
Dealing with Constraints
in Boolean Expression Testing

Angelo Gargantini
Dipartimento di Ingegneria dell’Informazione e Metodi Matematici

Università di Bergamo - Italy
e-mail: angelo.gargantini@unibg.it

Abstract—When testing a Boolean expression, one should
consider also the constraints among the variables contained in
it. Constraints model interdependence among the conditions in
the expressions. Only tests that satisfy the constraints. i.e. valid
tests, are really useful and can be applied to test the expression.
We present three ways to deal with such constraints: (1) ignoring
them during test generation and removing invalid tests later, (2)
including them in the expression as conjoint and again removing
invalid tests later, and (3) considering them during the test
generation process in order to generate only valid tests from
the start. We introduce a general framework in which the three
policies are implemented and compared over a set of Boolean
expressions commonly used as benchmarks. Although the third
policy requires a constraints solving technique for actual test
generation, it presents several benefits: it generates smaller test
suites and it may require less time for tests generation. Moreover,
ignoring the constraints during test generation can reduce the
fault detection capability of the tests.

[Note: this version corrects several errors in the original paper
- the author]

I. INTRODUCTION

Boolean expressions, i.e. terms that evaluate to true or false,
are frequently found in logical predicates inside programs to
model complex conditions under which some code is executed.
They are commonly used as guards for conditional instructions
and cycles. Also in model based testing, Boolean conditions
play a very important role because they can be found as
guards of transitions and actions. They constitute a critical
part also because many typical programmer and designer
errors result in faults in Boolean expressions. For instance,
missing conditions are a typical fault due to an omission
error, and error of omissions are one of most frequent error:
Marick found that approximately half of the faults posted on
usenet bug reports are faults of omission [22] (although not
necessary faults in Boolean expressions). Boolean expressions
are sometimes considered themselves specifications, and called
in this way. Many specification formalisms such as the often
used AND-OR tables (as those used in RSML [21] or in SCR
[14]) can also be seen as Boolean expressions. In this work,
we interchangeably use the terms Boolean specifications and
expressions.

Testing Boolean expressions is a major topic both in pro-
gram and model based testing and often referred as logic
testing. Numerous testing criteria have been introduced in the
past and they are continuously introduced. A survey on most
logic based testing criteria is presented by [16] (12 testing

criteria are considered) where the authors distinguish between
semantics criteria (like MCDC and its variants) and syntactic
criteria (like MUMCUT). They also discuss the test suite
size and the fault detection capability of the testing criteria
assessing their subsumption relationships. These criteria do
not, however, deal explicitly with constraints. The constraints
originate from interdependencies among the variables inside
the Boolean specification under test. For instance, given the
Boolean specification (a∧ b)∨ c, if the designer knows that a
implies b, then the constraint ¬a∨b should be eventually taken
into account, since a test with a true and b false is useless. In
this paper we identify three ways to deal with the constraints:
(IGN) ignoring them during test generation and removing tests
that do not satisfy the constraints later, (INC) including them
in the expression as conjoint and again removing invalid tests
later, and (VAL) considering them during the test generation
process in order to generate only valid tests from the start.
While the first two approaches are well known and used in
the literature, the last approach has never been applied to logic
testing. We compare the three approaches in terms of testing
effort, test generation time, and fault detection capability. We
study also the effect of some optimizations over the test suites.
We found that the third approach has several advantages with
respect the other two. Section II introduces the terminology
we use and a technique based on SAT solving for test case
generation. Section III presents the constraints, where they
come from and the three ways they can be dealt with: (1)
ignoring them (IGN), (2) including them in the expression
under test (INC), and (3) considering them in order to generate
only valid tests (VAL). Section IV reports the results we
obtained from the comparison of the three approaches applied
to a set of well known benchmarks.

II. BACKGROUND

Terminology: Boolean expressions are those involving
logical Boolean operators like AND, OR, and NOT (denoted
by ∧,∨,¬, ..) and those operands are atomic Boolean terms:
atomic because they cannot be further decomposed in simpler
Boolean expressions. We call the operands inputs or variables
and use symbols like x1, x2, The occurrence of an input
in an expression is referred to as a condition. For example,
the formula x1 ∧ x2 ∨ x1 contains two variables (x1 and
x2), whereas the number of conditions is three (two x1’s and
one x2). If there are no restrictions on how operators and

conditions are joined together, we say that the expression is
in a general form (GF), while if the expression is a disjunction
of conjunctive conditions, then we say that is in disjunctive
normal form (DNF). In this paper we consider GF Boolean
expressions. In the context of testing Boolean predicates, a
test case is a value assignment to every Boolean variable in
the formula. A test suite simply is a set of test cases.

A. Test generation by SAT solving

In [1], [8] we presented an approach that allows the gen-
eration of tests by means of SMT and SAT solvers. It is
a simplification of the test generation technique by model
checking originally presented in [10], [9]. In this paper we
assume that the specifications under test are Boolean expres-
sions containing only Boolean variables (literals). Therefore,
a testing criterion C is represented by a function that given a
Boolean expression ϕ returns a set of predicates which must
be covered. Each predicate represents a test goal and is called
test predicate. We say that a test satisfies or covers a test
predicate tp iff test is a model of tp, i.e. test |= tp. A test
predicate tp is said infeasible if there is no test that satisfies
it, i.e. 6|= tp.

Definition 1. Adequacy Given a testing criterion C and a
Boolean expression ϕ, we say that a test suite TS is adequate
to test ϕ according to C, iff ∀tp ∈ C(ϕ) (6|= tp ∨ ∃test ∈
TS(test |= tp))

To discover if a test predicate is infeasible or find a test
that covers it, a SAT/SMT solver can be used (assuming that
the solver terminates otherwise it is not known whether the
test predicate is infeasible or not). Note that infeasible test
predicates consume computing resources without producing
usable tests. The naive process of building a test for each
test predicate can be improved by several technique: here we
consider only monitoring and post reduction.

Monitoring: A test case explicitly generated for one test
predicate may satisfy a number of further test predicates. Con-
sequently, it is not strictly necessary with respect to achieving
the complete coverage (i.e., satisfaction of all test predicates)
to generate test cases for all test predicates. Instead, during the
test generation process, each time a test case is generated the
remaining uncovered test predicates can be checked against
the new test case (i.e., they are monitored for satisfaction),
and any satisfied test predicate can be omitted from test case
generation because it is already covered.

Post reduction: The final test suite may contain tests
which are not necessary. A test is not necessary if removing
it from the test suite will lead to all test predicates still being
covered (as in [13]). The problem of finding the optimal subset
of the original test suite that still covers all the test goals is NP-
hard, but can be efficiently solved by a simple greedy heuristic
[4]. Post reduction can be performed in a negligible amount of
time and it does not reduce the total number of test predicates
covered by the test suite.

B. Fault-based Testing Criteria

In [8], we have presented fault based testing criteria which
generate test predicates from Boolean expressions in disjunc-
tive normal form (DNF) and whose tests are guaranteed to
detect faults in specific fault classes (as in [19], [15]). This
approach has been extended to Boolean expressions in General
form (GF): although its detailed description is outside the
scope of this paper, it can be summarized as follows. Several
fault classes for Boolean expressions are considered (as in
[17], [3]): given a specification ϕ, every fault class F builds
all the possible faulty implementations ϕ′

i. By considering
all the fault classes, the testing criteria compute all the the
test predicates tpi = ϕ ⊕ ϕ′

i, where ⊕ denotes the exclusive
or. Finding the tests as models of the test predicates (i.e.
testi |= tpi) can be done by means of a SAT/SMT solver.

III. CONSTRAINTS OVER VARIABLES
IN BOOLEAN EXPRESSIONS

A Boolean expression often represents an abstract version of
a real guard which may contain not only Boolean variables, but
generic Boolean terms like relational expressions and method
calls. In the abstract version, each term is simply substituted
by a Boolean variable xj . For this reason, some constraints
between the variables are in place as well, for they model
variable dependencies.

Example 2. Given the following C code fragment:

if((x<10 && y==5) || (x>20 && y!=5)){...

one would derive the Boolean expression (x1∧x2)∨(x3∧x4).
x1 and x3 cannot be both true at the same time (i.e. in the
same test) and x2 and x4 are mutually exclusive (if one is
true, then the other is false and vice-versa). Such constraints
could be modeled as two Boolean predicates: δ1 ≡ ¬(x1∧x3)
and δ2 ≡ (x2 → ¬x4) ∧ (x4 → ¬x2) ≡ x2 ⊕ x4.

Example 3. The constraints sometimes generate from previ-
ous instructions or from other global constraints. For instance
consider the following C code fragment:

y = -x;
if (x >= 0 && y >= - 5) {...

One would abstract from the conditional guard the Boolean
expression x1 ∧ x2. However, x1 and x2 are not independent
since they cannot be both false: it cannot ever happen that x1

is false (i.e. x < 0 holds) and x2 is false (i.e. y < −5 holds:
considering the assignment to y, it is equivalent to x > 5).
This constraint could be modeled as Boolean expression: δ ≡
x1 ∨ x2.

It is clear that constraints pose a challenge during test gen-
eration and execution, because some combinations of variable
values may be not satisfy such constraints. We say that a test
is valid if it satisfies also the constraints. It is clear that in
the end, only valid tests are really useful. We identified the
following three main ways in the literature to deal with the
constraints over the original specification.

1. IGN - Ignoring the constraints: the constraints are
not considered during test case derivation. The testing criteria
and the test generation algorithm are applied to the original
formula. Tests that are not valid are later discarded. The main
advantage of this approach, is that test generation algorithm
can be applied without any modification, like no constraints
were present. The disadvantages are that one could generate
many more tests then necessary and that the elimination of the
invalid tests from the test suite could reduce also its quality
(in terms for example, of fault detection capability).

2. INC - Including the constraints as further conjoint in
the original Boolean expression and the test generation algo-
rithms are applied to the conjoint. In example 2, the Boolean
expression would become (x1 ∧ x2 ∨ x3 ∧ x4) ∧ δ1 ∧ δ2. The
intent is clear: tests that are not valid will not exercise the
decision or the guard represented by the expression. However,
this approach has several shortcomings: it increases the size
of the Boolean specification, and because most testing criteria
require a number of tests which is proportional with the size of
the expression, it also increases the test suite size. Moreover,
this approach cannot distinguish between invalid tests from
tests in which the original expression is tested false on purpose.
Infact, a test that evaluates the conjoint to false, it may be
invalid if it does not satisfy the constraints, but it may be
valid in case it satisfies the constraints while falsifying the
original Boolean specification.

3. VAL - Generating only valid tests: constraints are
considered during test generation in order to generate only
valid tests. In our framework, this means that a test must be a
model of the test predicate and of the constraints as well, i.e.
formally, given the constraints ∆ , testi |= ∆ ∧ tpi. The test
generation must be able to deal with logic constraints and for
this reason may require additional computational resources.
Definition 1 can be modified as follows.

Definition 4. Adequacy in the presence of constraints.
Given a testing criterion C, a Boolean expression ϕ,
and the constraints ∆ over it, we say that a test suite
TS is adequate to test ϕ according to C, iff ∀tp ∈
C(ϕ) (6|= (∆ ∧ tp) ∨ ∃test ∈ TS (test |= ∆∧tp))

In the following, we will use IGN, INC, and VAL in order to
refer to these three policies.

IGN and INC policies are commonly used in test generation
for Boolean expressions [8], [23], [2], [18]. The VAL policy
has never been applied to logic testing, but it is commonly
used with test generation for programs using constraint solving
techniques [11].

IGN and INC policies allow the test generation algorithm
to consider only the structure of the expressions and the test
generation process is greatly simplified. For this reason, testing
criteria like MCDC and MUMCUT can still be applied by a
simple enumeration algorithm. The VAL approach is feasible
only if the test generation process is based on some technique
capable of solving constraints, like those bases on Constraint
Programming [6], [7] or SAT solving (like ours presented in
this paper).

IV. EXPERIMENTS

For experimentation, we consider the same set of predicates
introduced by Weyuker et al. [23], who selected 13 Boolean
conditions from the specification of TCAS II. They identified
for 7 of them variable dependencies, and we restrict our exper-
iments to those 7. Weyuker et al. [23] dealt with the constraints
in two ways: ignoring and including them as conjoints. The
specifications and therefore the same approach was taken by
Chen et al. to introduce the testing criterion MUMCUT [2],
by Kobayashi et al. [18] for evaluating the combinatorial and
random/anti-random approaches to test generation, and by [15]
to evaluate the Minimal-MUMCUT strategy. We found no
testing criterion or technique that explicitly implements the
third (VAL) approach for Boolean specifications.

We consider overall the 7 specifications with the constraints
and the 3 policies: IGN and INC as in [23], and VAL.

Example 5. Consider for example the expression 20 used
by [23] ēf ḡā(bc + b̄d)1. Weyuker et al. discovered in the
specification that conditions c and d could never be both true,
so they transformed the original specification into specification
9 as (cd)ēf ḡā(bc + b̄d). In our approach, specification 20 is
used to test the IGN policy, while specification 9 is used to
test the INC policy. Specification 20 is used also for VAL,
together with the constraint ¬(c ∧ d).

We generate test suites satisfying the fault-based criterion
presented in Section II-B. In this way we are able to compare
the fault detection capability of the test suites with ease. We
have run the test generation algorithm for 20 times, and we
report the average of the data obtained. As SAT solver, we use
SAT4J [20] in this paper.

A. Testing effort

First of all, we wanted to measure the impact of the three
policies on the effort necessary to build the final test suite.
Table I reports the data we collected by generating the tests
for the 7 specifications and the 3 policies. We found that:

1) test predicates (column tp): IGN and VAL have the same
number of tps, so they present the same “complexity” for test
generation and they both need in principle the same number
of tests (assuming that the number of tps is a good measure of
the complexity of the test generation and that on average a test
covers an equal number of test goals). INC requires +60% of
the test predicates of IGN and VAL: including the constraints
in the expression increases the number of conditions in it,
increases the number of possible faults, and therefore the
number of test predicates.

2) infeasible test predicates (column inf): INC has the
greatest number and the greatest ratio (23% of tps are infeasi-
ble) of them. Ignoring the constraints (IGN) has the beneficial
effect of fewer infeasible test predicates and the lowest ratio
of infeasibility (10%). Indeed, although VAL has the same
number of test predicates as IGN, it has almost the double

1The ‘+’ symbol represents the OR operator and adjacency between literals
represents the AND operator.

IGN INC VAL

spec. #tp #inf. #tests #val. time #tp #inf. #tests #val. time #tp #inf. #tests/#val. time

1 229 15 20.8 11.6 1.9 462 107 28.9 15.6 1.9 229 15 13.5 0.6

2 426 77 27.0 16.0 3.2 919 143 40.0 24.0 3.3 426 77 20.1 1.5

3 1185 148 76.1 47.5 2.6 1478 467 68.0 47.0 7.8 1185 362 47.0 12.2

4 365 13 43.0 10.0 2.7 768 175 36.7 18.2 3.0 365 13 17.3 1.0

5 334 18 47.2 1.2 1.1 522 117 29.0 15.0 2.1 334 18 13.0 1.0

6 222 7 19.0 9.0 1.9 364 32 19.0 14.0 2.1 222 7 14.3 0.3

7 168 26 12.0 10.3 1.4 212 34 13.0 12.0 1.4 168 26 12.0 0.2

Σ 2929 304 245.1 105.6 14.6 4725 1075 234.6 145.8 21.6 2929 518 137.2 16.8

spec: specification number, #tp: number of test predicates that are generated, #inf.: number of infeasible test predicates, #tests: number of tests, #val.: number
of valid tests, time: time taken to complete the generation in secs.

Table I
TESTING EFFORT W.R.T. THE THREE POLICIES

of infeasible tps (+ 70%). This is an effect of the constraints,
which make some combinations of variable values infeasible.

3) number of tests generated (column tests): IGN produces
around the same number (+5%) of tests generated for INC:
ignoring and including the constraints have a great impact over
the number of test predicates, but no impact over the tests that
must be generated to cover them. VAL produces the smallest
test suite (- 41% w.r.t. INC).

4) number of valid tests: in terms of valid tests, INC
produces the greatest test suite, which contains only 6% more
tests than those for VAL. Almost half of the tests generated
by IGN are invalid and must be discarded: the final effect is
that IGN has the smallest valid test suite.

5) time: as expected INC requires much more time the
IGN (around +50%). Although VAL has many more infeasible
test predicates and it has to consider the constraints when
generating the tests by SAT solving, overall the total time is
around the same as the time required by IGN (+ 15%).

Overall, INC requires much more time but no so many more
tests. IGN produces the smallest valid test suite. Limiting the
generation to only valid tests (VAL) requires a little more than
than ignoring them (IGN) but much less than including them
(INC). However, IGN and INC could allow the use of lighter
test generation techniques that consider only the structure of
the expression under test.

B. Test suite quality

While smaller test suites are preferable in most cases, their
quality must be assessed as well, since small test suite may
have a limited fault detection capability. We can measure the
fault detection capability in this way: given a test suite TS we
eliminate from it invalid tests (i.e. tests that do not satisfy the
constraints) and measure the number of faults fkilled still de-
tected as the number of test predicates of the VAL specification
covered by TS. Let fVALfeasible be the number of test predicates
that are feasible in the VAL specification, we measure the fault
detection capability as the ratio fkilled/fVALfeasible. Table II
reports the ratio depending on the policy and the optimizations

used. Because the VAL test suites already cover all the feasible
test predicates generated for VAL, their fault detection is
already 100% and not reported in Table II.

In case A all the optimizations are used (as before in Table
I); in cases B and C, described below, only one optimization
at the time is used before removing the invalid test cases.

A. By applying monitoring, then post reduction, and then
removing the invalid tests, we found that IGN detects only
71% of the faults on the average, while INC detects 90%
of the faults. The relative quality of the IGN test suite w.r.t.
the VAL test suite is also bad by considering that it requires
77% of the tests (105.6 vs. 137.2) to cover only 71% of the
faults. So, it is true that IGN produces the smallest test suite,
but it also provides a very limited fault detection capability.
We believed that this was partially due to the use of the
optimizations, which speed up the generation process but may
decrease the quality of the test suite: by monitoring some tests
are not generated and they may be useful when invalid tests
are removed and post reduction possibly removes valid tests
while keeping only tests which cover more test predicates but
which may be invalid. For this reason, we performed some
experiments without the use of optimizations.

B. Applying monitoring but not post reduction increases the
quality of the IGN test suite but only marginally (from 71% to
73%) and increases the test size by 48%. For INC, avoiding the
post reduction increases only the final size without increasing
the fault detection capability.

C. Avoiding the use of monitoring and applying post re-
duction decreases the test suite size (by only 2 tests for IGN
and by 1 for INC). This further reduction can be explained by
the fact that without monitoring, post reduction is applied to
a much bigger set of tests and it can reduce the set even more
than the set already optimized by monitoring. This policy,
however, decreases the quality of test suite only for IGN
w.r.t. the use of monitoring (from 71% to 68%). However,
completing the task requires around 50 times the time when
monitoring is applied for IGN and 23 times for INC.

Avoiding post reduction improves marginally the test suite

total fault ratio detection for specification (in %)

optimizations policy size time (sec.) 1 2 3 4 5 6 7 Average

A Mon./PostRed./Valid. IGN 105.6 14.6 83 97 49 82 21 75 92 71

INC 145.8 21.6 89 93 95 85 66 98 100 90

B Mon./Valid. IGN 155.8 26.6 89 90 32 78 35 89 100 73

INC 195.5 21.6 89 93 95 85 66 98 100 90

C PostRed./Valid. IGN 104.3 730.5 83 86 34 73 24 76 98 68

INC 143.8 506.0 89 93 95 85 66 98 100 90

D Valid. IGN 1962.6 730.5 89 93 47 79 40 92 100 77

INC 2934.5 506.0 89 93 95 85 66 98 100 90

E Valid./PostRed. IGN 129.7 730.5 89 93 47 79 40 92 100 77

INC 147.1 506.0 89 93 95 85 66 98 100 90

Table II
Optimizations and fault detection capability

quality. It seems that some test predicates are covered by tests
that are filtered by post reduction before considering id they
are valid. To validate this hypothesis, we have performed the
following two experiments, in which we are sure that the
optimizations do not influence the fault detection capability
of the final test suite.

D: Not applying any optimization and then removing the
invalid tests. This significantly increases the test suite size
(×19 for IGN and ×20 for INC), increases the quality of
IGN (from 71% to 77%) but not for INC.

E: Avoiding the use of monitoring (in order to generate a
test for every test predicate), removing the invalid tests, and
only in the end applying post reduction. In this case the time
and the fault detection capability is like when no optimization
is applied, but the test suite size is reduced. For INC, fault
detection is not increased and the size is almost identical w.r.t.
the use of all the optimizations. For IGN, the final test suite
is bigger then that obtained using all the optimizations (by
around 23%) but also the fault detection capability is increased
(from 71% to 77%).

We expected a better fault detection capability in cases D
and E: if monitoring is not applied, then every feasible test
predicate is covered by its own test, and if post reduction is
applied only to valid tests, no invalids test is kept instead of a
valid test. However, we found that some necessary tests (i.e.
tests covering test predicates not covered by others) may still
be invalid, as shown by the following example.

Example 6. Given an expression containing variables a, b and
c, with the constraint δ = a→ ¬c, the feasible test predicate
tp = a∧ b is covered by the test a = true, b = true, c = true.
However, this test is invalid because it does not satisfy δ.
Removing it may leave the test predicate tp uncovered. This
proves that some tests covering feasible test predicate may be
invalid and yet necessary.

Overall, we can say that the use of optimizations does

not decrease the test suite quality for INC and decreases
only a little bit the quality for IGN. For IGN, the test suite
with greatest fault detection capability is found when no
optimization is applied at all, but this comes at the price of
a much longer computation times. In any case, no test suite
was able to detect 100% of the faults, with INC performing
always better than IGN.

This means that the relatively low quality of the IGN test
suite is due to the fact that ignoring the constraints causes the
generation of many invalid tests which must be later discarded
even if they would be necessary to have a good fault detection
capability. IGN risks to produce small test suites of low quality.

Although the idea of including the constraints in the expres-
sion under test as conjoint has no clear motivation and seems
to have several shortcomings, INC actually improves the final
quality of the test suite and thanks to many optimizations the
final test suite has similar size and it is obtained in a reasonable
time.

Only VAL guarantees complete fault detection capability,
with test suites in size between INC and IGN. This may be
true when applying also other coverage criteria like MCDC.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied three ways to deal with
constraints in logic testing: ignoring them (IGN), including
them as conjoint in the expression under test (INC), and
considering them in the test generation process in order to
obtain only valid tests (VAL). From our experiments, the
VAL policy presents several benefits: reduced test suite size,
complete fault detection, only valid tests are produced, and in
a reduced time. However, it can be applied only if the test
generation method allows it - in our case its implementation
is straightforward because we use a logic solver. IGN allows
the application of simpler test generation techniques but the
quality of the final test suite can be compromised by removing
invalid tests. INC is able to produce a good quality test suite,
but it increases the number of conditions to be tested and this

requires much more resources (time and test predicates) than
the other two.

The experimental results may depend on the particular
testing criteria we have used, with other testing criteria (like
the structural ones, as MCDC) the conclusion may differ.
However, the presented insights hold in general: IGN produces
some invalid tests which once removed may decrease the
test quality, INC requires more resources because it increases
the number of conditions in the expressions, and only VAL
produces high quality test suites, but it requires a test generator
method capable of constraints solving.

As future work, we plan to extend our study to combi-
natorial testing where constraints have a great importance as
well [1]. Also in combinatorial testing, there exist several
experiments showing that the INC policy is inadequate. For
instance in [5], the authors conclude that: “This is strong
evidence that constraint handling must be incorporated into
CIT generation methods rather than added on as a post-
processing phase”. A similar conclusion is drawn by Grindal
et alt. [12]: they compare four strategies to handle conflicts in
combinatorial testing (using also a post reduction technique
similar to that presented in this paper) and conclude that
“the best method with respect to test suite size is to avoid
selection of test cases with conflicts”. They consider only
test suite sizes and they do not, however, consider the fault
detection capability when comparing the strategies. Also in
program testing, constraints over the inputs, often modeled
as preconditions, pose a great challenge in test generation.
For instance, the generation of unit tests that exercise only
valid method calls is of great interest. In the future, we plan
to compare several policies to deal with input constraints in
these area of testing too.

REFERENCES

[1] Andrea Calvagna and Angelo Gargantini. A formal logic approach to
constrained combinatorial testing. Journal of Automated Reasoning,
45(4):331–358, 2010.

[2] T.Y. Chen, M.F. Lau, and Y.T. Yu. MUMCUT: A fault-based strategy
for testing boolean specifications. In Asia-Pacific Software Engineering
Conference, page 606, Los Alamitos, CA, USA, 1999. IEEE Computer
Society.

[3] Zhenyu Chen, Tsong Yueh Chen, and Baowen Xu. A revisit of fault
class hierarchies in general boolean specifications. ACM Transactions
on Software Engineering and Metholodogy, 2011.

[4] V. Chvatal. A greedy heuristic for the set-covering problem. Mathemat-
ics of Operations Research, 4(3), 1979.

[5] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Constructing
interaction test suites for highly-configurable systems in the presence
of constraints: A greedy approach. IEEE Transactions on Software
Engineering, 34:633–650, 2008.

[6] Richard A. DeMillo and Jefferson A. Offutt. Constraint-based automatic
test data generation. IEEE Transactions on Software Engineering,
17(9):900–910, Sep 1991.

[7] Jon Edvardsson and Mariam Kamkar. Analysis of the constraint
solver in una based test data generation. In Proceedings of the
8th European software engineering conference held jointly with 9th
ACM SIGSOFT international symposium on Foundations of software
engineering, ESEC/FSE-9, pages 237–245, New York, NY, USA, 2001.
ACM.

[8] G. Fraser and A. Gargantini. Generating minimal fault detecting test
suites for boolean expressions. In 6th Workshop on Advances in Model
Based Testing A-MOST 2010. IEEE Computer Society, 2010.

[9] Angelo Gargantini. Using model checking to generate fault detecting
tests. In TAP’07: Proceedings of the 1st International Conference on
Tests and Proofs, volume 4454 of Lecture Notes in Computer Science
(LNCS), pages 189–206. Springer Verlag, 2007.

[10] Angelo Gargantini and Constance Heitmeyer. Using model checking to
generate tests from requirements specifications. In Oscar Nierstrasz and
Michel Lemoine, editors, Proceedings of the 7th European Engineering
Conference and the 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, volume 1687 of LNCS, pages 6–10, Sep 1999.

[11] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic test
data generation using constraint solving techniques. In Proceedings of
the 1998 ACM SIGSOFT international symposium on Software testing
and analysis, ISSTA ’98, pages 53–62, New York, NY, USA, 1998.
ACM.

[12] Mats Grindal, Jeff Offutt, and Jonas Mellin. Managing conflicts when
using combination strategies to test software. In 18th Australian Software
Engineering Conference (ASWEC 2007), April 10-13, 2007, Melbourne,
Australia, pages 255–264. IEEE Computer Society, 2007.

[13] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A Methodology
for Controlling the Size of a Test Suite. ACM Transactions on Software
Engineering and Methodology, 2(3):270–285, 1993.

[14] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Auto-
mated consistency checking of requirements specifications. ACM Trans-
actions of Software Engineering Methodology, 5(3):231–261, 1996.

[15] G. K. Kaminski and P. Ammann. Using Logic Criterion Feasibility to
Reduce Test Set Size While Guaranteeing Fault Detection. In ICST’09:
Proceedings of the 2nd International Conference on Software Testing
Verification and Validation, pages 356–365, Washington, DC, USA,
April 1–4, 2009. IEEE Computer Society.

[16] Garrett Kaminski, Gregory Williams, and Paul Ammann. Reconciling
perspectives of software logic testing. Software Testing, Verification and
Reliability, 18(3):149–188, 2008.

[17] Kalpesh Kapoor and Jonathan P. Bowen. Test conditions for fault classes
in Boolean specifications. ACM Transactions on Software Engineering
and Methodology, 16(3):10, 2007.

[18] Noritaka Kobayashi, Tatsuhiro Tsuchiya, and Tohru Kikuno. Non-
specification-based approaches to logic testing for software. Information
and Software Technology, 44(2):113 – 121, 2002.

[19] Man Fai Lau and Yuen-Tak Yu. An extended fault class hierarchy for
specification-based testing. ACM Transactions on Software Engineering
and Methodology, 14(3):247–276, 2005.

[20] Daniel Le Berre and Anne Parrain. The SAT4J library, release 2.2,
system description. Journal on Satisfiability, Boolean Modeling and
Computation (JSAT), 7:59–64, 2010.

[21] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and
Jon Damon Reese. Requirements specification for process-control
systems. IEEE Transactions on Software Engineering, 20(9):684–707,
September 1994.

[22] B. Marick. Two experiments in software testing. Technical Report
UIUCDCS-R-90-1644, University of Illinois at Urbana-Champaign,
1990.

[23] Elaine Weyuker, Tarak Goradia, and Ashutosh Singh. Automatically
generating test data from a Boolean specification. IEEE Transactions
on Software Engineering, 20(5):353–363, May 1994.

