. Codes 1
and 2 show the NuSMV modules for locks P and Q; Code 3 shows the main
module that asynchronously executes the two locks and connects the output
unlockedP of P with the corresponding input of Q.

4 Test Generation for DDAP systems

In this section we present a novel technique for test generation by model checking
for DDAP systems. The technique introduces an abstraction that exploits the
dependency among the subsystems.

Definition 10 (DDAP test). A test for a DDAP system 〈P,Q〉 is a finite
trace (p0, q0), J0, (p1, q1), . . . , (pn−1, qn−1), Jn−1, (pn, qn).

Definition 11 (Soundness). A test generation method for DDAP systems is
sound if each produced sequence is a test for the DDAP.

7

−> State: 1.1 <−
procP.upP = FALSE
procP.downP = FALSE
procP.digitP = 0
procP.unlockedP = FALSE
procQ.upQ = FALSE
procQ.downQ = FALSE
procQ.unlockedP = FALSE
procQ.digitQ = 0
procQ.unlockedQ = FALSE
procP.keyP = 4
procQ.keyQ = 2trap
−> Input: 1.2 <−

process selector = main
running = TRUE
procQ.running = FALSE
procP.running = FALSE
−> State: 1.2 <−
procP.upP = TRUE

−> Input: 1.3 <−
process selector = procP
running = FALSE
procP.running = TRUE
−> State: 1.3 <−
procP.digitP = 1
−> Input: 1.4 <−
−> State: 1.4 <−
procP.digitP = 2
−> Input: 1.5 <−
−> State: 1.5 <−
procP.digitP = 3
−> Input: 1.6 <−
−> State: 1.6 <−
procP.downP = TRUE
procP.digitP = 4
procP.unlockedP = TRUE
procQ.upQ = TRUE
procQ.unlockedP = TRUE

−> Input: 1.7 <−
process selector = procQ
procQ.running = TRUE
procP.running = FALSE
−> State: 1.7 <−
procQ.digitQ = 1
−> Input: 1.8 <−
−> State: 1.8 <−
procP.upP = FALSE
procP.downP = FALSE
procQ.upQ = FALSE
procQ.digitQ = 2
procQ.unlockedQ = TRUE
’

’

’

’

’

Fig. 2: Witness for the test predicate F(procQ.unlockedQ)

If a DDAP system is specified as a whole model (as described in Section 3.1),
the technique presented in Section 2.3 can be used to generate tests for the
DDAP. Let us call this technique Mwhole .

Definition 12 (Completeness). A test generation method M for DDAP sys-
tems is complete if M generates a test suite covering all the feasible test predi-
cates of the whole model.

Theorem 1. Mwhole is sound and complete.

Example 5. Consider the DDAP system SafeLock shown in Codes 1, 2, and 3.
A test predicate for the system (using Mwhole) is F(procQ.unlockedQ), requir-
ing that lock Q can become unlocked. In order to find a test for covering the
test predicate, we check the trap property !F(procQ.unlockedQ), saying that Q
never becomes unlocked. Since the test predicate is feasible, the trap property
is violated and the returned counterexample is a witness for the test predicate.
The counterexample is shown in Fig. 2; we can see that, in the last state of the
sequence, the test predicate is covered because procQ.unlockedQ becomes true.

4.1 Decomposition by dependency abstraction

Given a test predicate tp over a DDAP system 〈P,Q〉, if tp contains only labels
of P , one can apply the cone of influence (COI) abstraction technique [9], by not
considering Q, and generating a test only for P . If the test predicate tp contains
only labels of Q, instead, the application of COI is not effective, since it cannot
simplify the model: indeed, P provides input values to Q and so both P and Q
must be considered. A basic approach is to generate a test using Mwhole that,
however, may suffer from the state space explosion problem.

8

Algorithm 1 Test generation algorithm MDD

Require: Two specifications P and Q
Require: A test predicate tpQ for Q
Ensure: A test for the DDAP system
1: testQ ← getWitness(tpQ)
2: if testQ 6= UNFEASIBLE then
3: inputSeq ← getInputSeq(testQ , P)
4: rcP ← getLTL(inputSeq)
5: testP ← getWitness(rcP)
6: if testP 6= UNFEASIBLE then
7: return merge(testP , testQ)
8: else
9: return UNKNOWN . It is unknown if the test predicate is feasible

10: end if
11: else
12: return UNFEASIBLE . The test predicate is unfeasible
13: end if

We propose an abstraction that exploits (un)dependency between inputs and
outputs to decompose the complete system; the proposed test generation ap-
proach consists in generating two tests, one over Q and one P , and merging
them later. Alg. 1 shows the test generation algorithm MDD we propose.

Given a test predicate tpQ for Q, if tpQ is feasible, we compute its witness
(line 1 in Alg. 1) by asking the model checker for a counterexample for the trap
property ¬tpQ . The counterexample is a trace of Q

testQ = q0, IQ0, . . . , qm

where q0 ∈ S0
Q, and IQj ⊆ INQ is the set of inputs of Q applied at state qj to

obtain state qj+1, j = 0, . . . ,m−1. We identify the inputs coming from machine
P (those of the dependency set) as IQj ∩D.

We split the sequence testQ in subsequences σi, i = 0, . . . , n, such that atomic
propositions of the dependency set remain unchanged:

testQ = q0, σ0, σ1, . . . , σn

= q0,

σ0︷ ︸︸ ︷
IQ0, q1, . . . , qk1

D0

,

σ1︷ ︸︸ ︷
IQk1 , qk1+1, . . . , qk2

D1

, . . . ,

σi︷ ︸︸ ︷
IQki , qki+1, . . . , IQki+1−1, qki+1

Di

, . . . ,

σn︷ ︸︸ ︷
IQkn , qkn+1, . . . , qm

Dn

where n < m and 0 = k0 < . . . < kn < m, and, for each σi, Di is the set of
inputs of the dependency set that are applied all over σi, i.e., ∀j = ki, . . . , ki+1−
1: IQj ∩D = Di.

Given the sequence D0, . . . , Dn (called inputSeq in Alg. 1), we build a reach-
ability condition rcP over P as LTL formula (line 4 in Alg. 1), requiring that

9

n+ 1 subsequent states (not necessarily contiguous) exist, in which P produces
the output values Di requested by Q to start the computation σi. It holds

rcP = F

 ∧
d0∈D0

d0 ∧ F

. . .F
 ∧
dn−1∈Dn−1

dn−1 ∧ F

(∧
dn∈Dn

dn

) . . .

If rcP is feasible, we compute its witness as counterexample for the trap

property ¬rcP (line 5 in Alg. 1)

testP = p0, IP0, . . . , pt

P produces the output values Di in the n+ 1 states ph1 , ph2 , . . ., phn , pt. We
split the sequence testP after states p0, ph1

, ph2
, . . ., phn

, obtaining the following
computation segments

testP = p0, δ0, δ1, . . . , δn

= p0,

δ0︷ ︸︸ ︷
IP0, p1, . . . , ph1

D0

,

δ1︷ ︸︸ ︷
IPh1

, ph1+1, . . . , ph2

D1

, . . . ,

δi︷ ︸︸ ︷
IPhi

, phi+1, . . . , IPhi+1−1, phi+1

Di

, . . . ,

δn︷ ︸︸ ︷
IPhn

, phn+1, . . . , pt
Dn

with 0 = h0 < h1 < . . . < hn < t, and where p0 ∈ S0
P and IPj ⊆ INP is the set

of inputs of P applied at state pj to obtain state pj+1. In the last state phi+1
of

a subsequence δi, P produces the output values Di necessary to Q for beginning
the subsequence σi, i.e., LP (phi+1) ∩D = Di.

The test for the DDAP system can be built, as described below, using infor-
mation coming from testP and testQ (line 7 in Alg. 1).

Let 〈δi ◦ q〉 indicate the sequence IPhi
, (phi+1, q), . . . , (phi+1

, q) of the DDAP
system in which P executes δi and Q keeps still at state q.

Let 〈σi ◦ p〉 indicate the sequence IQki \ D, (p, qki+1), . . . , (p, qki+1
) of the

DDAP system in which Q executes σi and P keeps still at state p.
A test for the DDAP system is the sequence

testPQ = (p0, q0), 〈δ0 ◦ q0〉 , 〈σ0 ◦ ph1
〉 , 〈δ1 ◦ qk1〉 , . . . ,

〈σi−1 ◦ phi
〉 , 〈δi ◦ qki〉 ,

〈
σi ◦ phi+1

〉
, . . . , 〈δn ◦ qkn〉 , 〈σn ◦ pt〉

Example 6. In this example we show how to apply the decomposition by depen-
dency abstraction to the safe lock system SafeLock presented in Example 2, for
generating the test that covers the test predicate F(unlockedQ) in component
Q. The test built for Q is

testQ = sq0,

σ0︷ ︸︸ ︷
{upQ, unlockedP}, sq1, {upQ, unlockedP}, s̃

q
2

D0={unlockedP}

10

The corresponding reachability condition on P is

rcP = F (unlockedP)

The test built for P is

testP = sp0,

δ0︷ ︸︸ ︷
{upP}, sp1, {upP}, s

p
2, {upP}, s

p
3, {upP}, s

p
4

D0={unlockedP}

The test for the DDAP system is

testPQ = (sp0, s
q
0),

〈δ0◦sq0〉︷ ︸︸ ︷
{upP}, (sp1, s

q
0), {upP}, (sp2, s

q
0), {upP}, (sp3, s

q
0), {upP}, (sp4, s

q
0),

{upQ}, (sp4, s
q
1), {upQ}, (sp4, s̃

q
2)︸ ︷︷ ︸

〈σ0◦sp4〉

Theorem 2 (Soundness). The test generation method MDD is sound.

Proof. Proving the soundness of the proposed technique MDD corresponds to
prove that testPQ is a test for the DDAP system.

testP is a valid trace for P because ∀j = 0, . . . , t − 1: (pj , IPj , pj+1) ∈ TP .
testQ is a valid trace for Q because ∀j = 0, . . . ,m− 1: (qj , IQj , qj+1) ∈ TQ.
In Def. 9, (1) holds since p0 ∈ S0

P and q0 ∈ S0
Q (by def. of testP and testQ).

In Def. 9, (2) holds for all the transitions of testPQ :
– for the initial transition ((p0, q0), IP0, (p1, q0)), because (p0, IP0, p1) ∈ TP ;
– for the subsequent transitions ((p, q), I, (p′, q′)), since one of the following

cases occurs:
• if the transition is in a 〈δi ◦ qki〉, then (p, I, p′) ∈ TP ∧ q = q′ = qki ;
• if the transition is in a

〈
σi ◦ phi+1

〉
, then (q, I∪Di, q

′) ∈ TQ∧LP (phi+1)∩
D = Di ∧ p = p′ = phi+1 ;

• if the transition moves from 〈δi ◦ qki〉 to
〈
σi ◦ phi+1

〉
(with i = 0, . . . , n),

then (q, I ∪Di, q
′) ∈ TQ ∧ p = p′ = phi+1

, with I = IQki \Di, q = qki ,
and q′ = qki+1;

• if the transition moves from 〈σi−1 ◦ phi〉 to 〈δi ◦ qki〉 (with i = 1, . . . , n),
then (p, I, p′) ∈ TP∧q = q′ = qki , with I = IPhi , p = phi , and p′ = phi+1.

Proposition 1 (Incompleteness). The method MDD is not complete.

Proof. A test predicate in Q may be covered by more than one test; the model
checking approach, however, returns only one test. It is easy to build a DDAP sys-
tem for which, given a test predicate tpQ for Q, there exist two tests, testQ and
testQ ′, for covering tpQ in Q, and such that P can provide the values required
by testQ ′, but not the values required by testQ . If the model checker returns
testQ , the test predicate is not covered with MDD (Alg. 1 returns UNKNOWN),
although it can be covered using Mwhole .

11

MODULE P
VAR −− OUTP

x: 1 .. 4; −− D
ASSIGN

x := {2, 4};

MODULE Q
IVAR −− INQ

x: 1 .. 4; −− D
DEFINE

y := (x + 1) mod 3;

MODULE main
VAR

procP: process P;
procQ: process Q;

TRANS procP.x = procQ.x;

Code 4: Example of DDAP system for proving that MDD is not complete

Let us consider the DDAP system shown in Code 4. In order to cover the
test predicate F(y = 2) in Q, MDD can require by P either value 1 or value 4 for
the input variable x. If the required value is 1, MDD can not find a test on P to
provide 1 as value for x, since x can only assume values 2 and 4 in P ; so MDD

returns UNKNOWN. However, the test predicate can be covered with Mwhole (which
finds a witness for the corresponding test predicate F(procQ.y = 2)), and could
be covered using MDD as well, if Q would request 4 as input value for x.

5 Generalization to DDAP systems with n components

DDAP systems (see Def. 7) can be extended to systems with more than two
components.

Definition 13 (n-DDAP system). An n-DDAP system is a system having
n components C1, . . . , Cn (with n ≥ 2) satisfying the following properties:
– Ci = 〈SCi , S

0
Ci
, INCi , OUTCi , TCi ,LCi〉 is a Kripke structure with inputs;

– Ci depends only on Ci−1, for each i = 2, . . . , n; C1 does not depend on any
other component;

– only one system at a time is active (interleaving asynchronous parallelism).

We can adapt the test generation approach presented in Alg. 1 for dealing
with n-DDAP systems. Alg. 2 shows the modified algorithm M n

DD . Given a test
predicate for a component Ci, the algorithm builds a test for Ci (line 1). Then,
if the test predicate is feasible, for each previous component Cj it computes the
reachability condition that specifies the values that Cj must pass to Cj+1 (lines 5
and 6). If a test satisfying the reachability condition can be built for Cj , such test
is merged with the previous tests generated so far for components Cj+1, . . . , Ci
(line 9). If for a component Cj the test cannot be built, M n

DD returns the UNKNOWN
result, otherwise, at the end, it returns a test for the n-DDAP system.

6 Initial Experiment

We run all the experiments on a Linux machine, Intel(R) Core(TM) i7 CPU, 4
GB RAM. We have developed NuSMV models in the NuSeen framework3 which

3 https://code.google.com/a/eclipselabs.org/p/nuseen/

12

https://code.google.com/a/eclipselabs.org/p/nuseen/

Algorithm 2 Test generation algorithm M n
DD for n-DDAP systems

Require: An n-DDAP system {C1, . . . , Cn}
Require: A test predicate tp for a Ci

Ensure: A test for the n-DDAP system
1: componentTest ← getWitness(tp)
2: systemTest ← componentTest
3: if componentTest 6= UNFEASIBLE then
4: for j = i− 1, . . . , 1 do
5: inputSeq ← getInputSeq(componentTest , Cj)
6: rc ← getLTL(inputSeq)
7: componentTest ← getWitness(rc)
8: if componentTest 6= UNFEASIBLE then
9: systemTest ← merge(componentTest , systemTest)

10: else
11: return UNKNOWN . It is unknown if the test predicate is feasible
12: end if
13: end for
14: else
15: return UNFEASIBLE . The test predicate is unfeasible
16: end if
17: return systemTest

provides an interface to the NuSMV model checker [6] and to a model advisor
for NuSMV specifications [4].

We have experimented our approach on the n-DDAP system n-SafeLock, an
extension of the DDAP system SafeLock described in Example 2. n-SafeLock
is composed of n locks L1, . . . , Ln, such that each lock Li is unlocked if it
contains the correct digit and (except for L1) if the previous lock is unlocked.
We have applied the basic technique Mwhole and the proposed technique M n

DD

(see Alg. 2) on different instances of n-SafeLock, using an increasing number of
locks n. For each experiment, we have always tried to cover the test predicate
F(unlockedLn) over the last lock Ln; all the test predicates are feasible. Mwhole

has find a test for each test predicate (as expected from Thm. 1); also M n
DD has

always obtained a test for the whole system (no UNKNOWN result).

Fig. 3 shows the experimental results. Fig. 3a shows the memory consumption
(in terms of number of BBD nodes allocated) of the test generation using Mwhole

and using M n
DD ; we can see that, using Mwhole , the required memory grows

exponentially, whereas, using M n
DD , it grows linearly. Fig. 3b shows the time

taken by the two test generation methods (using a logarithmic); the required
time grows exponentially using Mwhole , whereas it grows linearly using M n

DD .
Note that Mwhole calls the model checker only once, while M n

DD does it n times.
For small values of n, when the instantiation time constitutes the main part of
the execution time, Mwhole outperforms M n

DD .

13

(a) Memory (b) Time

Fig. 3: Experiment results

7 Related work

In [2] we have proposed a test generation technique for sequential nets of Abstract
State Machines (ASMs), which represent systems constituted by a set of ASMs
such that only one ASM is active at a time. Given a net of ASMs, a test suite for
every ASM in the net is built, and then the tests are combined in order to obtain a
test suite for the entire system. Apart from the different notation, that technique
shares with MDD the fact that the generation of the tests is performed for the
single subsystems that are subsequently combined. However, that technique only
supports sequential systems, whereas MDD supports interleaving asynchronous
systems.

The technique presented in [2] has been extended in [3] for handling the
passing of information between subsystems, in a similar way as done in MDD

with the dependency set. However, since the subsystems run in sequence, the
information between two subsystems P and Q can only be passed by P to Q
at the end of a P run in order to start a Q run; in MDD , instead, P can pass
information to Q several times in different states of their traces.

With respect to [2,3], the technique proposed here has required to handle,
as test predicates, LTL temporal formulae. Moreover, tests are no more built by
concatenating the tests for the single components, but by merging them.

Since our approach is based on model checking, we mainly relate to abstrac-
tion techniques for formal verification. The cone of influence (COI) technique [9]
reduces the size of the transition graph by removing from the model the variables
that do not influence the variables in the property one wants to check. In [18]
COI is used to reduce the state space of fFSM models, a variant of Harel’s Stat-
echarts; models that could not be verified before, have been verified successfully
after its application. The data abstraction technique [9], instead, consists in cre-
ating a mapping between the data values and a small set of abstract data values;
the mapping, extended to states and transitions, usually reduces the state space,
but it may not preserve properties. In [7] a technique to iteratively refine an ab-
stract model is presented. The technique assures that, if a property is true in the
abstract model, so it is in the initial model; if it is false in the abstract model,

14

instead, the spurious counterexample may be the result of some behavior in the
abstract model not present in the original model. The counterexample itself is
used to refine the abstraction so that the wrong behavior is eliminated.

A technique for sequential modular decomposition for property verification of
complex programs is presented in [17]. The approach consists in partitioning the
program into sequentially composed subprograms (instead of the typical solution
of partitioning the design into units running in parallel). Based on this partition,
the authors present a model checking algorithm for software that arrives at its
conclusion by examining each subprogram in separation. They identify ending
states in the component where the computation is continued in another com-
ponent and some information passed to the next subprogram. The algorithm
then tries to formally prove the property in each component finding the nec-
essary assumptions about the initial (entering) states of the component. The
algorithm proceeds backwards until it finds that the property is true in every
sub-component starting from any initial state of the system. Since the goal is
formal verification, the algorithm must guarantee that the property holds in any
state, while in our approach, since we want to find only a counterexample, we
only need to find a path leading to interesting states.

An approach performing test generation by decomposing sequential programs,
called SMART, is presented in [13]. It proposes a sequential decomposition tech-
nique: given a program calling several functions inside it, these called functions
are tested in isolation and complete tests are composed only at the end. The
main difference with our approach is that tests for sub-functions are not real
tests but they are expressed as summaries using input preconditions and output
postconditions, and then re-used when testing higher-level functions. The main
advantage is that SMART is both sound and complete compared to monolithic
test generation (like Mwhole), while our approach is only sound. A disadvantage
is that SMART must maintain the summaries and it can solve them only at the
end. Sometimes constraints on some inputs can not be expressed (for instance
a hash function) and sometimes all the collected constraints are very hard to
solve, leaving some issues still open.

8 Conclusions

We have proposed a test generation approach by model checking for Decom-
posable by Dependency Asynchronous Parallel (DDAP) systems, i.e., systems
composed by several subsystems connected together in a way that (part of) the
inputs of one subsystem are provided by another subsystem. The approach is
based on a decompositional abstraction: It builds tests for the single subsystems
and combines them later in order to obtain a global system test. Such approach
permits to mitigate the state explosion problem of model checking. The method
has been proved to be sound but not complete.

As future work, we plan to apply the proposed technique MDD to more
complex systems, possibly leading to UNKNOWN results. This would require to
improve MDD to achieve its completeness, on the base of the following intuition.

15

When Alg. 1 returns the UNKNOWN result, it means that the value requested by
test testQ cannot be provided by P . In this case, the technique could ask for
another test testQ ′ for Q, and check if now the values requested by testQ ′ can
be provided by P ; such procedure should be iterated until a test for the whole
system is returned or no new test on Q can be found.

The approach MDD is suitable for building tests for test predicates defined
over APQ , i.e., the labels of only Q (or of only a component in an n−DDAP
system). As future work, we plan to extend the technique for handling general
test predicates built over all the labels of the system, i.e., over APP ∪APQ .

A further improvement could be dealing with systems in which one compo-
nent may depend on several components. In this case, the dependency relation
would be represented by an acyclic graph.

References

1. P. Ammann and P. Black. Abstracting formal specifications to generate software
tests via model checking. In Digital Avionics Systems Conference, 1999. Proceed-
ings. 18th, volume 2, pages 10.A.6–1–10.A.6–10 vol.2, 1999.

2. P. Arcaini, F. Bolis, and A. Gargantini. Test Generation for Sequential Nets of
Abstract State Machines. In J. Derrick, J. Fitzgerald, S. Gnesi, S. Khurshid,
M. Leuschel, S. Reeves, and E. Riccobene, editors, Proceedings of the Third In-
ternational Conference on Abstract State Machines, Alloy, B, VDM, and Z (ABZ
2012), Pisa, Italy, June 18-21, 2012, volume 7316 of Lecture Notes in Computer
Science, pages 36–50. Springer, 2012.

3. P. Arcaini and A. Gargantini. Test Generation for Sequential Nets of Abstract
State Machines with Information Passing. Science of Computer Programming,
(0):–, 2014.

4. P. Arcaini, A. Gargantini, and E. Riccobene. A model advisor for NuSMV speci-
fications. Innovations in Systems and Software Engineering, 7(2):97–107, 2011.

5. M. C. Browne. An improved algorithm for the automatic verification of finite state
systems using temporal logic. In Proceedings, Symposium on Logic in Computer
Science (LICS), 16-18 June 1986, Cambridge, Massachusetts, USA, pages 260–266.
IEEE Computer Society, 1986.

6. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for
Symbolic Model Checking. In Proceedings International Conference on Computer-
Aided Verification (CAV 2002), volume 2404 of LNCS. Springer, July 2002.

7. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50:752–794, 2003.

8. E. Clarke, W. Klieber, M. Novacek, and P. Zuliani. Model checking and the state
explosion problem. In B. Meyer and M. Nordio, editors, Tools for Practical Soft-
ware Verification, volume 7682 of Lecture Notes in Computer Science, pages 1–30.
Springer Berlin Heidelberg, 2012.

9. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

10. G. Fraser and A. Gargantini. An evaluation of model checkers for specification
based test case generation. In ICST 2009, 1-4 April 2009, Denver, Colorado,
USA, pages 41–50. IEEE Computer Society, 2009.

16

11. G. Fraser, F. Wotawa, and P. E. Ammann. Testing with model checkers: a survey.
Software Testing, Verification and Reliability, 19(3):215–261, 2009.

12. A. Gargantini and C. Heitmeyer. Using model checking to generate tests from
requirements specifications. In O. Nierstrasz and M. Lemoine, editors, Software
Engineering - ESEC/FSE’99, 7th European Software Engineering Conference, Held
Jointly with the 7th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Toulouse, France, September 1999, volume 1687 of Lecture Notes in
Computer Science, pages 146–162, London, UK, 1999. Springer Berlin Heidelberg.

13. P. Godefroid. Compositional dynamic test generation. In Proceedings of the 34th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’07, pages 47–54, New York, NY, USA, 2007. ACM.

14. R. Hierons and J. Derrick. Editorial: special issue on specification-based testing.
Software Testing, Verification and Reliability, 10(4):201–202, 2000.

15. B. Josko. A context dependent equivalence relation between kripke structures. In
E. Clarke and R. Kurshan, editors, Computer-Aided Verification, volume 531 of
Lecture Notes in Computer Science, pages 204–213. Springer Berlin Heidelberg,
1991.

16. H.-M. Koo and P. Mishra. Functional test generation using design and property
decomposition techniques. ACM Trans. Embed. Comput. Syst., 8(4):32:1–32:33,
July 2009.

17. K. Laster and O. Grumberg. Modular model checking of software. In B. Steffen,
editor, Tools and Algorithms for the Construction and Analysis of Systems, volume
1384 of Lecture Notes in Computer Science, pages 20–35. Springer, 1998.

18. S. Park and G. Kwon. Avoidance of State Explosion Using Dependency Analysis
in Model Checking Control Flow Model. In ICCSA 2006, volume 3984 of Lecture
Notes in Computer Science, pages 905–911. Springer, 2006.

19. W. Prenninger and A. Pretschner. Abstractions for Model-Based Testing. Electron.
Notes Theor. Comput. Sci., 116:59–71, Jan. 2005.

20. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan-Kaufmann, 2006.

21. B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes, 30(2):1–36, Mar. 2005.

17

	An Abstraction Technique for Testing Decomposable Systems by Model Checking

