
Building T-wise Combinatorial Interaction Test Suites by means of Grid computing

Andrea Calvagna1, Angelo Gargantini2, Emiliano Tramontana3

1Dip. di Ingegneria Informatica e delle Telecomunicazioni, Università di Catania, Italy
2Dip. di ingegneria Informatica e Metodi Matematici, Università di Bergamo, Italy

3Dip. di Matematica e Informatica, Università di Catania, Italy
3Consorzio COMETA

andrea.calvagna@unict.it, angelo.gargantini@unibg.it, tramontana@dmi.unict.it

Abstract

Generally, systematic testing is the only way to assess
the occurrence of failures in systems consisting in a set of
components, however given the size of real-world systems, it
would be very expensive to construct and test all the possible
combinations of the states of components. Combinatorial
interaction testing is an existing tecnique that appropriately
reduces the number of test cases by choosing either pairs,
triplets, etc., i.e. t-tuples, of input values. Of course, the
effectiveness of a test suite is higher when choosing e.g.
triplets of inputs rather than pairs. Since high values of t
are preferable, a large number of test cases could still be
generated.

This paper proposes a technique for building the smallest
possible test suite of size t. This technique consists in
reducing the number of test cases by carefully choosing non
redundant t-tuples. The paper shows that for obtaining the
smallest possible set of tests, it is best to generate a large
’flexible’ set of t-tuples and then reduce such a set until
the smallest one is obtained. Reduction is a computationally
expensive operation and therefore it is worth performing it
by parallelising its execution. This paper proposes a solution
for executing the reduction algorithm over a set of Grid
resources.

1. Introduction

Verification and validation of highly-configurable software
systems, such as those supporting many optional or cus-
tomizable features, is a challenging activity. In fact, due to
its intrinsic complexity, formal specification of the whole
system often require a great effort. Hence, modeling activi-
ties may become extremely expensive and time consuming,
and the tester usually decide to model (at least initially)
only the inputs and require they are sufficiently covered by
tests. On the other hand, traditional approaches to systematic
testing based on structural coverage criteria are unsuitable to
detect incorrect behaviors or failures caused by unintended
interaction between optional features [11], [17]. Since most
of the faults in a software system are triggered by unintended

interaction of a relatively low number of input parameters,
typically 4 to 6 [11], testing all the combinations of input
configurations can be very effective in revealing software
defects [9].

Combinatorial Interaction Testing (CIT) systematically
explores t-wise feature interactions inside a given system, by
effectively combining all t-tuples of parameter assignments
in the smallest possible number of test cases [11], [2]. In
particular, pairwise testing (t = 2), consists in testing all
pairs of input values at least once. It has been empirically
confirmed that pairwise testing can detect a significantly
large part (typically 50% to 75%) of faults in a system [13],
[4], thus many CIT approaches (see [14] for an up-to-date
listing) have been developed [3], [6], [11] and are currently
applied in practice [1], [16], [10]. CIT can be applied to
a wide variety of problems: highly-configurable software
systems, software product lines, hardware systems, etc.

Table 1 reports the input domain model of a system with
four distinct types of component, each of which can be set
in one of three possible optional values. While testing all
the possible configurations for this system would require
34 = 81 tests, pairwise coverage can be obtained by the test
suite reported in Table 2 that contains just 9 tests.

As shown by the previous example, significant time and
cost savings can be achieved by using CIT techniques. In
fact, a t-wise covering test of a system with n parameters,
each ranging in r values, would require rt

(
n
t

)
t-tuples, i.e. a

number of configurations that grows exponentially. However,
while each configuration concerns only a subset of t (t < n)
out of n parameters, a complete test case (a row assigning all
the parameters) actually hosts rt

(
n
t

)
different configurations

at the same time. As a consequence, by properly choosing
the values of the test cases, the size of the resulting covering
test suite can be lowered dramatically. E.g., for a system with
a hundred boolean parameters (2100 exhaustive test cases),
pairwise coverage would require 19800 configurations to
be tested, however these can be smartly chosen in a test
suite of only 10 test cases. Similarly, pairwise coverage of a
system with twenty ten-valued options (1020 total test cases)
requires coverage of 19000 pairs, for which a combinatorial
test suite of only 200 tests cases, or less, can be computed.

Client Web Server Payment Database
FireFox WebSphere MasterCard DB/2
IE Apache VISA Oracle
Opera .Net AmEx Access

Table 1. A system having three options per feature

Client Web Server Payment Database
1 FireFox WebSphere MasterCard DB/2
2 FireFox .Net AmEx Oracle
3 FireFox Apache VISA Access
4 IE WebSphere AmEx Access
5 IE Apache MasterCard Oracle
6 IE .Net VISA DB/2
7 Opera WebSphere VISA Oracle
8 Opera .Net MasterCard Access
9 Opera Apache AmEx DB/2

Table 2. A pairwise covering test suite

Nevertheless, it should be noted that computing a CIT
test suite is far from trivial, as the t-tuples for the test
suite cannot be chosen independently of each other. In
fact, it is very easy to have many redundant (repeated) t-
tuples in the suite, originating from poorly combined t-
tuples, hence the resulting test suite will then be bigger
than necessary. Seroussi and Bshouty [15] showed that the
problem of computing the least sized CIT test suite for t-
wise coverage of a given system is NP-complete. Despite
exact solutions to compute it by algebraic construction do
exist [8], in fact these are not generally applicable to all
systems. As a consequence, researchers have addressed the
issue of designing generally applicable algorithms, based on
greedy heuristics, although these may lead to sub-optimal
results (typically, only an upper bound on the size of the
constructed suite may be guaranteed).

Although many strategies for pairwise test suite con-
struction have been already explored and proposed in the
scientific literature, only a few of them support interaction
degrees higher than pairwise [12]. In fact, without adequate
computational resources the exponential increase in time
and space complexity of the problem would make any
implementation of impractical usage. On the other hand,
higher interaction degrees of coverage can be remarkably
more effective in revealing bugs than pairwise coverage, due
to the fact that t-wise coverage is by construction a superset
of all previous degrees of coverage, which makes this subject
worth investigating. In this paper, a new approach to t-wise
CIT test suite construction is presented, which is based on
the use of Grid computing resources to tackle the exponential
complexity of the problem.

The paper is structured as follows. Section 2 gives insights
on the theoretical aspects of the considered problem and
explains the idea behind our new construction technique.
Section 3 describes the proposed approach for building and
reducing a test suite. Section 4 gives the details of the

algorithm for reducing the test suite. Section 5 provides the
details for distributing the reduction algorithm on a Grid
environment. Eventually, section 6 draws our conclusive
statements.

2. Background

In this section, we will briefly introduce some basic
notation for the combinatorial object named Covering Array
(CA). Hartman et al. [7] have given the following definitions
of covering array and mixed level covering array.

Covering array. A covering array, CA(N ; t; k, r), is an
N × k array on r symbols such that every N × t sub-array
contains all ordered subsets from r symbols of size t at least
once. In such an array, t is called strength, k the degree and
r the order. Note that all the parameters of the considered
system have the same domain. When the parameters have
different domains, Mixed Covering Arrays are used, which
are a generalization of CAs.

Mixed covering array. A mixed covering array,
MCA(N ; t; k; r1, r2, ...rk) is an N ×k array on r symbols,
where r =

∑k
i=1 ri, with the following properties. (i) Each

column i (1 ≤ i ≤ k) contains only elements from a set Pi

of size ri. (ii) The rows of each N × t sub-array cover all t-
tuples of values from the t columns at least once. Similarly,
t is called strength, k the degree and ri the order of the ith

column.
A covering array (or a mixed covering array) is optimal if

it contains the minimum possible number of rows. A short-
hand notation is used to describe covering arrays by combin-
ing equal entries in ri. The example given in Section 1 is an
instance of CA(9; 2; 4, 3) (or denoted as CA(9; 2; 34)). Sim-
ilarly, the mixed covering array MCA(6; 2; 5; 3, 2, 2, 2, 2)
can be denoted with the shorthand MCA(6; 2; 3124), that
is a system with five components, one with three possible
configurations and four with binary options. Often we refer
to a CA or MCA of strength t as a t-wise covering array or
t-covering array. When t = 2, it is also called a pairways
covering array.

t-wise coupling. Let P = {P1, P2, ..Pn} be a set whose
elements are factors, each representing the parameters of
the system under test. Let a factor Pi be a set of ri distinct
symbols (values) Pi = {v1, v2, .., vri

}, with ri the range of
factor Pi. Please note that as all the symbols are distinct
by assumption, all Pi are disjunct and their elements may
be conveniently represented by a unique integer enumera-
tion1. The following notations can be used to conveniently

1. For enhanced clarity, we will also use the term factor combination to
refer to a combination of factors from the set P (e.g., (P1, P2)), while
the term value combination refers to a combination of symbols (values)
assigned to a given factor combination (i.e., (P1, P2)→ (3, 5)).

represent set of combinations:

P1 + P2 + ... + Pn : no combinations.
P t

1..n : all t-strenght combinations.
P1 · P2 · ... · Pn : all combinations.

Where the · (dot) product denotes the cartesian product
of the elements of two given sets (dot can also be omitted),
and the + (sum) operator denotes the ∪ (set union) of two
given sets.

The t-wise combinatorial product can then be defined as
a generalization of cartesian product.

Combinatorial product. For a given set of constants 1 ≤
i, j, .., k, t ≤ n, let P t

i,j,..,k denote an array containing the
set of all possible t-way combinations of the elements in the
set {Pi, Pj , .., Pk} ⊆ P . As an example, the strength-two
expansion of a set of three factors {P1, P2, P3} would be
P 2

1,2,3 = {P1P2 +P1P3 +P2P3}, that is the sum of all their
pair-way factor combinations. Note that P 1

i ≡ Pi, for all
1 ≤ i ≤ n, and by convention P 0

x , ∅, for all (set of indexes)
x. Also, it is easy to see that P 1

i,j..,k = Pi + Pj + ... + Pk,
and that Pn

1..n = P1 · P2 · ... · Pn.

3. Construction of t-wise covering test suites

The approach for the construction of a t-wise covering
test suite chosen in this work is based on the assumption of
the availability of large computing resources, such as those
offered by a Grid computing environment. In this context,
instead of building the test suite incrementally, with a greedy
or algorithmic approach, the construction process is based on
two complementary computational steps, which are namely
the expansion and the contraction stages, briefly described
in the following.

• Expansion stage: build up a t-wise covering test suite
T by enumerating all combinatorial requirements, one
per each row. As only t parameters are involved in each
required combination, all other will be left unassigned.

• Contraction stage: search for an effective way to
combine compatible rows together while preserving the
coverage, in order to reduce the total number of rows,
that is the total number of required tests.

Two rows are said compatible if each corresponding
position in the rows is either assigned to the same value
or it has not been assigned2 in at least one of the two rows.

The peculiarity of this approach is that it builds up an
intermediate test suite enumerating all the t-wise combina-
tions for the parameters of the considered system under test.
This would normally be impractical due to its expensiveness
in terms of computing resources. On the other hand, if
sufficiently large computing resources are available, it is then
possible to derive a final test suite from the intermediate one

2. Unassigned positions are commonly marked as x, also called the don’t
care value.



0 0 0
0 1 0
1 0 0
1 1 0
0 0 1
0 1 1
1 0 1
1 1 1





0 0 x
0 1 x
1 0 x
1 1 x
x 0 0
x 0 1
x 1 0
x 1 1
0 x 0
0 x 1
1 x 0
1 x 1



⇒


0 0 0
0 1 1
1 0 1
1 1 1
1 x 0



⇒


0 0 0
0 1 1
1 0 1
1 1 0



(a) (b) (c)

Figure 1. Pairwise test suites for P 2
1,2,3 built with greedy

(a) and expansion/contraction (b)-(c) methods

by just finding the right way to effectively merge together
as many compatible rows as possible in order to reduce the
total number of rows appearing in the final test suite. Simply
put, the final test suite is build by reducing the redundancy
in the intermediate one. This is possible since each row in
the intermediate test suite has n − t unassigned positions,
which can be used to host tuples of other compatible rows.

Of course, at the beginning the intermediate test suite does
have many compatible rows that will have to be merged.
By giving the intermediate test suite maximal redundancy
by construction (one row per t-tuple) we enable all the
conceivable ways of merging together the t-tuples. It is then
possible to implement the contraction (reduction) stage as
a search procedure, exploring ways to sequentially merge
together the rows of the intermediate test suite, driven by the
size of the resulting test suite as its optimization criteria. The
search procedure will be ideally able to explore the whole
space of all possible sequences of binary merges, and thus
find the optimal result, although we might want to limit the
depth of the searches or the number of searches to bound
the computation time.

In contrast to this potentially exhaustive search-based
approach, heuristic based construction techniques are by
definition built around some optimization principle, used to
make decisions on what might be the best value to assign to a
position or the best test to add next. In these approaches, the
test suite is computed incrementally, without intermediate
stages, aiming at reducing the redundancy on the fly. As
a consequence, they typically produce test suites whose
rows are then more likely to be already incompatible, that
is, where any left redundancy simply cannot be removed
without compromising coverage.

Let us consider pairwise coupling of three boolean factors
P 2

1,2,3. The matrix shown in Figure 3-(a) is a pairwise

covering test suite built by a greedy algorithm that has
enumerated all the pairs of the first two parameters, (P1, P2)
and then coupled these pairs with each value of the third
parameter P3. This is sufficient to cover all required pairs
between (P1, P3) and (P2, P3), so the greedy algorithm has
completed its job. If we now try to reduce the redundancy
in the resulting matrix we see that, apart from the first and
last rows, all other rows cannot be merged nor deleted as
each of them contains at least one non redundant pair that
would be lost. Hence, the size of the resulting test suite is
six rows.

Conversely, if we start from the expanded set of pairs,
shown in Figure 3-(b), then it will be possible to merge
compatible rows in many ways, and two possible results
are the matrices shown in Figure 3-(c). The first matrix
has been obtained by merging each row with the very next
compatible one, and its size is five rows. By trying a slightly
different sequence of merges the resulting matrix will be the
smallest, four rows, and is shown below. Four rows is the
optimum (minimal) size for the considered task. Note that
this optimal result is unreachable when using the considered
greedy construction method. Moreover, we need not have
the ability to detect totally redundant rows. This ability is
instead needed by the greedy method, in order to find and
delete the first and last rows, and is computationally very
expensive. With our technique, we simply need to compare
two integer vectors.

4. Exploring the solutions space

The drawback of the contraction stage is that the number
of possible merge sequences grows exponentially with the
size of the (already big) intermediate matrix. Thus, even
though computing one possible sequence is an easy task,
computing all sequences can still be prohibitively expensive.
This is why we assumed that it is possible to distribute this
job on Grid resources.

Executing the contraction stage in a distributed computing
environment, such as the Grid, allows several possible merge
sequences to be computed in parallel on different computing
nodes. Then the result is achieved by selecting the smallest
matrix that has been produced by one of the sequences. This
can improve the quality of the final result over a centralized
implementation, as more sequences can be explored in still
reasonable computing time, and because the number of
sequences that can be checked grows with the number of
available computing nodes. In fact, since the total number of
possible merge sequences, M , can be much higher then the
number of available computing nodes N , some sequential
processing could still be needed in order to exhaust the
search space.

Figure 4 shows method reduceThread(), a multithreaded
algorithm that was derived by adding a few lines, marked
with an asterisk, to the original single-threaded algorithm

1 reduceThread(TestSuite T){
2 T1 = local copy of T;
3 for each row r1 in T1 {
4 for each row r2 in T1-r1 {
5 if(compatible(r1, r2)) {
6* wheel = random boolean;
7* if(wheel) start new reduceThread(T1)
8 merge r2 in r1;
9 remove r2;
10 }
11 }
12 }
13* if(T1.size()<current_min) {
14* discard Tmin;
15* Tmin=T1;
16* }
17* else discard T1;
18 }

Figure 2. Multithreaded reduction algorithm

that computed only one merge sequence. The parame-
ter passed as an input value to reduceThread() is the
previously computed, still redundant, test suite. Method
reduceThread() searches for rows that can be merged
and hence removed, and in order to ensure termination it
proceeds merging compatible rows with a greedy approach.
Of course, originally each row may be compatible with
many rows in the test suite. Nevertheless, each performed
merge will add to the test suite a completely new row,
thus determining a potential change in all the compatibility
relations. It is not possible to determine in advance if
the choice of merging one row with another was the best
possible, until reduceThread() has finished, and then the
size of the resulting test suite is known.

In order to overcome this limitation, reduceThread()
has been designed so as to allow exploring several ways
to evolve the reduction process. In fact, before applying a
change to the (local copy of the) test suite a new thread
is started and it will be given the current version of the
suite. The new thread will skip that change and search
for an alternative chance of merging (which may be not
possible anymore in the previous thread). Actually, exhaus-
tive exploration of all possible sequences of merges would
be performed, one per thread, unless some limitation is
introduced. This has been done by tying the allocation of
each new instance executing reduceThread() to the value
of a stochastic variable. Different probability distribution
functions for this variable can be used to tune the behaviour
of the algorithm to available resources. In this work, we
will rely on the resources of a Grid environment to dis-
tribute and execute in parallel all the instances running
reduceThread(). At termination, each thread will compare
its resulting test suite with the one currently minimal, stored
in a shared location, and replace it in case of improvements.
A running-threads counter is used to monitor the termination

Starter

SuiteReducer

TestSuite

SuiteBuilder

Repository

Figure 3. Class diagram for the tool producing a mini-
mal test suite

of the whole process, though it can also be stopped in
advance by the user if a satisfying result has already been
achieved.

The speed-up of the multithreaded algorithm with respect
to the single-thread execution is bound to the number N of
available Grid nodes, that is, it is just a direct consequence
of the ability to compute N merge sequences at the same
time. Note that this does not take into account any delays due
to the I/O overhead introduced by distributing the process
over a network, but this is acceptable here since the data
communication requirements of each thread are negligible
with respect to the computing time required to process a
complete merge sequence. In fact, apart from the input
matrix T (the test suite) received at the start, and the output
matrix produced at the end, there are no other synchronisa-
tion points during the thread executions, which helps keeping
the networking overhead delay small. Although the number
of overall occurrences of these data synchronizations will be
two times the total number of thread instances running, it is
still possible to control this latter factor through the wheel
stochastic variable. This will also be useful to bound the
substantially larger space requirements of the multithreaded
algorithm, which amounts to an additional working copy of
the current test suite for each run thread instance. This can
also be easily alleviated by using a compact representation
for the test suite data.

5. Distributing the tool producing test suites

Figure 3 shows the main classes of the tool that we
have developed in order to generate a minimal test suite,
according to the expansion and contraction stage described
in Section 3. Class Starter contains the main program and
will start the execution of operations for building the test
suite and then for reducing it. Class SuiteBuilder generates
the initial test suite, as an instance of class TestSuite that
contains all the possible rows having each a t set of assigned
values. Class SuiteReducer contains the algorithm able to
reduce the test suite. Method reduceThread() (described in
Section 4) has been implemented in class SuiteReducer.
and will start execution when invoked by class Starter. Class

Repository contains the version of the test suite that is con-
sidered minimal. Class SuiteReducer works on a local copy
of the test suite, passed as an input parameter to its method
reduceThread(), and after performing checks and merges
transfers the resulting test suite to Repository. Checks on
new test suites are performed on a separate thread, thus
another instance of the same class SuiteReducer is created
to work on an appropriate input.

In order to obtain real parallelism between threads, the
instances of SuiteReducer should be executed each on a
different host. For this, we have used the framework RexMi-
das [5] that gives support for automatically distributing an
application. RexMidas takes as input a centralised Java
application and produces a distributed version that can be
executed over a set of hosts on a Grid environment. For the
aim of distribution, the original application is automatically
instrumented, i.e. appropriate jumps to a reflective metalevel
handling the issues related with distribution are inserted
into the bytecode. The metalevel takes care of: handing
invocations to application objects that are located remotely,
i.e. on a host different than the host of the caller object,
sending input parameters and receiving results of invocations
to remote objects, finding the host that is more appropriate
for allocating new instances of application classes.

The programmer of the application is able to choose
which instances of application classes are allowed to be send
on a remote host and for these classes, which allocation
strategy should be used. This choice should make the
runtime execution over the distributed environment more
effective for the application at hand. RexMidas provides
components implementing allocation strategies that evaluate
whether an host is appropriate for holding an instance of a
given class, according to several parameters.

For distributing our tool, we have chosen the provided al-
location strategy that assesses whether an host owns enough
’static’ resources in terms of hardware and software libraries
for the object to run smoothly. At run time, this allocation
strategy compares the current load (and static resources) for
each host and selects the least loaded one.

Figure 4 shows the deployment of the classes when using
RexMidas. Class SuiteReducer is declared as distributable
and associated with the allocation strategy that balances
the load of each available host, e.g. by counting for each
host how many instances of SuiteReducer are running and
always chosing the host that is the least loaded. This would
allow choosing an idle host, when available, for allocating a
new instance of SuiteReducer, hence minimising execution
time, since this class is CPU-intensive and communication
performed is not so frequent.

6. Conclusions

This paper has proposed a technique for building a test
suite of size t for a system under test. This technique

host 1 host 3

host 4

host 2

Starter r1:SuiteReducer

:Repository

2: start(ts1)

4: put(ts1)

3: start(ts2) r2:SuiteReducer

5: put(ts2)
ts1:TestSuite

ts2:TestSuite

SuiteBuilder

1: build()

Figure 4. Deployment of the classes for the tool producing a minimal test suite

mainly focuses on the ability to reduce the number of
test cases by merging all redundant t-tuples. An algorithm
that implements such a technique and that is intrinsically
parallel has been described. The benefits that it brings over
traditional approaches are both methodological and practical:
it is for sure able to arrive to the minimal test suite and can
be easily be distributed to take advantage of real parallelism.

In order to be able to distribute over a a set of Grid
resources the tool finding the minimal test suite, we have
build a modular object-oriented version of the tool and then
used the framework RexMidas that takes care of all the
concerns related with distribution.

References

[1] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing
of AT&T PMX/starMAIL using OATS. AT&T Technical
Journal, 71(3):41–47, 1992.

[2] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: An approach to testing based
on combinatorial design. IEEE Transactions On Software
Engineering, 23(7):437–444, 1997.

[3] S. Dalal, A. Jain, N. Karunanithi, J. Leaton, and C. Lott.
Model-based testing of a highly programmable system. issre,
00:174, 1998.

[4] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz. Model-based
testing in practice. In International Conference on Software
Engineering (ICSE), pages 285–295, New York, May 1999.
ACM.

[5] P. Giarrusso, G. Pappalardo, L. Toscano, and E. Tramontana.
REXMIDAS: A Reflective Middleware for Transparently and
Effectively Distributing Objects on a Grid System. In Pro-
ceedings of Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises (WETICE). IEEE, 2008.

[6] M. Grindal, J. Offutt, and S. F. Andler. Combination testing
strategies: a survey. Softw. Test, Verif. Reliab, 15(3):167–199,
2005.

[7] A. Hartman and L. Raskin. Problems and algorithms for
covering arrays. DMATH: Discrete Mathematics, 284(1-
3):149–156, 2004.

[8] N. Kobayashi, T. Tsuchiya, and T. Kikuno. Non-specification-
based approaches to logic testing for software. Journal of In-
formation and Software Technology, 44(2):113–121, February
2002.

[9] D. R. Kuhn and V. Okum. Pseudo-exhaustive testing for
software. In Software Engineering Workshop (SEW), Los
Alamitos, CA, USA, 2006. IEEE.

[10] D. R. Kuhn and M. J. Reilly. An investigation of the
applicability of design of experiments to software testing. In
Software Engineering workshop, pages 91–95. IEEE, 2002.

[11] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing. IEEE
Trans. Software Eng, 30(6):418–421, 2004.

[12] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence.
Ipog/ipog-d: efficient test generation for multi-way combina-
torial testing. Software Testing, Verification and Reliability,
18(3):125–148, 2008.

[13] Y. Lei and K.-C. Tai. In-parameter-order: A test generation
strategy for pairwise testing. In International Symposium
on High-Assurance Systems Engineering (HASE ’98), pages
254–261. IEEE, 1998.

[14] Pairwise web site. http://www.pairwise.org/.

[15] G. Seroussi and N. H. Bshouty. Vector sets for exhaustive
testing of logic circuits. IEEE Transactions on Information
Theory, 34(3):513–522, 1988.

[16] B. D. Smith, M. S. Feather, and N. Muscettola. Challenges
and methods in validating the remote agent planner. In
C. Breckenridge, editor, Proceedings of Artificial Intelligence
Planning Systems (AIPS), 2000.

[17] C. Yilmaz, M. B. Cohen, and A. A. Porter. Covering arrays
for efficient fault characterization in complex configuration
spaces. IEEE Trans. Software Eng, 32(1):20–34, 2006.

