
How to Optimize the Use of SAT and

SMT Solvers for Test Generation of

Boolean Expressions

Paolo Arcaini1, Angelo Gargantini1 and Elvinia Riccobene2

1Dipartimento di Ingegneria, Università degli Studi di Bergamo, Italy
2Dipartimento di Informatica, Università degli Studi di Milano, Italy

Email: angelo.gargantini@unibg.it

In the context of automatic test generation, the use of propositional satis�ability
(SAT) and Satis�ability Modulo Theories (SMT) solvers is becoming an attractive
alternative to traditional algorithmic test generation methods, especially when
testing Boolean expressions. The main advantages are the capability to deal
with constraints over the inputs, the generation of compact test suites, and
the support for fault detecting test generation methods. However, these solvers
normally require more time and a greater amount of memory than classical test
generation algorithms, making their applicability not always feasible in practice.
In this paper we propose several ways to optimize the SAT/SMT-based process
of test generation for Boolean expressions and we compare several solving tools
and propositional transformation rules. These optimizations promise to make
SAT/SMT-based techniques as e�cient as standard methods for testing purposes,
especially when dealing with Boolean expressions, as proved by our experiments.

Keywords: boolean expression testing; test case generation; SAT solvers; SMT solvers

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Boolean expression testing plays an important role
in code and model-based testing, since Boolean
expressions can be found in almost all software and
system design artifacts. Boolean expressions frequently
occur in complex conditions under which some program
code is executed or a speci�cation action is performed.
They are frequently used to provide semantics to other
formalisms (like feature models [1]). Boolean inputs
are explicitly found in models of digital logic circuits,
like the Simulink model a in Fig. 1, which is taken
from [2]. In these cases, the extraction of Boolean
expressions is rather straightforward. More often,
Boolean inputs derive from abstraction techniques that
consist in replacing complex formulae with Boolean
predicates. These techniques can be applied to high
level speci�cations � see example b in Fig. 1 � in
which complex conditions about the state are replaced
with atomic predicates. Similar abstraction techniques
can be applied to source code, for instance in order
to obtain Boolean programs [3]. The example c in
Fig. 1 reports a Boolean expression obtained from a
conditional statement in a Java program. Note that
in this case there exists a constraint among the inputs
(since i < 0 and i > 100 cannot be both true).
It is widely known [4, 5] that a Boolean expression

may be a�ected by certain types of errors that can
occur in it and which are known as fault classes
of the expression. Exhaustive testing of Boolean
conditions is not feasible in practice, since a Boolean
expression f with n variables requires 2n test cases
and this n may be big. Therefore, testing criteria (like
condition coverage, decision coverage, MCDC [6], and
MUMCUT [7]) are usually applied to select only subsets
of all possible test cases having, obviously, a reduced
fault detection capability. These traditional approaches
build a test suite from the syntactical structure of
the Boolean expression, but they do not explicitly
consider the expression fault classes. They may
also require expressions to be in a particular normal
(usually disjunctive) form, and they have di�culties
with coupled conditions [6] (i.e., conditions in�uencing
the value of other conditions in the same expression)
and constraints over the inputs.

To overcome limitations of traditional algorithmic
testing generation methods for Boolean expressions,
recent results [8, 9] show how it is possible to reduce
the problem of �nding fault detecting test cases to a
logical satis�ability problem, which can be solved by a
SAT-based algorithm. However, the e�ort required by
SAT solvers in terms of time and memory, questions
their practical usability in test generation.

The Computer Journal, Vol. ??, No. ??, ????

2 P. Arcaini, A. Gargantini, E. Riccobene

a) A Simulink model b) High level speci�cation c) A small fragment of a Java
program

CLOSEstart

OPEN

open ∨ timeout ≥ 10

int i;

. . .
if (i < 0 || i > 100) {

. . .
}

ABS
α : state = CLOSE
β : open
γ : timeout ≥ 10

a : i < 0

b : i > 100

BE out1 = (in1 ∨ in2) ∧ in3 α ∧ (β ∨ γ) a ∨ b with constraint ¬(a ∧ b)

FIGURE 1: Examples of speci�cations, abstractions (ABS row), and Boolean expressions (BE row)

Surely, SAT solvers are being increasingly used
for solving practical problems where one needs to
satisfy several potentially con�icting constraints, and
satis�ability solvers can now be e�ectively deployed in
practical applications [10]. But also SMT solvers are
increasingly used in applications, and can have further
potentialities [11]. Although they are far more complex
tools than SAT solvers, they should be as powerful
as SAT solvers when applied to satis�ability problems,
with a minimum overhead. Besides applying some pre-
transformations of the predicates that permits them to
accept as input generic Boolean formula, SMT solvers
have a richer command interface, allowing, for instance,
the addition and the retraction of assertions. All these
features make them more �exible tools.

Although SAT and SMT solvers are already
successfully employed in several projects of software
testing and veri�cation (for instance, at Microsoft
with SAGE [12] and Pex [13], or in the automotive
domain [14]), in some areas, like testing of Boolean
speci�cations, they are rarely used. For Boolean
expressions, classical testing criteria are widely used
together with simple yet fast algorithms for test
generation. What are exactly the advantages
SAT/SMT-solvers can bring to test generation for
Boolean expressions?

The SAT/SMT-based test generation technique
proposed in [8, 9] can explicitly deal with complex
constraints over the inputs and coupled conditions [15].
It also produces compact test suites without loss
of fault detection capability of the generated tests.
For instance, in [9], we have proved that SAT-based
generation is able to produce test suites smaller of
around 75% than those produced by classical Minimal-
MUMCUT and smaller of around 17% than those
produced by MCDC. Having compact test suites with
an assured fault detection capability is of extreme
importance, especially in testing safety critical systems,
when both the cost of executing every single test and of
missing a fault are very high. Moreover, this approach
does not require the speci�cations under test to be

expressed in a particular normal form, so avoiding both
overhead due to the formula transformation and missing
faults due to the transformation to normal form [16].
Finally, it generates test cases directly targeting speci�c
fault classes.

However, the use of SAT/SMT solvers for test
generation purposes requires more time and memory
than standard generation algorithms and this fact limits
its use in practice, unless numerous optimizations, as
initially sketched in [17], are devised.

In this paper, we formalize an optimized SAT/SMT-
based process, and explains in details and with
preciseness all its sub-procedures, especially the
collecting algorithm that is responsible for producing
compact test suites. Moreover, we deal with constraints
over the inputs of the Boolean expressions, and we
consider, among the testing criteria, also MCDC. A
broad range of options and optimizations are presented.
Some regard the actual use of the tools (e.g., avoiding
the exchange of �les with the external solver, and
using native libraries instead). Other optimizations
improve the SAT/SMT-based process of automatic
test generation, independently from a speci�c input
speci�cation and selected testing criterion. Others are
speci�c to the process for testing Boolean expressions.
Some optimizations take advantage of the interface
provided by the solvers.

We also propose a comparison of di�erent o�-the-
shelf SAT and SMT solvers that can be used in the
test generation process and that are able to support
(not necessarily all) the proposed optimizations. On the
base of our experiments, a good SAT solver performs
better than SMT solvers when no optimization is
used, although SAT solvers pay a price for accepting
only CNF (like SAT4J [18]) or for having only a
command line version (like NFLSAT [19]). On the other
hand, SMT solvers overcome SAT solver limitations by
accepting any form of formula and by o�ering a richer
command interface that makes possible the application
of all the optimizations. This is why, although we do not
exploit any external theory supported by SMT solving,

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions3

we still consider SMT solvers in our work, and, on the
base of the best SMT tool, we show evidence that the
proposed optimizations are e�ective.
Overall, we show that SAT/SMT solvers can be

successfully applied to Boolean testing and that a well
engineered process for test generation based on SMT
solvers is capable of generating tests for complex criteria
(fault-based and MCDC) in a reasonable time.
The paper is organized as follows. Background

on test generation for Boolean expressions is given
in Sect. 2 and the general process of test generation
by using SAT/SMT solvers is described in Sect. 3.
Process options are presented in Sect. 4, while
optimizations of the test generation process are
presented in Sect. 5. Experimental results which bring
evidence of the improvements due to the proposed
options and optimizations are reported in Sect. 6
where several experiments, conducted by means of
di�erent SAT/SMT solvers and on diverse Boolean
speci�cations, are presented. Sect. 7 discusses possible
threats to the validity of our approach. Sect. 8 presents
some related work, while Sect. 9 concludes the paper.

2. TEST GENERATION FOR BOOLEAN
EXPRESSIONS

In this section we introduce some basic de�nitions re-
garding model-based test generation in case speci�ca-
tions under test are Boolean expressions. Note, how-
ever, that our approach may be extended to other types
of speci�cations.
A Boolean expression contains as operands several

Boolean subexpressions, including atomic Boolean
terms, that cannot be further decomposed in simpler
Boolean expressions. We call the atomic terms inputs
or variables and use symbols like x1, x2, The
occurrence of an input in a expression is referred to as a
condition. For example, the formula x1∧x2∨x1 contains
two variables (x1 and x2) and three conditions (two x1's
and one x2). If the expression is not normalized, i.e., no
restrictions exist on how operators and conditions are
joined together, we say that the expression is in general
form (GF). In this paper we consider GF Boolean
expressions.
A Boolean expression under test ϕ comes with

constraints that can reduce the input space of ϕ. The
set of constraints can be represented by a predicate
δ over the variables of ϕ. Therefore, because of the
constraints δ, the input space of ϕ is not complete,
i.e., inputs can take only logical values that satisfy δ.
Furthermore, we assume that the constraints do not
contradict one with another and therefore there exists
at least a model that satis�es δ.
We provide the following de�nitions for the testing of

Boolean predicates.

Definition 2.1. Given a boolean expression ϕ with
constraints δ, a test case is a value assignment to every
Boolean variable in ϕ that satis�es δ. A test suite is a

set of test cases; the size of a test suite is the number
of its tests.

Test generation is usually driven by some testing
criteria, which can be formalized as follows.

Definition 2.2. A testing criterion TC is a function
that, given a Boolean expression ϕ, returns a set of
predicates which must be satis�ed (or covered). Each
predicate represents a test goal and is called test
predicate (tp).

Definition 2.3. Given a Boolean expression ϕ and
its constraints δ, we say that a test t satis�es or covers
a test predicate tp of ϕ i� t is a model of tp and satis�es
δ, i.e., t |= δ∧ tp. A test predicate tp is said infeasible3

if there is no test that satis�es it and the constraints,
i.e., |= ¬(δ ∧ tp) or, equivalently, |= δ → ¬tp.

Definition 2.4. Given a testing criterion TC , a
Boolean expression ϕ and its constraints δ, we say that
a test suite TS is adequate to test ϕ according to TC ,
i� every test predicate of TC either it is unfeasible
or it is feasible and covered, i.e., ∀tp ∈ TC (ϕ) : |=
¬(δ ∧ tp) ∨ (∃t ∈ TS : t |= δ ∧ tp).

Note that including the constraints in the test
generation process is important, and it has been
discussed in [15].

Example 1 (Condition Coverage of example c of
Fig. 1). Consider, for instance, as testing criterion TC
the condition coverage, which requires that each atomic
condition in the expression is evaluated at least once
to true and at least once to false [20]. The set of test
predicate for TC is simply the set of all the inputs of the
expression under test in positive and negative form. Let
the Boolean expression ϕ = a ∨ b with the constraint
δ = ¬(a ∧ b) be the expression under test. The test
predicates for the coverage of all the conditions in ϕ
are {a,¬a, b,¬b}. The test suite containing the two
tests {(a = >, b = ⊥), (a = ⊥, b = >)} covers all the
test predicates, satis�es the constraint δ, hence it is
adequate to test ϕ according to the condition coverage
criterion.

2.1. Two Selected Testing Criteria

There exist many testing criteria proposed in literature
for Boolean expressions. Kaminski et al. [21] counted
16 testing criteria, that can be grouped in two families:
semantic and syntactic criteria. Semantic criteria like
condition coverage, decision coverage, and the Modi�ed
Condition Decision Coverage (MCDC) Criterion [6]
focus on the meaning of the Boolean expressions and
do not require the expression to be in a particular form.
Syntactic criteria (like MUMCUT [7]) assume that the
expressions are in a standard form (generally DNF or
CNF) and de�ne the tests and their fault detection
capability by considering the structure of the expression

3For it represents an infeasible test requirement [20].

The Computer Journal, Vol. ??, No. ??, ????

4 P. Arcaini, A. Gargantini, E. Riccobene

under test. New criteria have been since introduced;
for instance, new fault-based criteria directly related to
Boolean fault classes are de�ned in [9]. In this paper,
we consider two criteria, the �rst one is a fault-based
criterion and the second one is the MCDC.

Fault-based Testing Criteria In [9] we have presented
fault based testing criteria which generate test
predicates from Boolean expressions in disjunctive
normal form and whose tests are guaranteed to detect
faults in speci�c fault classes (as in [22, 23]). This
approach has been extended to GF Boolean expressions
and it intends to go beyond classical syntactic criteria
like MUMCUT. Although its detailed description is
outside the scope of this paper, it can be summarized
as follows.
Given a Boolean speci�cation ϕ, a fault class F

identi�es all the possible faulty versions ϕ′i of ϕ, due
to a particular kind of fault. Several fault classes for
Boolean expressions have been de�ned and a hierarchy
among them has been established [4, 24]. According
to the fault-based testing criteria approach, given an
expression ϕ and ranging over all the fault classes, the
testing criteria compute all the test predicates tpi =
ϕ ⊕ ϕ′i (called detection conditions), where ⊕ denotes
the exclusive or (xor). A model of tpi makes ϕ true and
ϕ′i false, or the other way around.

Example 2 (Tps for the Stack-at-0 fault). The
Stack-at-0 fault (SA0) replaces one occurrence of a
condition with false [24]. Let ϕ = a ∨ b be the
Boolean expression of example c of Fig. 1. The test
predicates obtained from ϕ by applying the SA0 are
TPS = {(a ∨ b)⊕ (false ∨ b), (a ∨ b)⊕ (a ∨ false)}.

MCDC testing criterion The MCDC criterion [6]
is one of the most widely used coverage criteria
for software testing for Boolean expressions, largely
because MCDC is required by the Federal Aviation
Agency (FAA) for all software on moderate-size
U.S. commercial aircraft. Brie�y, it requires that
every variable in the expression has been shown to
independently a�ect the �nal value of the expression.
The original MCDC de�nition has been interpreted in
di�erent ways, originating several methods to generate
test predicates. In this paper, we use the following two
�avors of MCDC.

1. The �rst one adopts a weak form of MCDC, called
General Active Clause Coverage (GACC) [25,
21] and the Boolean derivative to generate test
predicates [26]. Given a Boolean variable v in an
expression P , let Pv←true represent the expression
P with every occurrence of v replaced by true, and
Pv←false the expression P with every occurrence of
v replaced by false. The condition under which
the value of v determines the value of P is Cv ≡
Pv←true ⊕ Pv←false. Then, for each variable v in P ,
the two test predicates are v ∧ Cv and ¬v ∧ Cv.

2. The second one uses the masking variation of the
MCDC, also known as Correlated Active Clause
Coverage (CACC) [25, 21]. The generation of test
predicates is based on the visit of the expression P
under test by considering it as a tree [27]. Starting
from the leaf representing the condition c under
test, the tree is visited up to the root. Every
sibling node is marked false if the parent node is
an ∨, while it is marked true if the parent node is
an ∧. If the node is the operator ¬, the marking
is switched (false for ∧ and true for ∨). Once
the root is reached, the tree is traversed again
in the inverse direction and the test predicate is
built considering the marking given to each sibling
node. The condition c is then added as c and as
¬c in order to obtain two test predicates. The
complete generation algorithm for all the variables
in an expression is shown in Alg. 1. Note that the
CACC subsumes other testing criteria as decision
and condition coverage [20].

Example 3 (Tps for MCDC). Let ϕ = a ∨ b be
the Boolean expression of example c of Fig. 1 and let
a be the variable under test. With the �rst method,
Ca ≡ ϕa←true ⊕ ϕa←false ≡ (true ∨ b) ⊕ (false ∨ b) ≡ ¬b
and the two test predicates are TPS = {a∧Ca,¬a∧Ca}.
Instead, the tree method visits the expression tree,
it marks the node b to false, and computes the test
predicates TPS = {a ∧ ¬b,¬a ∧ ¬b}.

3. TEST GENERATION BY SAT/SMT
SOLVERS

In this section, we explain and formalize an approach
for test generation by means of SAT and SMT solvers
extending the technique originally presented in [9, 17].
Upon the assumption of having an algorithmic way

for generating the test predicates, given a speci�cation
(i.e., a Boolean expression ϕ and a set of constraints
δ over the variables of ϕ) and a testing criterion, a
SAT/SMT solver can be used in order to �nd a test that
covers a test predicate or to discover if it is infeasible
(assuming that the solver terminates, otherwise it is not
known whether the test predicate is infeasible or not).
The proposed overall test generation process by

SAT/SMT solvers is depicted in Fig. 2 and shown in
Alg. 2. Given some testing criteria, a set TPS of test
predicates is generated from a speci�cation (À in Fig. 2
and line 1 in Alg. 2) according to Def. 2.2.
The generation of the complete test suite (Á in Fig. 2)

can be performed by taking a test predicate from TPS
and trying to generate a test that covers it (according
to Def. 2.3). In order to obtain an adequate test
suite (according to Def. 2.4), the process should be
iterated until one test is generated for every feasible
test predicate. However, this naïve approach requires
a high amount of time and generates huge test suites.
It can be improved by several techniques: here we

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions5

Algorithm 1 Computing MCDC test predicates for CACC

function mMcdcTP(BooleanExpression a)
if a = a1 ∧ a2 then

return Prod(mMcdcTP(a1), a2) ∪ Prod(mMcdcTP(a2), a1)
else if a = a1 ∨ a2 then

return Prod(mMcdcTP(a1), ¬a2) ∪ Prod(mMcdcTP(a2),¬a1)
else if a = ¬a1 then

return mMcdcTP(a1)
else // a is a variable

return { a, ¬a }
end if

end function

function Prod(SetOf[LogicalExpression] Σ, LogicalExpression x)→SetOf[LogicalExpression]
result ← {}
for all σ ∈ Σ do

result := result ∪ {σ ∧ x}
end for
return result

end function

FIGURE 2: Test generation process

consider collecting (Â in Fig. 2), coverage evaluation
(Ä in Fig. 2), and post reduction (Å in Fig. 2)4.
During the test generation process, the test

predicates in set TPS are moved to three other
sets: COLLECTED contains all the test predicates
that have been already collected and which a test
has been generated for, INFEASIBLE contains all the
test predicates that have been found infeasible, and
TBC_FEASIBLE contains all the test predicates that
have been tested for feasibility and, although they could
not be collected yet, they are feasible (this set is useful
in order to avoid to repeatedly check the feasibility of
the test predicates). The resulting test suite generator
cycle (Á in Fig. 2) corresponds to the while loop in
Alg. 2. The loop continues until every test predicate
has been collected or has been found infeasible; in each
iteration, the algorithm collects several test predicates
together (line 7), �nds a test t that covers all the

4Ordering of test predicates is not considered in this work and
we assume random ordering.

collected test predicates (line 8), computes the coverage
achieved by t (line 9), and adds t to the test suite
(line 10).
In the following, sets TPS, COLLECTED,

INFEASIBLE, and TBC_FEASIBLE must be con-
sidered as global variables.

3.1. Collecting

A core optimization employed in this paper consists
in �nding tests that cover as many test predicates as
possible, instead of single test predicates. We call
collection the set of test predicates sharing the same
model, and collecting the process of grouping test
predicates. The collecting phase is shown in Fig. 2 as
Â and it is performed in line 7 of Alg. 2.
From a theoretical point of view, the problem of

collecting consists in partitioning the set of feasible
test predicates with the minimal number of partition
classes. Each class contains only test predicates sharing
the same model. The number of possible partitions of a

The Computer Journal, Vol. ??, No. ??, ????

6 P. Arcaini, A. Gargantini, E. Riccobene

Algorithm 2 Test suite generation

Input: ϕ: Boolean expression
Input: δ: Constraints
Input: CRITS : Testing criteria
1: TPS← getAllTPs(ϕ, CRITS) // all the test predicates to cover
2: TBC_FEASIBLE← {} // test predicates to be covered and known to be feasible
3: COLLECTED← {} // collected test predicates
4: INFEASIBLE← {} // infeasible test predicates
5: TS ← {} // test suite
6: while TPS ∪ TBC_FEASIBLE 6= ∅ do
7: C ← collect // collecting
8: t← modelSat(δ∧

∧
c∈C c) // test computation

9: coverageEval(t, C) // coverage evaluation
10: TS ← TS ∪ {t}
11: end while
12: postReduction

13: return TS

set of size n is given by the Bell number Bn which grows
exponentially with n [28]. For this reason, in order
to keep the search of the optimal solution still feasible
in practice, we accomplish such partition by using the
greedy algorithm reported in Alg. 3 and explained in
the following.
The algorithm starts with an empty collection C

(line 1). Then, it tries to add every test predicate
tp to C. This is possible only if tp does not
invalidate the collection, i.e. it shares at least one
model with the other already collected test predicates
(line 3). This is checked by calling an auxiliary
function canCollect(tp, C). In the basic version
of the algorithm, canCollect is simply de�ned as
return sat(δ ∧ tp ∧

∧
c∈C c), i.e., it calls a SAT/SMT

solver to check if the conjunction of the constraint δ,
the test predicate tp, and all the test predicates already
in C is satis�able. In Sect. 5, we introduce several
optimizations for checking whether a test predicate can
be inserted in the collection C, i.e., we provide advanced
implementations of canCollect.
If the test predicate is not collected and it is not

known for being satis�able (line 6) (i.e., it belongs to
TPS and not to TBC_FEASIBLE), the SAT/SMT solver
is called for assessing the test predicate satis�ability
(line 7). According to the result, the test predicate
is moved either to TBC_FEASIBLE (in this way the
checking for satis�ability in other runs of the algorithm
is avoided), or to INFEASIBLE (in this way, it is no more
considered as a collectable test predicate). Note that
recording the satis�ability of a test predicate is very
important, because infeasible test predicates consume
computing resources without producing usable tests.
The collecting process is able to produce very

compact test suites [9], but it is very expensive in terms
of solver calls. For this reason, the algorithm may
decide by calling the function quitCollecting to quit
collecting, even before all the remaining (not collected
yet) tps are considered.

In Fig. 3 the evolution of the classi�cation of a set
of test predicates is shown. At the beginning, all the
test predicates have to be evaluated. After the �rst run
of the collecting algorithm, some of the infeasible test
predicates have been identi�ed, some test predicates
have been collected in the collection C1, and some other
test predicates have been moved to TBC_FEASIBLE.
In the following runs of the collecting algorithm, the
test predicates in TPS and in TBC_FEASIBLE are
all gradually collected in the collections C2, . . . ,Cn (or
found infeasible).
In the basic version of the algorithm, quitCollect-

ing is simply de�ned as return false, namely we con-
sider all the test predicates. In this case, during the
�rst run all the test predicates in TPS are considered
for collection and, therefore, TPS is emptied. Sect. 5.3
will introduce several means of e�ciently limiting col-
lecting.

Example 4 (Collecting tps of Example 1). Let's
collect with Alg. 3 the test predicates TPS =
{a, b,¬a,¬b} of Example 1, considering them in the
order in which they are reported here. The algorithm
collects them in two consecutive runs. In the �rst run, it
builds the collection C1 = {a,¬b}, and it puts b and ¬a
in TBC_FEASIBLE; note that b has not been collected
because of the constraint δ = ¬(a ∧ b). In the second
run, the algorithm collects in C2 both b and ¬a.

3.2. Test computation

Once a collection Ci is built, the SAT/SMT solver is
invoked (Ã in Fig. 2 and line 8 of Alg. 2) to �nd a
test that covers all the test predicates collected in Ci by
searching a model for δ ∧

∧
c∈Ci

c.

3.3. Coverage evaluation

After the computation of a collection model, the
coverage evaluation is performed (Ä in Fig. 2 and

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions7

Algorithm 3 collect: Collecting process

Output: C : collection of test predicates
1: C ← {}
2: for tp ∈ TPS ∪ TBC_FEASIBLE do
3: if canCollect(tp,C) then
4: C ← C ∪ {tp} // tp is added to the collection C
5: moveTo(tp,COLLECTED)
6: else if tp ∈ TPS then // tp is not collected and not known for being satis�able
7: if sat(δ ∧ tp) then
8: moveTo(tp,TBC_FEASIBLE)// tp is feasible but it cannot be collected
9: else
10: moveTo(tp,INFEASIBLE)
11: end if
12: end if
13: if quitCollecting(C) then
14: break
15: end if
16: end for
17: return C

procedure moveTo(TestPredicate tp, SetOf[TestPredicate] DEST)
ORIG ← getSet(tp) // tp belongs to only one set (TPS, COLLECTED, INFEASIBLE, or TBC_FEASIBLE)
DEST ← DEST ∪ {tp}
ORIG ← ORIG \ {tp}

end procedure

FIGURE 3: Evolution of the test predicate collection process

line 9 of Alg. 2); it checks if the newly generated
test also covers other test predicates (excluding those
just collected and those infeasible). Alg. 4 shows the
coverage evaluation in details; if a test predicate tp is
covered by the test t, it is added to C and considered
collected (i.e., if necessary, moved to COLLECTED) in
order to skip it for further considerations. Because
of coverage evaluation, collections C1, . . . , Cn do not
constitute a partition of COLLECTED, since a test
predicate could belong to more than one collection.
Moreover, coverage evaluation is also needed for post
reduction (see Sect. 3.4).

Remark on coverage evaluation vs collecting
Both coverage evaluation and collecting contribute to
produce compact test suites. Using collecting reduces

the number of the generated tests more than coverage
evaluation [9], but, while coverage evaluation is not
expensive (checking if a test is a model for a formula
is linear with the size of the formula) and no solver
is called, collecting is very computationally expensive
and requires several calls of the SAT/SMT solver in
the algorithm collect. However, while in coverage
evaluation a test generated for a test predicate is
evaluated a posteriori w.r.t. the test generation to
check if it incidentally covers also other test predicates,
collecting aims a priori at generating a test which covers
many uncovered test predicates.

The Computer Journal, Vol. ??, No. ??, ????

8 P. Arcaini, A. Gargantini, E. Riccobene

Algorithm 4 coverageEval: Coverage evaluation

Input: C: a collection of test predicates
Input: t: a test that covers the collection C
for tp ∈ (TPS∪TBC_FEASIBLE∪COLLECTED \C)
do

if isModelFor(t, tp) then
C← C ∪ {tp}
if tp /∈ COLLECTED then

moveTo(tp, COLLECTED)
end if

end if
end for

3.4. Post reduction

A test predicate could be covered by several tests, and
this is discovered by coverage evaluation. So, after
the test generation process, the resulting test suite
may contain tests which are unnecessary, i.e., removing
them from the test suite leads to a situation in which
test predicates are all still covered (as in [29]). The
problem of �nding the optimal subset of the original
test suite that still covers all the test predicates is
NP-hard, but can be e�ciently solved by a simple
greedy heuristic [30]. This task is accomplished by Post
reduction (Å in Fig. 2 and line 12 in Alg. 2), the last
step of the process; it removes unnecessary tests (if any)
and it can be performed in a negligible amount of time.

4. PROCESS BASIC OPTIONS

The test generation process requires the user to select
some options that may optimize the performances of the
process. Referring to the process in Fig. 2, some options
regard the structure of the test predicates generated
at step À (in Sect. 4.1), another concerns the way the
solvers are invoked at step Ã (in Sect. 4.2), while others
regard the form in which the speci�cation is given (in
Sect. 4.3).

4.1. Test Predicate Generation Options

O.MCDC
As explained in Sect. 2.1, there are two ways to
generate the test predicates for MCDC, and they di�er
in the structure (and therefore complexity) of the test
predicates. The two possible options are using either
GACC or CACC.

O.X Simpli�cation of the test predicates
Considering that most of our test predicates (those
produced from fault classes and from MCDC using the
Boolean derivative) have form ϕ⊕ϕ′ and that ϕ and ϕ′

often have a common subexpression, it may be useful
to apply some kind of simpli�cation of a test predicate
before running the solver in order to reduce the number
of conditions (i.e., occurrences of literals). We have
used the following two equivalences that allow to factor

a part of the formula and to push the ⊕ operator near
the literals:

(a ∧ b)⊕ (a ∧ c) ≡ a ∧ (b⊕ c)
(a ∨ b)⊕ (a ∨ c) ≡ ¬a ∧ (b⊕ c)

where a, b, and c are predicates.

Example 5 (Simpli�cation of xor expressions).
Consider, for instance, the expression ϕ = a ∨ b and
apply the SA0 to b, obtaining ϕ′ = a ∨ false. The test
predicate ϕ⊕ ϕ′ becomes:

(a ∨ b)⊕ (a ∨ false) ≡ ¬a ∧ (b⊕ false) ≡ ¬a ∧ b

While the original test predicate has 3 conditions, the
simpli�ed version contains only two condition.

4.2. Solver Invocation Option

O.API Using the API and avoiding the exchange of
�les
A simple optimization regards the way the solvers
are invoked. The previous version of our prototype
tool runs solvers by command line interface. Each
invocation of the solver is done by creating a new
external process, and the interaction with it is
performed by means of �les and command line strings.
That solution requires that the solver is fed with input
�les; in this way, the read/write speeds of the hard disk
can increase the time taken just to invoke the tool. Since
in the collecting process (see Sect. 3.1) the SAT/SMT
solver is repetitively called, the number of invocations
of the solver rapidly increases and the time taken just to
invoke the tool becomes a critical factor. A simple yet
critical optimization consists in avoiding this use and
embedding the solver in the process itself.

4.3. Speci�cation form

O.CNF Choosing the best transformation to CNF
Almost all SAT solvers require CNF input formulae,
while Boolean expressions we consider and their test
predicates have general form. E�cient transformation
to CNF is still a research topic [31]. There are
at least two classical possible alternatives: one that
preserves equivalence and consists in applying several
logical equivalences (double negative law, De Morgan's
laws, distributive law), and the classical transformation
proposed by Tseitin [32] that preserves satis�ability,
avoids the size explosion of the resulting CNF, but
introduces a linear number of new variables.

O.GF Avoiding the transformation to clausal form
As argued by Jain and Clarke [19], converting a non-
clausal formula to CNF requires a great e�ort (it can
grow exponentially in length) and it may destroy the
initial structure of the formula, which could be used for
e�cient satis�ability checking. Therefore, SAT/SMT
solvers taking Boolean expressions in general form (GF)
may perform better.

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions9

Algorithm 5 canCollect � Checking if the witness
is a model
function canCollect(tp, C)

if isModelFor(C.witness, tp) then
return true

else if sat(δ ∧ tp ∧
∧

c∈C c) then
C.witness← modelSat(δ ∧ tp ∧

∧
c∈C c)

return true

end if
return false

end function

5. COLLECTING OPTIMIZATIONS

Since collecting (step Â in Fig. 2) mostly contributes
in generating small test suites, but it is also the most
expensive [9], a great e�ort should be spent to improve
this part of the generation process. In this section,
we devise several techniques to speed up the complete
collecting process (see Sect. 5.1 and Sect. 5.2) and how
to quit the collecting in advance (see Sect. 5.3).

5.1. Witness exploitation

O.C_W Collection with witness

The collecting algorithm (Alg. 3) returns the collected
test predicates and the SAT/SMT solver is called
after the collecting process to �nd a model for the
conjunction of the collected test predicates (Ã in Fig. 2
and line 8 in Alg. 2). Indeed, the collecting algorithm
simply checks that the collection is satis�able, but it
does not ask for a model.

An optimization could be avoiding a further call to
the SAT/SMT solver: The collecting algorithm should
always ask to the solver also the model of the collection
when this is satis�able. Alg. 3 can be modi�ed in a
way that it returns the collected test predicates together
with the model found for the collection. This model is
a witness, since it is the proof that the collected test
predicates can be actually collected together.

This optimization assumes that the computational
overhead introduced in the collecting algorithm by the
multiple model requests is negligible with respect to a
further call of the SAT/SMT solver over the collection.

O.C_WM Checking if the witness is a model

When trying to add the current test predicate tp to the
collection C (line 3 in Alg. 3), one could check if the
witness for the collection C is already a model for tp. In
this case, tp can be added to C without any further call
of the SMT solver. Note that this optimization requires
that O.C_W is applied. Alg. 5 shows the modi�ed
canCollect function.

5.2. Incremental collecting

O.C_I Collecting incrementally
Most modern SAT/SMT solvers maintain the logical
context of a given problem and allow incremental
satis�ability checking. Although this concept is not
uniquely de�ned, it means that it is possible to
incrementally add expressions to the current context5

and that satis�ability is checked after each addition. If
the expression is a conjunction e1 ∧ . . . ∧ en, the sat

predicate can be computed in the following way:

function sat(e1 ∧ . . . ∧ en)
ctx ← makeNewContext

for i = 1, . . . , n do
ctx .add(ei)
if ¬ctx .solve() then

return false

end if
end for
return true

end function

In SAT solvers that require the formulae to be in
CNF, each ei must be a clause. In SMT solvers, instead,
each ei can be any Boolean expression in general form.

O.C_IB Collecting incrementally with backtracking
Besides the incremental satis�ability, most SMT
solvers, like Yices [34] and Z3 [35], have the further
feature of removing an added formula from the context.
Therefore, SMT solvers allow incremental collecting
(O.C_I), but also backtracking of assertions.
Normally, to prove that a collection of test predicates

has a model, in the canCollect function (line 3 in
Alg. 3), we build a new context and we search for a
model of the formula δ ∧ tp ∧

∧
c∈C c. Instead, thanks

to the capability of adding and removing assertions to
the context, we could incrementally collect all the test
predicates having a common model. Alg. 6 exploits
the SMT operations push, saving the current context,
and pop, restoring the previous saved context. At
the beginning of every collecting process, the context
contains only the constraint δ. Before adding a single
candidate test predicate tp to the context by an assert

instruction, the context is saved by a push. If the
context has still a model (solve returns true), then tp
can be collected (the function returns true), otherwise
the context is restored by a pop.

O.C_DI Double incremental collecting
In case all the test predicates have the form ϕ ⊕ ϕ′i (if
the ⊕ is not pushed), one can use the following Xor
elimination logical equivalence:

δ∧
n∧

i=1

(ϕ⊕ ϕ′i) ≡

(
δ ∧ ϕ ∧

n∧
i=1

¬ϕ′i

)
∨

(
δ ∧ ¬ϕ ∧

n∧
i=1

ϕ′i

)
5For instance, MiniSat [33] provides the method addClause,

Yices [34] and Z3 [35] have the instruction assert.

The Computer Journal, Vol. ??, No. ??, ????

10 P. Arcaini, A. Gargantini, E. Riccobene

Algorithm 6 canCollect � Incrementally collecting
with backtracking

function canCollect(tp, C)
if C = ∅ then

ctx ← makeNewContext

ctx .assert(δ)
else

ctx ← getContext(C)
end if
ctx .push() // save current context
ctx .assert(tp) // add tp to the current context ctx
if ctx .solve() then

return true

else
ctx .pop() // restore previous context
return false

end if
end function

to simplify the collecting process. Thanks to this
equivalence, one can start with two contexts: c>
initially containing only δ∧ϕ, and c⊥ containing δ∧¬ϕ.
When a test predicate tpi = ϕ ⊕ ϕ′i must be checked
for compatibility with all the test predicates already
collected, ¬ϕ′i is added to c> (if still valid), while ϕ′i is
added to c⊥(if still valid). After the addition, we can
have one of the following three cases:
1) if both contexts are still satis�able, then tpi is

accepted;
2) if only one context is satis�able, then tpi is

still accepted, but the context without model
is invalidated and no longer considered for the
collection until the next new collecting process;

3) if no valid context is satis�able, then tpi is refused
and the valid contexts are restored.

5.3. Limiting Collecting

To make the collecting process of test predicates
faster, another approach consists in limiting the test
predicates that can be possibly collected, modifying the
quitCollecting function (line 13 in Alg. 3). The
collection would not contain all the uncovered test
predicates which could be possibly collected (we can say
that it is a partial collection), and this may reduce the
e�ectiveness of the collecting process itself. However,
this negative e�ect should be reduced by the coverage
evaluation: if the test generated for a collection covers
also test predicates which could have been collected,
then these test predicates are marked as covered by the
coverage evaluation (Ä in Fig. 2 and line 9 in Alg. 2)
and no longer considered.

O.C_QN Quit after N
A �rst limitation regards the maximum number of
test predicates to be possibly added to a collection.
Once that the collection contains N test predicates,

Algorithm 7 Quit collecting with bound N on the size
of the collection

function quitCollecting(C)
return |C| = N

end function

the collecting process stops. This policy is very easy
to implement; the modi�ed quitCollecting function
is shown in Alg. 7. With very small N , it makes the
collecting process very fast, but it may produce bigger
test suites. With bigger N , it behaves similarly to the
unlimited collection, but also the time may increase.

O.C_UU Collecting until useful
Another policy consists in performing the collecting
until it is useful, but stopping it as soon as it becomes
useless. Indeed, when the model of the collected test
predicates is the only one, collecting could be stopped
without losing anything: any new test predicate that
could be added to the collection would be covered in
any case in the coverage evaluation step (Ä in Fig. 2),
by the test produced by the SAT/SMT solver for the
collection. We devise the following technique in order
to discover if a model of a predicate is unique.
Let asExpr be a function that, given a model m,

returns a Boolean predicate having m as unique model.
The simplest asExpr is the function that returns the
conjunction of the variables having value true in m and
the negation of the variables having value false in m.

Example 6. If m = {a = >, b = ⊥} is the model,
then asExpr(m) = a ∧ ¬b.

The following proposition indicates how to check if a
model of a Boolean predicate is unique.

Proposition 5.1. Let ψ be a predicate and m be
a model of ψ. m is the unique model of ψ if ψ ∧
¬asExpr(m) is not satis�able.

We can use Prop. 5.1 to check if the model of the
collection is unique, right after a tp is added to the
collection. If the model is unique, the collection process
can be stopped.

Example 7 (Checking if a model is unique). Let
C = {a,¬b} be a collection of test predicates and
m = {a = >, b = ⊥} be one of its models. The
predicate a ∧ ¬b ∧ ¬asExpr(m) ≡ a ∧ ¬b ∧ ¬(a ∧ ¬b)
is unsatis�able, therefore m is the unique model of C.

Note that, while optimization O.C_QN may produce
bigger test suites because it may leave out from the
collection some uncovered test predicates that should
be collected, this optimization collects all the useful test
predicates and, therefore, it does not impact on the test
suite size.
The modi�ed quitCollecting function is shown in

Alg. 8.

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions11

Algorithm 8 Quit collecting with uniqueness checking

1: function quitCollecting(C)
2: m← modelSat(δ ∧

∧
c∈C c)

3: return ¬sat(δ ∧
∧

c∈C c ∧ ¬asExpr(m))
4: end function

Algorithm 9 Collecting process with uniqueness
checking after N

1: function quitCollecting(C)
2: if |C| ≥ N then
3: m← modelSat(δ ∧

∧
c∈C c)

4: return ¬sat(δ ∧
∧

c∈C c ∧ ¬asExpr(m))
5: end if
6: return false

7: end function

O.C_UAN Checking uniqueness after N
This optimization starts checking the uniqueness of the
model only after N test predicates have been added
to the collection. The �rst N predicates are added (if
possible) in the classic way. Afterwards, the collecting
process checks if the witness of the collection is unique
and, in this case, it quits.
The modi�ed quitCollecting function is shown in

Alg. 9.

6. EXPERIMENTAL RESULTS

To evaluate the approach described in this paper, we
perform a set of experiments, trying to measure the
e�ects of the described options and optimizations in
terms of test generation time.
Note that the model obtained for a given test

predicate is independent of the solver used (indeed, we
assume that each solver returns with equal probability
one of the possible models of the test predicate).
Moreover, all the proposed options and optimizations
(except for the limiting optimizations) do not a�ect the
set of models of a formula, since they either modify the
formula into an equivalent form (e.g., O.X) or speed
up the test generation (e.g., O.C_W) by keeping the
formula unchanged. The model of a test predicate and
its individual coverage only depend on the order in
which test predicates are collected. Therefore, the size
of the �nal test suite, when collection is not limited,
only depends on the order in which test predicates are
collected. In conclusion, options, optimizations, and
the used solver in�uence the time to �nd a model of
every collection but not the model itself (i.e., the value
assignments). They do not a�ect the coverage of every
test and, therefore, the �nal test suite size.
We �rst present a set of benchmarks and introduce

the considered SAT and SMT solvers. In Sect. 6.1,
we describe the evaluation of the options regarding
the generation of the test predicates (Sect. 6.1.1), the
solver option (Sect. 6.1.2), and the speci�cation form
options (Sect. 6.1.3). Sect. 6.2 reports a comparison

Speci�cation source
Source code ISCAS NuSMV All

#original specs 89332 99507 131 188970
#simpli�ed specs 461 372 79 801

TABLE 1: Number of selected speci�cations

among all the solvers we consider. In Sect. 6.3, we
evaluate the basic optimizations O.C_W, O.C_WM,
O.C_IB and O.C_DI regarding the collecting process,
using the solver that had the best performances in the
experiment described in Sect. 6.2 and that supports
the tested optimizations. In Sect. 6.4, we evaluate
the optimizations O.C_QN, O.C_UU and O.C_UAN
regarding the limiting of the collecting process. Finally,
in Sect. 6.5, we evaluate how good is our collecting
algorithm compared to the minimal solution.
We run all the experiments on a Linux PC with 24

Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz and 64
GB of RAM. Since our algorithms have some sources
of nondeterminism (mainly the order in which the test
predicates are considered), they may return slightly
di�erent results in di�erent executions over the same
inputs; for this reason, each experiment has been
executed 50 times and this explains the error bars in
the graphs.

Benchmarks For experimentation, several speci�ca-
tions have been taken from di�erent sources (as shown
in Table 1). 89332 speci�cations have been extracted
from source code of projects hosted on SIR6. We have
considered libraries (including apache-ant-1.9.1 and
jakarta, for instance) and safety critical software (like
JTCAS and Elevator, for instance); totally, we consid-
ered around 2 MLOC. 99507 speci�cations have been
extracted from circuit models in ISCAS format [36]. Fi-
nally, we extracted 131 speci�cations from the guards
of models of the NuSMV model checker; we considered
all the models hosted on the website of NuSMV, and all
the NuSMV models we could �nd on the Internet.
The speci�cations and the constraints have been

simpli�ed in the following way. In a constraint, the
subexpressions not related to the expression (i.e., not
containing any variable of the expression or any variable
that may in�uence the model of the expression) have
been removed; for example, given the expression a ∨
b and the constraint ¬a ∧ c, the constraint can be
simpli�ed as ¬a.
Then, the number of simpli�ed expressions has

been reduced by identifying isomorphic speci�cations
(i.e., speci�cations that can be transformed one in
the other by a simple renaming of the inputs); for
example, speci�cations a ∧ b and c ∧ d are isomorphic.
For each group of isomorphic speci�cations, only one

6Software-artifact Infrastructure Repository
http://sir.unl.edu

The Computer Journal, Vol. ??, No. ??, ????

12 P. Arcaini, A. Gargantini, E. Riccobene

representative speci�cation has been kept, associated
with the size of the group.
In the end, we obtained 801 single speci�cations

(Table 1 reports also the number of simpli�ed
speci�cations from the di�erent sources); in order to
keep the execution times reasonable, and to avoid very
rare expressions that could invalidate the results, we
selected the more common speci�cations. We have
sorted the singular speci�cations in decreasing order
of representativeness, and we have selected the �rst
119 singular speci�cations, that are representative of
the 99% of the speci�cations originally retrieved7. On
average, each selected speci�cation contains 9 variables
and 34 Boolean operators; the maximum number of
variables in an expression is 76, and the maximum
number of Boolean operators is 804. We believe that
the selected speci�cations are a meaningful sample of
the complexity of Boolean conditions usually occurring
in actual software.

SAT/SMT solvers As SAT solvers, we select
SAT4J [18], MiniSat [33], CryptoMiniSat [37], Pi-
coSat [38] and NFLSAT [19]. SAT4J [18] is a mature,
open source library of SAT-based solvers for Java,
SAT4J can be embedded in Java and does not require
any exchange of �les. However, it requires that the
test predicates are transformed into CNF. SAT4J (par-
tially) supports incremental solving of SAT problems.
MiniSat is a minimalistic, open-source SAT solver,
which proved to be very e�ective in all the SAT com-
petitions over the past years. CryptoMiniSat natively
supports xor clauses, so it seems suitable for dealing
with our test predicates. We also add PicoSat since it
claims to support incremental SAT checking. NFLSAT
is a SAT solver for non-clausal formulae; the input to
NFLSAT is a Boolean circuit in And Inverter Graph
(AIG) format or ISCAS format.
As SMT solvers, we use Yices [34] and Z3 [35].

Yices includes a very e�cient SAT solver; it claims
to be �competitive as an ordinary SAT and MaxSAT
solver � [34]. Z3 is a high-performance SMT solver,
developed at Microsoft research.
To implement optimization O.API we use the solvers

(if possible) together with the Java Native Access (JNA)
libraries, which simply require native shared libraries.
A brief comparison of the capabilities of the solvers

is reported in Table 2 (Y? means that the feature is
partially supported). MiniSat and PicoSat support
a limited form of backtracking when all the added
constraints are unit clauses and this is not enough
for implementing O.C_I. CryptoMiniSat does not
provide suitable APIs, and so incremental collecting
and backtracking are not applicable. The incremental
version of SAT4J does not work as expected8. NFLSAT

7All the used speci�cations and a jar of the
test generation tool can be downloaded from
http://fmse.di.unimi.it/atgtBoolean.html.

8The SAT4J command removeConstr accepts only simple

Solver O.API O.GF O.C_I O.C_IB
API GF (vs CNF) incremental backtracking

SAT4J Y N Y? N
MiniSat Y/N N Y? N
CryptoMiniSat N N N N
NFLSAT N Y N N
PicoSat Y/N N Y? N
Yices Y/N Y Y Y
Z3 Y/N Y Y Y

TABLE 2: Solver features

does not require inputs as CNF, but it cannot work with
JNA since it comes as executable binary. Yices and Z3
have very rich APIs, accept GF Boolean expressions,
and support a very e�cient backtracking technique.

6.1. Options Evaluation

In this section we evaluate the e�ect of applying
the options described in Section 4. Table 3 reports,
for each option, the improvement (average, minimal
and maximal) due to di�erent option values. The
improvement of time t due to the use of option value A
w.r.t. option value B is de�ned as 1− tA/tB.

6.1.1. Test predicates generation options
MCDC Test predicates We compare the two possible
ways of generating the test predicates from MCDC
(using solver SAT4J). The experiment shows that
CACC is, on average, 13.4% faster than GACC (as
shown in Table 3). GACC, using the Boolean derivative,
produces test predicates more di�cult to solve than those
produced by CACC.

XOR Simpli�cation Now, we want to assess the
in�uence of O.X option. We run all the solvers (using
O.API whenever possible) with and without the O.X
option. We discovered that the simpli�cation of the
xor operator produces, on average, an improvement
of around 37% of the test generation time (as shown
in Table 3). This optimization could be directly
embedded in the SMT solvers (that accept formulae in
general form), which probably do not apply this form of
simpli�cation because it is rarely applicable for generic
Boolean expressions.

6.1.2. Solver Invocations Option
API We want to determine whether the application
of option O.API has some bene�ts. We consider only
solvers MiniSat, PicoSat, and Yices, that allow both
versions, one at command line (CLI) and the other one
using JNA. Fig. 4a reports the time taken to generate
the complete test suite for the selected 119 speci�cations
for 50 runs. We see that using the JNA version is always
worthwhile; Table 3 reports that using the JNA version
decreases, on average, the test generation time of 6.2%.

clauses and, as stated in the o�cial documentation, it is only
partially implemented.

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions13

Option Description (A vs B) Improvement
Average Min Max

O.MCDC using CACC vs using GACC 13.4 7.4% 18.7%

O.X applying O.X vs not applying O.X 37.1% 30.8% 42.1%

O.API JNA vs CLI 6.1% 4.8% 7.2%

O.CNF using Tseitin transformation vs using equivalence preserving transformation 69.7% 42.9% 85.1%

O.GF General form vs CNF 16.3 11.9% 28.2%

TABLE 3: Options evaluation

3000

3500

4000

4500

5000

tim
e

(s
ec

on
ds

)

MiniSat PicoSat Yices Z3

C
LI

JN
A

C
LI

JN
A

C
LI

JN
A

C
LI

JN
A

(a) O.API optimization

C
ry

pt
oM

in
iS

at

N
F

LS
AT

S
AT

4J

3000

3500

4000

4500

5000

tim
e

(s
ec

on
ds

)

(b) Other solvers

FIGURE 4: Solvers

6.1.3. Speci�cation Form Options
CNF Conversion We want to assess the in�uence of
the transformations to CNF (O.CNF). We test two
CNF transformations, one that preserves equivalence
and the Tseitin transformation [31]. As solvers, we
consider those accepting only the CNF format (MiniSat,
PicoSat and SAT4J). The experiment con�rms that
the Tseitin algorithm is more e�cient also for test
generation, even if it increases the number of literals
(and therefore increases the model size). As shown in
Table 3, using the Tseitin algorithm speeds up the test
generation time, on average, of 69.7%.

General form We now evaluate whether the optimiza-
tion O.GF is e�ective. We take all the solvers accepting
formulae in general form (NFLSAT, Yices and Z3) and
we compare the use of test predicates in general form
and that in CNF. As shown in Table 3, using the for-
mulae in general form speeds up, on average, the test
generation process of 16.3%.

Remark. In the experiments that follow, all the
options proved to be e�ective are applied, unless stated
otherwise.

6.2. Solver comparison

We here compare all the solvers and Fig. 4 shows
their test generation times. SAT4J is the best solver,
however, it does not support optimizations O.C_I and
O.C_IB. Yices is the second best and supports all the

collection optimizations. For this reason, we choose
Yices to perform the remaining experiments in which
we compare more deeply the optimizations regarding
the collecting algorithm.

6.3. Collecting Optimizations Evaluation

We run the test generation algorithm over the 119
speci�cations for 50 runs, applying the optimizations
regarding collecting without limits, namely the use of
witnesses in three variants (not used, O.C_W, and
O.C_WM of Sect. 5.1), and incremental collecting in
three variants (not applied, single incremental collecting
with backtracking O.C_IB, and double incremental
collecting O.C_DI, as explained in Sect. 5.2). We
do not experiment O.C_I since it is superseded by
O.C_IB and because it has proved to be ine�ective in
experiments not reported here.
Totally, there are 9 possible combinations of

optimizations, but only 7 are feasible when generating
tests for fault-based criteria: optimization O.C_WM
cannot be applied with incremental collecting (both
single and double) because a test predicate must be
added in any case to the logical context in order
to allow incremental construction. When generating
tests for the MCDC criterion with the CACC method
(the method we have chosen in the experiment in
Sect. 6.1.1), only 5 combination of optimizations,
among those used for fault-based criteria, are feasible:
indeed double incremental collecting (O.C_DI) cannot
be applied to test predicates generated with CACC,

The Computer Journal, Vol. ??, No. ??, ????

14 P. Arcaini, A. Gargantini, E. Riccobene

since they do not contain the xor operator.
The optimization O.X is applied except when it is not

possible: it cannot be applied together with the double
collecting O.C_DI because double collecting requires
the test predicates in the xor form.
First, we analyze the data in order to assess the

e�ect of every single optimization. Table 4 reports
the observed improvements due to optimization O.i. It
compares the time (as average and deviation) required
to complete the test generation for all the speci�cations
when O.i is not applied (column without) with the time
when O.i is applied (column with), considering all the
combinations of the other optimizations where O.i is
applicable. We can draw the following conclusions.
The only ine�ective optimization is O.C_W : it seems

that an extra call of the SMT solver after the collecting
phase does not impact over the �nal time. The time
spent by an extra call to the solver to compute the �nal
collection model is comparable with the time necessary
to read the model every time after a test predicate is
added to the collection.
The other options are e�ective. Checking if the

witness of the collection is also a valid model for the
test predicate being added to the collection (O.C_WM)
is rather e�ective. The incremental collecting (O.C_IB
and O.C_DI) boosts the performances by signi�cantly
reducing the time. Double incremental collecting is
slightly more e�cient than single incremental collecting.
This con�rms the importance of providing incremental
solving interfaces also for test generation.
Second, we analyze the data in order to compare

the combinations of optimizations and to �nd the best
ones. Fig. 5 reports the time required to complete
the test generation for all the considered speci�cations
depending on the optimizations used. It is apparent
that the incremental collecting (both single and double)
signi�cantly improves the performances. The best
combination for fault-based is O.C_DI, and for MCDC
is O.C_IB with O.X. Table 5 reports the generation
time of these two combinations. However, double
collecting cannot be used for the MCDC test predicates
and, therefore, single incremental collecting with the
xor simpli�cation (O.C_IB and O.X) is the best
optimization over both the criteria. Such setting
requires only 105.79 secs for the whole generation, with
an average of 1.03 secs for speci�cation. This proves
that a well engineered and optimized SMT-based test
generation process can be used in practice for Boolean
speci�cations instead of the classical algorithms, which
are fast as well but produce much larger test suites [9].

6.4. Limiting Collecting Evaluation

In this experiment, we test how all the limiting policies
introduced in Sect. 5.3 may a�ect the test generation
process (used together with incremental collecting with
backtracking O.C_IB). We run the test generation
for all the selected speci�cations for 50 runs with

N

0 20 40 60 80 100 120

1634

2091

2548

3005

3462

3920

22

38

53

69

84

99

size
time

si
ze

tim
e

(s
ec

on
ds

)

FIGURE 6: Quit collecting after N (O.C_QN)

N

0 20 40 60 80 100 120

1614

1624

1634

1644

1654

1664

 86

179

271

363

456

548
size
time

si
ze

tim
e

(s
ec

on
ds

)

FIGURE 7: Checking uniqueness after N (O.C_UAN)

O.C_QN, O.C_UU, and O.C_UAN; for O.C_QN and
O.C_UAN we experimented N from 1 to 120. Table 6
reports the test suite size and the time (average and
deviation). These policies are compared (column ± wrt
§) with the best result obtained by single incremental
collecting (reported again in the �rst row § in the table).
Fig. 6 depicts the e�ect of quitting the collecting

after N iterations (O.C_QN). As the �gure shows and
as expected, the size of the test suite decreases with
increasing N , but the time required increases as well.
For small N the size rapidly decreases, but after a
threshold (around 15) the test suite size is reduced only
marginally. This option gives the user more control over
the collecting process: a suitable value of N can be
chosen to balance between test suite compactness and
test generation time. Note that the test suite becomes
of comparable size w.r.t. the case without limiting (§)
when N approaches 30, but the generation time still
remains smaller (see Table 6).
Collecting until the uniqueness of the model is

reached (O.C_UU) can �nd a test suite as small as the
best combination §, but the time required is quintupled.
Fig. 7 depicts the e�ects of starting checking the

uniqueness after N (O.C_UAN), which is capable of
�nding test suites as small as the best combination
§; for values of N lower than around 50, the time is
greater, while, for values of N greater than 50, the time
is lower. We can argue that the collections contain, on

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions15

Optimization Faults MCDC Overall

Avg. time (sec) Improvement Avg. time (sec) Improvement Improvement

without with avg. dev. without with avg. dev. avg. dev.

O.C_W 8023.6 8032.02 -0.11% 1.09% 30.02 29.84 0.53% 4.14% -0.11% 1.08%
O.C_WM 7696.47 6482 15.78% 0.79% 21.63 20.19 6.58% 4.03% 15.75% 0.79%
O.C_IB 3849.35 115.54 97% 0.02% 10.89 4.07 62.6% 1.49% 96.9% 0.02%
O.C_DI 4396.5 98.04 97.77% 0.03% N/A N/A N/A N/A 97.77% 0.03%

TABLE 4: Optimization improvements

X
_N

I_
W

X
_N

I_
N

W

X
_N

I_
W

M

2800

2900

3000

3100

3200

3300

3400

tim
e

(s
ec

on
ds

)

(a) Fault-based � No incremental

X
_I

B
_W

X
_I

B
_N

W

D
I_

W

D
I_

N
W

95

100

105

110

tim
e

(s
ec

on
ds

)

(b) Fault-based � Single and double incremental

X
_N

I_
N

W

X
_N

I_
W

X
_N

I_
W

M

9.5

10.0

10.5

11.0

11.5

tim
e

(s
ec

on
ds

)

(c) MCDC � No incremental

X
_I

B
_W

X
_I

B
_N

W

3.6

3.8

4.0

4.2

4.4

4.6

tim
e

(s
ec

on
ds

)

(d) MCDC � Single and double incremental

FIGURE 5: Optimization evaluation with Yices � X: xor simpli�cation (O.X), NI: no incremental collecting, IB: single

incremental collecting with backtracking (O.C_IB), DI: double incremental collecting (O.C_DI), W: collection with witness (O.C_W),

WM: checking if the witness is a model (O.C_WM)

average, about 50 test predicates. Indeed, for values of
N lower than 50, the times for O.C_UAN are greater
than the time of the best combination §: this means
that, most of the times, the uniqueness check fails (the
model is not unique) and the time taken by the check
is wasted. For values of N greater than 50, instead,

the times for O.C_UAN are lower than the time of the
best combination §: this means that, most of the times,
the uniqueness check succeeds (the model is unique)
and the collecting can be interrupted, while in the best
combination § the collecting must be executed on all
the test predicates.

The Computer Journal, Vol. ??, No. ??, ????

16 P. Arcaini, A. Gargantini, E. Riccobene

Faults MCDC Overall

Optimizations Time (secs) Time (secs) Time (secs)

Collecting others avg. min dev. avg. min dev. avg. min dev.

Single (O.C_IB) O.X 101.92 99.5 ± 1.54 3.87 3.6 ± 0.34 105.79 103.88 ± 1.55
Double (O.C_DI) 96.61 92.41 ± 1.85 N/A N/A N/A 96.61 92.41 ± 1.85

TABLE 5: Time for the best optimizations

Policy Test suite Size Time (secs)

average dev. ± wrt § average dev. ± wrt §

§ no limits (O.C_IB) 1638.6 5.12 105.79 1.55

Fixed N (O.C_QN)
1 3919.6 13.97 139.2% 22.48 2.33 -78.75%
10 1671.3 5.76 2% 38.94 3.02 -63.19%
15 1652.6 5.04 0.85% 45.39 1.81 -57.09%
20 1643 4.78 0.27% 51.9 1.8 -50.94%
30 1637.4 5.62 -0.07% 62.76 1.86 -40.67%
40 1639.4 6.26 0.05% 70.27 1.37 -33.58%
60 1639.2 6.41 0.04% 83.17 1.56 -21.38%
80 1638.3 4.5 -0.02% 89.96 2.25 -14.96%
100 1640.5 9.25 0.12% 95.8 1.92 -9.44%
120 1641.9 5.02 0.2% 98.74 1.77 -6.67%

Until unique (O.C_UU) 1641 5.16 0.15% 548.2 28.83 351.1%

Mixed (O.C_UAN)
1 1634.5 6.31 -0.25% 547.94 55.4 417.96%
10 1639.9 6.06 0.08% 427.79 31.63 304.39%
20 1638 5.16 -0.04% 286.63 18.55 170.95%
30 1637.6 5.95 -0.06% 175.76 17.29 66.14%
40 1639.4 7.21 0.05% 131.64 16.01 24.44%
45 1641.2 4.34 0.16% 109.54 8.88 3.55%
50 1639.2 5.53 0.04% 99.68 8.46 -5.78%
60 1638.3 5.46 -0.02% 93.71 5.51 -11.41%
80 1637.8 6.48 -0.05% 91.26 8.19 -13.74%
100 1643.3 8.22 0.29% 93.5 1.77 -11.62%
120 1642.1 5.61 0.21% 96.37 1.6 -8.9%

TABLE 6: Comparison of limiting policies

Overall, we can state that limiting the collecting is
e�ective in reducing the time for test generation with
possible no negative e�ects over the test suite size.

6.5. Optimality of the Collecting Process

As mentioned in Sect. 3.1, the optimal partition of the
test predicate set would guarantee the minimal number
of partitions and this would ensure the minimality of the
�nal test suite. However, the proposed greedy collecting
process depends on the order in which test predicates
are considered and it may not �nd the optimal partition
of the test predicates. We are interested in measuring
how much the solutions computed by such greedy
algorithm di�er from the optimal one.
With this goal, we run the test generation process

2000 times for all the speci�cations. For each

speci�cation we identify, among the 2000 runs, the
smallest value for the test suite size which is likely very
close or equal to the minimal optimal value. Then we
check how much, in all the runs, the values obtained are
bigger than the minimum. Fig. 8 shows the cumulative
distribution of the di�erence of the test suite size
for every run and for every speci�cation w.r.t. its
minimum. As shown by Fig. 8, for around 70% of the
cases we obtain the minimum, for almost 95% of the
cases the size of the test suite is maximum 10% bigger
than the (optimal) smallest test suite. The di�erence is
never greater than 30%. However, in particular cases,
it may be necessary to use some heuristics in the test
predicate ordering to guarantee the best results.

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions17

0 5 10 15 20 25 30

70
75

80
85

90
95

10
0

distance from minimum (perc)

cu
m

ul
at

iv
e

pe
rc

 o
f t

es
t s

ui
te

s

FIGURE 8: Optimality of the Collecting Process

7. THREATS TO VALIDITY

This section discusses the possible threats to validity
of the empirical evaluation and explains how the
evaluation addressed each threat.

Benchmarks completeness The benchmark set has
been obtained by analyzing a large number of case
studies, ranging from software to hardware, from
commercial software to safety critical systems. The
experiments were conducted on a large number of
Boolean expressions representing the 99% of the
occurrences of the gathered Boolean expressions,
while Boolean expressions that rarely occur were
ignored. We do not consider expressions that may
be not representative of the application domain of
our technique, for instance those coming from SAT
and SMT competitions. Although di�erent results
for a particular expression cannot be excluded, the
improvements brought by some techniques are so strong
that a small variation cannot change the conclusions.

SAT and SMT solvers There may exist a SAT or
SMT solver which performs even better than those
experimented. However, the set of several SAT
and SMT solvers has been built with particular
regard to tools that have performed well in o�cial
competitions but also that have particular features
helping the test generation (xor native support of
CryptoMiniSat, general form inputs for NFLSAT, Java
native implementation of SAT4J, and backtracking for
SMT solvers). We have carefully reviewed the existing
literature and tried to cover all the suitable tools.

Option Interaction In the evaluation of the options,
we have evaluated each option singularly, without
considering all the possible combinations. Therefore,
there could be a combination (not considered in our
experiments) that gives better results. However, the
improvements are strong enough and the options are
independent enough that a possible meaningful further
improvement due to the unforeseen interaction of
options seems unlikely.

Internal validity The use of a large source for Boolean
expressions and a numerous set of solvers reduces the
threats to internal validity, i.e., the fact that the �nal
results may strongly depend on the choices done at the
input level.

External validity A major external threat to validity
is that the obtained results may not be easily extended
to other types of testing. The assumption that complex
expressions are abstracted in order to obtain Boolean
expressions requires that the tests are eventually
concretized to real values, and this may threat the
actual application of our technique when testing
non-Boolean expressions. Especially, when Boolean
expressions are embedded in code (for programs) or
in guards of events (for models), the concretization
process may require to solve complex (path) constraints
in order to make the concrete test reach the Boolean
expression under test. However, our approach deals
with constraints and tries to produce very compact test
suites, and this facilitates the process of concretization.
Moreover, the proposed use of SMT solvers may make
our technique more (than the use of pure SATs)
suitable to directly test expressions containing integer
arithmetic without the need of any abstraction.

8. RELATED WORK

Regarding test generation for Boolean expressions,
there exist many testing criteria for Boolean expres-
sions. A survey counts at least 12 testing criteria [21],
including (using the nomenclature common in white box
testing literature) decision coverage, condition coverage,
multiple condition coverage, and the MCDC [6]. Sev-
eral syntactic testing criteria have been developed to
directly target common faults in Boolean expressions.
For instance, Weyuker et al. introduced a family of
strategies (MAX-A and MAX-B) for automatically gen-
erating test cases from Boolean expressions [5]. These
criteria were later improved by the MUMCUT criterion
which comes in several versions [7]. The test gener-
ation of these criteria is de�ned by means of suitable
algorithms which consider the internal structure of the
expressions and generate an adequate test suite. With
respect to these algorithms, our SAT/SMT-based tech-
nique is much slower but it o�ers several advantages
in terms of applicability (including dealing with con-
straints) and produces smaller test suites. For instance,
in [9], we were able to generate test suites 58% smaller
and with a fault detection capability 56% greater than
the test suites produced by Minimal-MUMCUT.
Regarding the use of SAT and SMT solvers for test

generation, there are many approaches trying to use
such tools for test generation from code [39]. In several
works, symbolic execution, constraint generation, and
constraint solving are combined with test generation
and SMT solving to satisfy classical code coverage
criteria. For example, solvers are used in concolic

The Computer Journal, Vol. ??, No. ??, ????

18 P. Arcaini, A. Gargantini, E. Riccobene

testing, in which symbolic execution is combined with
concrete execution; Godefroid et al. developed the
DART tool [40], Sen et al. developed the CUTE
tool [41], Cadar et al. developed EXE [42] and then
redesigned it with KLEE tool [43]. The Pex tool
uses dynamic symbolic execution and SMT solving
to determine test inputs for .NET code [13]. A
similar tool is SAGE [12]. We believe that these
tools could reuse some optimizations here proposed,
and some optimizations of theirs could be reused in
our approach as well. For instance, SAGE uses a
simple syntactical checker to simplify the constraints
by eliminating constraints logically implied by other
constraints injected at the same program branch.
We could use a similar check when collecting a test
predicate: if it is implied by the test predicates, then
it can be discarded. Our experiments con�rm that
simple syntactical optimizations like O.X can greatly
improve test generation performances. The EXE tool
could extend its constraint caching optimization, which
caches constraints and satisfability results using hashes,
with our optimization O.C_W which avoids the call of
the solver in more cases than simple syntactical caching.
For model-based testing, such solvers are not so

popular, but they have been recently used in several
works. For instance, a SAT solver has been used
to generate tests from the speci�cation of pre-post
conditions of Java programs [44]. In [45], an SMT
solver has been used for bounded reachability analysis
of model programs. Given a model program in terms
of an abstract state machine, the Z3 SMT solver
is used to �nd paths and verify invariants of the
models. Although the goal is not to generate tests,
the approach is similar to a test generation process
and also the solver is used in an incremental way,
similar to what proposed by optimization O.C_IB.
An approach using SAT solving for test generation is
presented in [46]. In that paper, speci�cations are
given in terms of Timed Moore Automata (TMA),
a temporal extension of �nite state machines. A
comparison between model checking and SAT solving
for test generation is presented. Representing TMAs
as SAT problems requires a complex translation which
may be simpli�ed if an SMT solver is used instead.
In general, the use of SMT solvers may make the

process of abstraction and concretization super�uous,
since SMT solvers can directly deal with non-Boolean
variables. This capability has been exploited in [47, 48].
Abstract interpretation techniques can be combined

with SMT solving in an e�cient way as proposed in [47].
Their approach already exploits incremental calls to the
SMT solver (SONOLAR), which allows them to add
constraints between solver runs and to add constraints
that are only valid for one run (so-called assumptions).
It could be combined with backtracking to further speed
up the test generation process. However, they generate
test sequences and they do not apply any collection
algorithm. A future work is to exploit the collection

algorithm presented here for test sequence generation
in order to reduce the length of test traces.
The general approach presented in Sect. 3 has

been applied to combinatorial test generation in [49],
however, without any optimization here proposed.
Combinatorial testing with the aim of path coverage of
a state machine is studied in [50] which uses the Z3 SMT
solver. The use of the SMT solver allowed the authors to
solve test requirements about parameter combinations
and path conditions together with constraints over the
actions. The incremental construction is applied to the
construction of the exclusion constraints in a similar
way as our O.C_I.
In hardware testing, SAT solving is increasingly used

for test generation, which is classically called automatic
test pattern generation (ATPG). However, hardware
has di�erent fault models (the most common is the
Single Stuck-at Fault - SSF), and tests are generally
a sequence of inputs possibly containing also timing
information. SAT can be e�ciently used to detect
SSF [51]. Moreover, also for other typical hardware
faults, SAT-based ATGP can be used. For instance,
in [52] the authors show how to generate tests that
are able to detect delay faults. Also in hardware
testing, there exist some attempts to apply dynamic
test compaction, which is similar to our collecting
algorithm, combined with the use of SAT solving [53].
The fact that SAT solving is increasingly used in
hardware testing strengthens our thesis that SAT and
SMT solving is a viable technique also for software test
generation.

9. CONCLUSION AND FUTURE WORK

We have presented a set of options and optimizations
to improve a process of automatic test generation
for Boolean expressions by SAT/SMT techniques.
Although we propose and apply the optimizations
only for a selected number of SAT and SMT solvers
and for fault-based and MCDC testing of Boolean
expressions, most techniques are general enough and
can be applied to other approaches as well, to speed up
the test generation even for non-Boolean expressions.
Some optimizations exploit speci�c features of a SAT
or an SMT solver, others require speci�c forms of
the input formulae or are applicable only to fault-
based test predicates. However, most of the proposed
optimizations modify the test generation process and
can be applied regardless the notation and the tool used
for test generation.
Experimenting these optimizations through a set

of benchmark case studies, we make apparent that
a well engineered and optimized SAT/(but better
an)SMT-based test generation process can be used
in practice for Boolean speci�cations instead of the
classical algorithms like MUMCUT, MCDC.
As future work, we plan to study the application of

the proposed optimized test generation method to other

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions19

testing approaches (e.g., constrained combinatorial
interaction testing [49, 54]) and to speci�cations whose
testing may originate more complex forms of test
predicates that SMT solvers can still manage.
Moreover, we plan to extract speci�cations from

evolving systems (e.g., FSMs, timed automata) by
unfolding the behavior of the system in a �at
expression, as it is done in bounded model checking. In
this work, we have only considered Boolean expressions,
obtained through abstraction from general expressions
possibly containing arithmetics, strings, and so on;
tests for Boolean expressions should be transformed
in concrete tests for the original expressions through
concretization. As future work, we want to compare
this abstraction-concretization approach with the direct
generation of tests from general expressions.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their suggestions and comments.

REFERENCES

[1] Batory, D. (2005) Feature models, grammars, and
propositional formulas. In Obbink, H. and Pohl, K.
(eds.), Proceedings of the 9th International Conference
on Software Product Lines, Lecture Notes in Computer
Science, 3714, pp. 7�20. Springer-Verlag, Berlin,
Heidelberg.

[2] Rajan, A., Whalen, M. W., and Heimdahl, M. P. (2008)
The e�ect of program and model structure on MC/DC
test adequacy coverage. Software Engineering, 2008.
ICSE '08. ACM/IEEE 30th International Conference
on, May, pp. 161�170. IEEE Computer Society.

[3] Ball, T., Majumdar, R., Millstein, T., and Rajamani,
S. K. (2001) Automatic predicate abstraction of C
programs. Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and
Implementation, New York, NY, USA, May PLDI '01,
pp. 203�213. ACM.

[4] Kapoor, K. and Bowen, J. P. (2007) Test conditions
for fault classes in Boolean speci�cations. ACM Trans-
actions on Software Engineering and Methodology, 16,
10.

[5] Weyuker, E., Goradia, T., and Singh, A. (1994)
Automatically generating test data from a Boolean
speci�cation. IEEE Transactions on Software
Engineering, 20, 353�363.

[6] Chilenski, J. and Miller, S. (1994) Applicability
of modi�ed condition/decision coverage to software
testing. Software Engineering Journal, 9.

[7] Yu, Y. T., Lau, M. F., and Chen, T. Y. (2006)
Automatic generation of test cases from boolean
speci�cations using the MUMCUT strategy. Journal
of Systems and Software, 79, 820�840.

[8] Fraser, G. and Gargantini, A. (2010) Generating
minimal fault detecting test suites for boolean
expressions. 6th Workshop on Advances in Model Based
Testing A-MOST, April, pp. 37�45. IEEE Computer
Society.

[9] Gargantini, A. and Fraser, G. (2011) Generating
minimal fault detecting test suites for general boolean
speci�cations. Information and Software Technology,
Elsevier, 53, 1263�1273.

[10] Malik, S. and Zhang, L. (2009) Boolean satis�ability
from theoretical hardness to practical success. Com-
munications of the ACM, 52, 76�82.

[11] De Moura, L. and Bjørner, N. (2011) Satis�ability
modulo theories: Introduction and applications.
Commun. ACM, 54, 69�77.

[12] Godefroid, P., Levin, M. Y., and Molnar, D.
(2012) SAGE: Whitebox fuzzing for security testing.
Commun. ACM, 55, 40�44.

[13] Tillmann, N. and De Halleux, J. (2008) Pex: white
box test generation for .net. Proceedings of the 2nd
international conference on Tests and proofs, Berlin,
Heidelberg, April TAP'08, pp. 134�153. Springer-
Verlag.

[14] Peleska, J., Honisch, A., Lapschies, F., Löding, H.,
Schmid, H., Smuda, P., Vorobev, E., and Zahlten,
C. (2011) A real-world benchmark model for testing
concurrent real-time systems in the automotive domain.
In Wol�, B. and Zaïdi, F. (eds.), Testing Software and
Systems, Lecture Notes in Computer Science, 7019, pp.
146�161. Springer Berlin Heidelberg.

[15] Gargantini, A. (2011) Dealing with constraints
in boolean expression testing. CSTVA 2011 -
3rd Workshop on Constraints in Software Testing,
Veri�cation, and Analysis, March, pp. 322�327. IEEE
Computer Society.

[16] Chen, T., Lau, M., Sim, K., and Sun, C. (2009)
On detecting faults for boolean expressions. Software
Quality Journal, 17, 245�261.

[17] Arcaini, P., Gargantini, A., and Riccobene, E. (2011)
Optimizing the automatic test generation by SAT and
SMT solving for boolean expressions. In Alexander, P.,
Pasareanu, C. S., and Hosking, J. G. (eds.), Automated
Software Engineering (ASE), 2011 26th IEEE/ACM
International Conference on, nov., pp. 388 �391. IEEE.

[18] Le Berre, D. and Parrain, A. (2010) The SAT4J
library, release 2.2, system description. Journal
on Satis�ability, Boolean Modeling and Computation
(JSAT), 7, 59�64.

[19] Jain, H. and Clarke, E. M. (2009) E�cient SAT solving
for non-clausal formulas using DPLL, graphs, and
watched cuts. Design Automation Conference, 2009.
DAC '09. 46th ACM/IEEE, July, pp. 563�568. IEEE
Computer Society.

[20] Ammann, P. and O�utt, J. (2008) Introduction to
Software Testing, 1 edition. Cambridge University
Press, New York, NY, USA.

[21] Kaminski, G., Williams, G., and Ammann, P. (2008)
Reconciling perspectives of software logic testing.
Software Testing, Veri�cation and Reliability, 18, 149�
188.

[22] Lau, M. F. and Yu, Y.-T. (2005) An extended
fault class hierarchy for speci�cation-based testing.
ACM Transactions on Software Engineering and
Methodology, 14, 247�276.

[23] Kaminski, G. K. and Ammann, P. (2009) Using
logic criterion feasibility to reduce test set size while
guaranteeing fault detection. Proceedings of the 2009

The Computer Journal, Vol. ??, No. ??, ????

20 P. Arcaini, A. Gargantini, E. Riccobene

Second International Conference on Software Testing,
Veri�cation and Validation, April, pp. 356�365. IEEE
Computer Society.

[24] Chen, Z., Chen, T. Y., and Xu, B. (2011) A revisit of
fault class hierarchies in general boolean speci�cations.
ACM Trans. Softw. Eng. Methodol., 20, 13:1�13:11.

[25] Ammann, P., O�utt, J., and Huang, H. (2003)
Coverage criteria for logical expressions. Proceedings
of the 14th International Symposium on Software
Reliability Engineering, Washington, DC, USA ISSRE
'03, pp. 99�. IEEE Computer Society.

[26] Akers, S. B. (1959) On a theory of boolean functions.
Journal of the Society for Industrial and Applied
Mathematics, 7, 487�498.

[27] O�utt, J., Liu, S., Abdurazik, A., and Ammann,
P. (2003) Generating test data from state-based
speci�cations. Software Testing, Veri�cation, and
Reliability, 13.

[28] Wallis, W. and George, J. (2010) Introduction to
Combinatorics. Chapman and Hall/CRC.

[29] Harrold, M. J., Gupta, R., and So�a, M. L. (1993)
A Methodology for Controlling the Size of a Test
Suite. ACM Transactions on Software Engineering and
Methodology, 2, 270�285.

[30] Chvátal, V. (1979) A greedy heuristic for the
set-covering problem. Mathematics of Operations
Research, 4, 233�235.

[31] Prestwich, S. (2009) Handbook of satis�ability. IOS
Press.

[32] Tseitin, G. (1968) On the complexity of derivation
in propositional calculus. Studies in constructive
mathematics and mathematical logic, 2, 10�13.

[33] Sörensson, N. and Eén, N. (2009) Minisat 2.1 and
minisat++ 1.0-sat race 2008 editions. Proceedings of
SAT 2009, pp. 31�32.

[34] Dutertre, B. and de Moura, L. (2006) The Yices
SMT solver. Technical report. SRI Available at
http://yices.csl.sri.com/tool-paper.pdf.

[35] de Moura, L. and Bjørner, N. (2008) Z3: an e�cient
SMT solver. TACAS, Berlin, Heidelberg, pp. 337�340.
Springer-Verlag.

[36] Hansen, M. C., Yalcin, H., and Hayes, J. P. (1999)
Unveiling the ISCAS-85 benchmarks: a case study in
reverse engineering. Design Test of Computers, IEEE,
16, 72�80.

[37] Soos, M. (2009). Cryptominisat � a
SAT solver for cryptographic problems.
http://www.msoos.org/cryptominisat2/.

[38] Biere, A. (2008) PicoSAT essentials. Journal
on Satis�ability, Boolean Modeling and Computation
(JSAT), 4, 75�97.

[39] Nori, A. V., Rajamani, S. K., Tetali, S., and Thakur,
A. V. (2009) The Yogi project: Software property
checking via static analysis and testing. In Kowalewski,
S. and Philippou, A. (eds.), Tools and Algorithms for
the Construction and Analysis of Systems (TACAS),
Berlin, Heidelberg, Lecture Notes in Computer Science,
5505, pp. 178�181. Springer-Verlag.

[40] Godefroid, P., Klarlund, N., and Sen, K. (2005) DART:
directed automated random testing. In Sarkar, V. and
Hall, M. W. (eds.), Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and

Implementation (PLDI), Chicago, IL, USA, June 12-
15, 2005, pp. 213�223. ACM.

[41] Sen, K., Marinov, D., and Agha, G. (2005)
CUTE: a concolic unit testing engine for C. In
Wermelinger, M. and Gall, H. (eds.), Proceedings of
the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(ESEC/SIGSOFT FSE), 2005, Lisbon, Portugal,
September 5-9, 2005, Sep, pp. 263�272. ACM.

[42] Cadar, C., Ganesh, V., Pawlowski, P. M., Dill,
D. L., and Engler, D. R. (2006) EXE: automatically
generating inputs of death. In Juels, A., Wright,
R. N., and De Capitani di Vimercati, S. (eds.),
Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, Alexandria,
VA, USA, October 30 - November 3, 2006, pp. 322�335.
ACM.

[43] Cadar, C., Dunbar, D., and Engler, D. R. (2008)
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In
Draves, R. and van Renesse, R. (eds.), Proceedings
of the 8th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2008, December 8-
10, 2008, San Diego, California, USA, pp. 209�224.
USENIX Association.

[44] Khurshid, S. and Marinov, D. (2004) TestEra:
Speci�cation-based testing of Java programs using
SAT. Automated Software Engineering, 11, 403�434.

[45] Veanes, M., Bjørner, N., and Raschke, A. (2008) An
SMT approach to bounded reachability analysis of
model programs. Conference on Formal Techniques for
Networked and Distributed Systems, Berlin, Heidelberg
FORTE '08, pp. 53�68. Springer-Verlag.

[46] Löding, H. and Peleska, J. (2010) Timed moore
automata: Test data generation and model checking.
Proceedings of the 2010 Third International Conference
on Software Testing, Veri�cation and Validation,
Washington, DC, USA, April ICST '10, pp. 449�458.
IEEE Computer Society.

[47] Peleska, J., Vorobev, E., and Lapschies, F. (2011)
Automated test case generation with SMT-solving
and abstract interpretation. Proceedings of the Third
international conference on NASA Formal methods,
Berlin, Heidelberg, NFM'11, 6617, pp. 298�312.
Springer-Verlag.

[48] Peleska, J. (2013) Industrial-strength Model-Based
Testing - state of the art and current challenges. In
Petrenko, A. K. and Schlinglo�, H. (eds.), Proceedings
Eighth Workshop on Model-Based Testing, MBT 2013,
Rome, Italy, 17th March 2013, EPTCS, 111, pp. 3�28.

[49] Calvagna, A. and Gargantini, A. (2010) A formal logic
approach to constrained combinatorial testing. Journal
of Automated Reasoning, 45, 331�358.

[50] Grieskamp, W., Qu, X., Wei, X., Kicillof, N., and
Cohen, M. (2009) Interaction coverage meets path
coverage by SMT constraint solving. In Núñez, M.,
Baker, P., and Merayo, M. G. (eds.), Testing of
Software and Communication Systems, Lecture Notes
in Computer Science, 5826, pp. 97�112. Springer Berlin
Heidelberg.

[51] Chen, H. and Marques-Silva, J. (2012) TG-pro: A SAT-
based ATPG system. Journal on Satis�ability, Boolean

The Computer Journal, Vol. ??, No. ??, ????

How to Optimize the Use of SAT and SMT Solvers for Test Generation of Boolean Expressions21

Modeling and Computation (JSAT), 8, 83�88.
[52] Eggersglüÿ, S. and Drechsler, R. (2012) High Quality

Test Pattern Generation and Boolean Satis�ability.
Springer.

[53] Czutro, A., Polian, I., Engelke, P., Reddy, S. M., and
Becker, B. (2009) Dynamic compaction in SAT-based
ATPG. 2009 Asian Test Symposium, pp. 187�190.
IEEE Computer Society.

[54] Cohen, M., Dwyer, M., and Shi, J. (2007) Interaction
testing of highly-con�gurable systems in the presence
of constraints. Proceedings of the 2007 international
symposium on Software testing and analysis, New York,
NY, USA ISSTA '07, pp. 129�139. ACM.

The Computer Journal, Vol. ??, No. ??, ????

