
Experiments on the Test Case Length
in Specification Based Test Case Generation

Gordon Fraser∗

Institute for Software Technology
Graz University of Technology

Inffeldgasse 16b/2
A-8010 Graz, Austria
fraser@ist.tugraz.at

Angelo Gargantini
Dip. di Ing. dell’Informazione e Metodi Mat.

University of Bergamo
Viale Marconi 5

24044 Dalmine, Italia
angelo.gargantini@unibg.it

Abstract

Many different techniques have been proposed to address
the problem of automated test case generation, varying in a
range of properties and resulting in very different test cases.
In this paper we investigate the effects of the test case length
on resulting test suites: Intuitively, longer test cases should
serve to find more difficult faults but will reduce the number
of test cases necessary to achieve the test objectives. On
the other hand longer test cases have disadvantages such
as higher computational costs and they are more difficult to
interpret manually. Consequently, should one aim to gen-
erate many short test cases or fewer but longer test cases?
We present the results of a set of experiments performed in a
scenario of specification based testing for reactive systems.
As expected, a long test case can achieve higher coverage
and fault detecting capability than a short one, while giving
preference to longer test cases in general can help reduce
the size of test suites but can also have the opposite effect,
for example, if minimization is applied.

1. Introduction

Software testing remains the most important technique in
practice to find errors in programs and to gain confidence in
software quality. Automation is desirable because testing is
a very complex and error prone task. Many automated tech-
niques to derive test cases have been presented in the past,
differing on the underlying software artifacts, algorithms,
and actual interpretations of what is a test case. In this pa-

∗The research herein is partially conducted within the competence net-
work Softnet Austria (www.soft-net.at) and funded by the Austrian Fed-
eral Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vienna in
terms of the center for innovation and technology (ZIT).

per we experimentally investigate the effects of the structure
of test suites, and in particular try to determine whether it
is preferable to use many short test cases or fewer long test
cases.

The experiments are performed in a scenario of specifi-
cation based testing for reactive systems. In such a setting,
test cases are sequences of test data, and as test cases can
be derived from a specification or model the expected out-
put is known as well. In order to derive such test cases we
use model checkers, and apply several different well known
coverage criteria, mutation testing, and random testing. Us-
ing these ingredients we generate test suites differing on the
number of test cases and their length, and analyze them with
regard to several important aspects:

• How does the test case length influence the fault de-
tecting capability? This question is addressed by cov-
erage and mutation analysis.

• How does the test case length influence the computa-
tional costs of testing? To answer this question the ef-
fects of the test case length on the test suite size are
investigated as well as the effects on redundant test
cases, test suite minimization, and monitoring of cov-
erage items during test case generation.

Of course, there is no definite preference between short and
long test cases, as the choice will always depend on the re-
quirements of the concrete testing scenario. However, as a
consequence of the experiments we identify important in-
sights that help deciding whether to give preference to short
or long test cases.

This paper is organized as follows: Section 2 gives back-
ground information on the testing scenario we assume for
our experiments and on the testing techniques we apply.
Section 3 describes the experimental setup, i.e., the specifi-
cations, tools, techniques, and the actual experiments. Sec-
tion 4 contains a representative selection of the data gath-



ered by these experiments, Section 5 discusses the results
in detail, and the paper is concluded in Section 6.

2. Preliminaries

In this section we aim to clarify the testing scenario we
assume for our experiments and present the necessary back-
ground information.

2.1. Testing reactive systems

Software testing differs very much depending on the type
of system under test (SUT). In this paper, we assume that
the SUT is a reactive system: A reactive system is a system
that changes its actions and outputs in response to stimuli
from within or outside. Such a system is usually tested by
providing input values (test data) and comparing the result-
ing outputs with expected values (test oracle). Reactive sys-
tems can often be executed in an infinite loop, which means
that we assume a test case can have any length and from any
state there is a path to any other state (i.e., the underlying
automaton is fully connected).

2.2. Testing with model checkers

Model checking [10] describes the process of determin-
ing whether an automaton model satisfies a specification
given as temporal logic properties. In practice, one of the
most useful features of model checkers is their ability to
create counterexamples to illustrate how properties are vi-
olated. Such counterexample sequences can be interpreted
as test cases under certain constraints; e.g., we assume that
the system under test and its specification are deterministic.

To use model checkers for test case generation the test
objective (e.g., satisfaction of a coverage criterion) is usu-
ally encoded as a set of temporal logic properties, such that
for each distinct test requirement (e.g., coverage item) of
the overall objective there is one property (trap property or
test predicate) [16, 21]. Any counterexample to a trap prop-
erty represents a test case that satisfies the test requirement
posed by the property. Other test objectives include, for ex-
ample, mutation testing [2, 15] or combinatorial testing [5].
A noteworthy advantage is that once a framework has been
created it is very easy to apply any of these techniques or
combine several at the same time. For a detailed overview
of testing with model checkers we refer to [13].

Counterexamples are sequences of states; in this paper,
we assume that a test case is also a sequence of states, and
each state represents input and output values serving as test
data and test oracle: For each state, test data is provided as
input to the system under test and the returned outputs are
compared to the expected output values to derive a verdict.
The length of a test case is defined as the number of states

it consists of. A test suite is a set of test cases, its size is the
number of test cases it consists of, and its length is the sum
of the lengths of its test cases.

2.3. Generating test cases of variable length

The traditional approach to test case generation using
model checkers is to call the model checker once for each
trap property. A call on a feasible trap property results in a
counterexample starting in an initial state, while trap prop-
erties for infeasible test requirements simply do not result in
counterexamples. The length of the counterexamples is de-
termined by the underlying model checking technique. For
example, explicit state model checking with breadth first
search or bounded model checking will result in short test
cases, while explicit state model checking with depth first
search will result in longer test cases.

For the purposes of our experiments we need a way to
influence the length of the test cases generated. Therefore,
we use an approach similar to that proposed in [17]: Af-
ter creating a test case for a trap property the final state of
the test case serves as initial state for the next counterex-
ample. That way, the next test case can be interpreted as
an extension of the previous test case. Technically, this can
be achieved by explicitly setting the model’s initial state af-
ter each test case, or by rewriting the trap properties to an
implication on the desired initial state. It is not possible to
derive test cases of a precise length with this method, but to
choose after each trap property whether to continue extend-
ing the current test case or to start a new test case.

3. Experimental Setup

While intuitively longer test cases are expected to have
higher fault detecting capability and to be computationally
more expensive, it is necessary to take into account that for
a given test objective using long test cases will usually re-
duce the number of test cases in a test suite, as each individ-
ual test case is likely to cover more test requirements; under
that light it so obvious what to prefer. Consequently, the ex-
periments aim to answer the following research questions:

Research Question 1: Is it preferable with regard to fault
detecting capability to have few test cases, each very
long and covering many test requirements, or to have
many short test cases, each covering fewer test require-
ments?

Research Question 2: Is it computationally more expen-
sive to have few test cases, each very long and cover-
ing many test requirements, than to have many short
test cases, each covering fewer test requirements?



Specifications

The experiments performed in this evaluation create large
numbers of different test suites. In this paper, we present
the results of experiments on two different specifications
known in the testing literature: The Safety Injection System
(SIS) specification models the control of coolant injection
in a nuclear power plant. It was introduced in [4] and has
since been used frequently for studying automated test case
generation. The Cruise Control (Cruise) specification mod-
els a simple automotive cruise control. It is based on [19],
and has also been used several times for automated test case
generation, e.g., [2].

Testing techniques

There is a large number of different testing techniques to
choose from, even when only considering those techniques
suitable for test case generation with model checkers. The
evaluation presented in this paper uses techniques where
each test requirement (coverage item for coverage criteria
or mutant in the case of mutation analysis) is encoded in
temporal logic, such that a counterexample derived for the
property is a test case for the underlying test requirement.
To keep the number of results to a tractable number we have
selected a representative subset of independent techniques,
motivated by an evaluation [1] of specification based cover-
age criteria:

Mutation testing (e.g., [2, 15]) encodes small changes in
the specification as trap properties, and resulting test cases
can distinguish between original and mutant specification.
Transition pair [1] coverage requires that all possible pairs
of transitions of the formal specification are executed. Mod-
ified Condition Decision Coverage (MCDC) requires for
each literal (condition) to be shown to independently affect
the value of the expression (decision) it is part of. We use
masking MCDC [6], and apply it to all expressions in the
specifications. Pairwise testing [5] requires that all possible
pairs of values for monitored variables are covered. Finally,
random testing just uses random test cases generated with
predefined length.

Tools

We use version 2.4.3 of the freely available model checker
NuSMV [8], which supports symbolic and bounded model
checking; for our experiments we used the symbolic model
checker. NuSMV implements an algorithm for counterex-
ample generation [9] which does not guarantee the shortest
possible counterexamples, but still creates very short ones.
In order to generate random test cases we use the interac-
tive command line interface provided by NuSMV: At each
state NuSMV picks one of the possible successor states with
equal probability.

3.1. Experiments

The experiments that were performed for this evaluation
are described below. Because the order in which trap prop-
erties are considered during test case generation can have
an impact on the results [12], each of the experiments was
repeated 10 times with different random ordering of the trap
properties, and the results were averaged.

Experiment 1: For each of the specifications and test
techniques test suites are generated according to the follow-
ing procedure: For the first test suite a distinct test case
is generated for each trap property. Then, for the second
test suite one test case is generated for two trap properties,
where the second trap property is used to extend the test
case generated for the first trap property. Then this is done
for every three trap properties, and so on, until at the very
end of the spectrum a test suite consisting of only a single
test case covers all trap properties. To reduce the number of
test suites a little bit we only consider test suites that differ
in the number of test cases, without any loss of generality.
For each of the test suites the coverage and mutation score
are measured.

Experiment 2: The second experiment uses the test
suites generated in the first experiment, removes duplicate
or subsumed test cases such that only unique test cases re-
main, and then minimizes the remaining test suite using a
greedy minimization algorithm. A test case t is a duplicate,
if there exists another test case t′ consisting of exactly the
same state sequence. A test case t is subsumed by another
test case t′, if t is a prefix of t′.

The aim of test suite minimization is to find a subset of
the test cases that still fulfills the test objective. The motiva-
tion for minimization is that the costs of running a complete
test suite against the software repeatedly can be quite high,
but in general not all test cases of a test suite are necessary
to fulfill some given test objective. A test suite is mini-
mal [18] with regard to some objective if removing any test
case from the test suite will lead to the objective no longer
being satisfied. The problem of finding the optimal (mini-
mal) subset is NP-hard, which can be shown by a reduction
to the minimum set covering problem [14].

In this experiment, we use a simple greedy heuristic [7]
to the minimum set covering problem for test suite mini-
mization: The heuristic selects the test case that satisfies
the most test requirements and remove all test requirements
satisfied by that test case. This is repeated until all test re-
quirements are satisfied.

Experiment 3: A single test case will usually cover more
than one test requirement, and so it is not strictly necessary



Table 1. Numbers of trap properties.
Criterion Cruise SIS

Total Feasible Total Feasible
Mutation 476 351 295 184
MCDC 88 75 60 54
Transition Pair 132 34 156 102
Pairwise 654 576 140 138

to generate test cases for all trap properties. If test case gen-
eration is computationally expensive it will be necessary to
generate test cases only for those trap properties that are
not already covered by other test cases; we say that the trap
properties are monitored during test case generation (e.g.,
[11]). In many other settings this is also beneficial as it
can greatly reduce the test suite size. As longer test cases
are intuitively expected to satisfy more test requirements the
question is what effects the test case length will have when
monitoring is used. Note that monitoring and minimization
can behave very differently: Minimization requires exist-
ing, full test suites while monitoring checks trap properties
on the fly during test case generation. On the other hand,
monitoring does not guarantee minimal test suites.

Similar to experiment 1, in this experiment we first cre-
ate test suites where each test case is generated for one trap
property; in contrast to experiment 1 only trap properties
that are not already covered by a previous test case are con-
sidered. Then we create test suites where each test case is
extended once, then twice, and so on until a single test case
covers all trap properties.

Experiment 4: This experiment investigates how the
fault detecting capability of individual test cases relates to
their length. To do so the average mutation score per test
case for the test suites created in experiment 1 is deter-
mined. In addition, we use randomly generated test cases of
different length and measure their mutation score as well.

4. Results

Because we generated thousands of different test suites
in the course of our experiments we can only present se-
lected results that are useful for the discussion here.

Table 1 lists some statistics about the specifications and
test objectives used for the experiments. The trap proper-
ties were generated automatically from the NuSMV speci-
fication. Test requirements can be infeasible, which in the
case of testing with model checkers simply results in a trap
property being satisfied by the model. This means that the
infeasible trap properties contribute to the costs of the test
case generation, but not to the resulting test suites.

Figure 1 illustrates how the average test case length re-
lates to the number of test cases in a test suite. ‘Total’ de-
scribes the total number of test cases generated (experiment
1), ‘Unique’ represents the number of unique test cases, i.e.,
the test cases that remain after removing duplicate and sub-
sumed test cases (experiment 2). ‘Minimized’ represents
the number of test cases after the greedy minimization al-
gorithm is applied with regard to the coverage criterion that
was used to generate the test cases (experiment 2). ‘Mon-
itored’ represents the number of test cases using monitor-
ing during test case generation (experiment 3). Figure 1
shows the results for mutation adequate test case generation
in greater detail; the results with regard to all other criteria
are similar and therefore not shown here.

Note that our test case generation method does not re-
sult in test suites with test cases of equal length. There is
a relatively high standard deviation of the test case length
for low numbers of trap properties per test case (not shown
in the figures to avoid data overlapping; it is often greater
than 10% for less than 3 trap properties per test case) but
quickly decreases with increasing numbers of trap proper-
ties per test case. While the standard deviation is constant
for the case of one trap property per test case (without mon-
itoring) it can vary when using more trap properties per test
case, therefore the results shown are averaged over 10 runs
with different random orders of the trap properties.

Duplicate and subsumed test cases are common for short
lengths, but starting at a certain length there are hardly re-
dundant test cases, and the curves for ‘Total’ and ‘Unique’
collapse. At a much greater length there is also a point
where the test suites generated are minimal, which means
that no more test cases can be removed, and the curves for
‘Total’ and ‘Minimized’ collapse. This is typically the case
when there are only in the order of three test cases in a test
suite. While monitoring does create more test cases ini-
tially, the number of test cases is smaller than when using
minimization for longer test cases.

Figure 2 shows how the average test case length is related
to the total length of a test suite, which is calculated as the
sum of the lengths of all test cases. The figure shows mu-
tation adequate test case generation in greater detail, while
the other criteria are omitted for space reasons again but
are similar in nature. Considering test suites of unique test
cases there is a noticeably increase in the total test suite
length with increasing test case length initially, but once the
number of unique test cases and total number of test cases
coincide this increase is reversed and the total length contin-
ues to decrease. A test suite consisting of only a single very
long test case is usually similar in length to a test suite con-
sisting of as many as possible short test cases. With regard
to the minimized test suites Figure 2 reveals that the total
length increases with the average test case length, while for
monitoring the total length decreases; for longer test cases,



1

10

100

1000

1 10 100 1000 10000

N
um

be
r

of
te

st
ca

se
s

(l
og

)

Average test case length (log)

Total
Unique

Minimized
Monitored

(a) Cruise

1

10

100

1000

10 100 1000

N
um

be
r

of
te

st
ca

se
s

(l
og

)

Average test case length (log)

Total
Unique

Minimized
Monitored

(b) SIS

Figure 1. Mutation test suites, average length vs. number of test cases.

100

1000

10000

1 10 100 1000 10000

T
ot

al
te

st
su

it
e

le
ng

th
(l

og
)

Average test case length (log)

Total
Unique

Minimized
Monitored

(a) Cruise

10

100

1000

10000

10 100 1000

T
ot

al
te

st
su

it
e

le
ng

th
(l

og
)

Average test case length (log)

Total
Unique

Minimized
Monitored

(b) SIS

Figure 2. Mutation test suites, average length vs. total length.

monitoring results in the smallest test suites with regard to
the total length.

Figure 3 relates transition pair coverage and average test
case length for the Cruise example, and pairwise coverage
for the SIS example. Once more, the other criteria are omit-
ted for space reasons but are similar in nature. If the cov-
erage is low for the short test cases then in all experiments
longer test cases increase the values. However, in many of
our experiments the coverage level was already relatively
high and the increase was only minor. Note that we only
consider unique test cases here because duplicate and sub-
sumed test cases do not add to coverage values or mutation
scores in our setting.

Figure 4 gives an example of the effects of the average
test case length on the time necessary to create test suites. In
all experiments, there was no significant change in the time
necessary to generate a full test suite; the post-processing
steps of removing redundant test cases and minimization

are not considered here. In contrast, the time necessary to
generate a test suite with monitoring is significantly lower
for longer test cases.

While the previous figures considered the effects of the
average test case length in a test suite, Figure 5 shows how
for individual test cases the length relates to their mutation
scores (experiment 4). This serves to demonstrate the basic
assumption that longer test cases are likely to cover more
faults. While the criteria we considered all achieved very
high mutation scores, random test cases performed compar-
atively bad.

5. Discussion

5.1. Fault detecting capability

When considering the fault detecting capability of a sin-
gle test case then as expected mutation score (Figure 5) and



0.8

0.85

0.9

0.95

1

1 10 100 1000

C
ov

er
ag

e

Average test case length (log)

Mutation Score (Unique)
Mutation Score (Minimized)
Mutation Score (Monitored)

MCDC (Unique)
MCDC (Minimized)

MCDC (Monitored)
Pairwise (Unique)

Pairwise (Minimized)
Pairwise (Monitored)

(a) Cruise, Transition Pair

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

C
ov

er
ag

e

Average test case length (log)

Transition Pair (Unique)
Trans. Pair (Minimized)
Trans. Pair (Monitored)

MCDC (Unique)
MCDC (Minimized)

MCDC (Monitored)
Mutation Score(Unique)

Mutation Score (Minimized)
Mutation Score (Monitored)

(b) SIS, Pairwise

Figure 3. Average length vs. coverage.

0

5

10

15

20

25

10 100 1000

T
im

e
to

ge
ne

ra
te

te
st

su
it

e
(s

)

Average test case length (log)

Monitored
Total

Figure 4. Time to generate test suites vs. av-
erage test case length, SIS example, transi-
tion pair coverage.

coverage increase with the test case length. However, the
fault detecting capability cannot simply be seen as a func-
tion of the test case length: Extending the length of random
test cases does in general increase the coverage and muta-
tion score, but at a much slower rate than when using dif-
ferent coverage criteria to extend test cases (Figure 5). An
obvious explanation for this is that random testing tends to
repeatedly explore already visited parts of the state space
while using coverage criteria will guarantee that every ex-
tension of a test case reaches some previously uncovered
part of the state space. Because random testing is so cheap
it is feasible to generate much longer test cases than consid-

ered in these experiments, which is likely to lead to higher
fault detecting capability.

If we consider the corresponding test suites then the ef-
fect of the average test case length is not so predictable – af-
ter all, the longer the test cases the less test cases are needed
for a full test suite (see Figure 1). As illustrated in Fig-
ure 3 the coverage usually increases together with the aver-
age test case length, even though the number of test cases
is reduced. This was observed for the majority of coverage
criteria, but there are exceptions (e.g., see pairwise cover-
age for the Cruise specification in Figure 3). It can also be
observed that while the shortest test cases have the smallest
coverage and an increase of length improves the coverage
initially, there is less additional improvement when further
increasing the length very much.

Consequently, in order to answer research question 1 we
assume that in order to increase the fault detecting capabil-
ity it seems feasible to increase the test case length and not
use the shortest possible test cases. As to how long exactly
the test cases should be for maximal fault detecting capabil-
ity there are two possible suggestions: One is to create test
cases that cover as many test requirements as possible, pos-
sibly even only a single test case covering all test require-
ments: Our experiments show that this gives good values
for coverage and mutation score. The alternative sugges-
tion is to test as much as possible in terms of the test suite
length. As our experiments show this is usually achieved
with test case lengths closer to the short end of the scale,
where the total test suite length is maximized (around the
point where total and unique number of test cases collapse,
see Figure 2). This point also coincides with the point where



0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

M
ut

at
io

n
Sc

or
e

Average test case length

Mutation
Transition Pair

MCDC
Pairwise
Random

(a) Cruise

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

M
ut

at
io

n
Sc

or
e

Average test case length

Mutation
Transition Pair

MCDC
Pairwise
Random

(b) SIS

Figure 5. Mutation score of individual test cases.

the coverage with increasing test case length stops increas-
ing significantly (see Figure 3).

5.2. Costs

It is difficult to draw generic conclusions regarding the
influence of the test case length on the testing costs. The ex-
ecution costs depend on several factors: Depending on the
system under test the setup and pull-down costs of a single
test case might be very high; in such a case it is advanta-
geous to minimize the number of test cases. If setup and
pull-down costs are negligible, then it will be advantageous
to minimize the total length of a test suite. In addition, there
might be other factors such as whether test cases have to be
understandable for test engineers, in which case they might,
for example, have to be as short as possible. Consequently,
we distinguish three different aspects to minimize the costs:
The size, the total length, and the test case generation costs.

The trivial answer to minimize the number of test cases
is to simply generate a single very long test case that satis-
fies all test requirements. However, as can be seen in Fig-
ure 2 this long test case is in most cases longer than the total
length of test suites with shorter test cases.

For test suites without any optimization (‘Total’ in the
graphs) there is a steady decrease of the total length with
increasing average test case length, therefore the minimal
test suite length in this case is achieved with maximal test
case length (see Figure 2) . Consequently, the longer the test
cases the smaller the test suite length, and the answer to re-
search question 2 in such a scenario is no in general. When
removing duplicate and subsumed test cases (‘Unique’) the
minimal length is achieved for shorter test cases, as the
number of test cases that can be dropped reduces with in-
creasing test case length, up to a point where there are no
more redundant test cases (see Figure 1). Consequently, the

40

60

80

100

120

140

160

180

200

220

240

0 50 100 150 200 250

T
ot

al
te

st
su

it
e

le
ng

th

Average test case length

Mutation
Transition Pair

MCDC
Pairwise

Figure 6. One run of experiment 3 (monitor-
ing) on the Cruise example; total test suite
length vs. average test case length.

answer to research question 2 in such a scenario is yes.
Interestingly, when applying minimization an increase in

test case length actually leads to a greater total test suite
length (Figure 2). In such a scenario the answer to re-
search question 2 is yes. This is because with increasing test
case length less test cases can be dropped from a test suite
with regard to achieving coverage. Consequently, when
using minimization the smallest possible test suite will be
achieved by using short test cases.

When using monitoring during test case generation the
total test suite length also generally decreases with increas-
ing test case length. However, we observed that the order
in which trap properties are selected can sometimes have an
effect on this: Figure 6 shows one particular run of exper-
iment 3 on the Cruise specification for transition pair cov-
erage where the test suite length initially decreases but then



starts increasing again at a certain average test case length
(around 38 states). A closer look reveals that the number of
test cases stays almost constant in the time where the total
length increases again. However, the average case shown in
Figure 2 shows that the number of test cases decreases with
increasing test case length. Consequently, we conclude that
in a scenario where monitoring is applied the shortest possi-
ble test suite can be created by using as long as possible test
cases, as long as the increase in length leads to a reduction
of the number of test cases. In such a scenario the answer
to research question 2 is no.

The computational costs of the actual test case genera-
tion are also minimized by using monitoring and long test
cases (see Figure 4). Although experiments showed no ef-
fect on the test case generation time when not using mon-
itoring, it is still advisable to increase the test case length
such that duplicate test cases are avoided, as this reduces
the post-processing effort. There might also be other factors
dependent on the underlying test case generation technique.

5.3. Threats to validity

There are several threats to the validity of our results:
First of all, the question is how far the results in our test-
ing scenario can be generalized to other testing scenarios.
For example, it might not always be possible to execute test
cases of deliberate length. Even though in such a case long
test cases can be simulated with a dedicated reset transition
further experiments in this direction are necessary. Further-
more, the influence of the test case generation technique
was not analyzed in this paper: For example, a depth first
search resulting in very long test cases might change some
of the findings.

Our experiments only considered deterministic systems;
for non-deterministic systems test cases are not necessarily
linear sequences possibly leading to different conclusions.
We did not discuss the costs of test objective decomposi-
tion, test case generation and assembling in detail in this
paper: The test objective decomposition in our scenario is
independent of how test suites are generated, and the costs
of test case generation with our method basically correlate
with the test suite length except when applying monitoring
(e.g., see Figure 4).

In our experiments we chose trap properties in random
order. Each experiment was repeated 10 times with dif-
ferent random orders and the values were averaged. It is
conceivable that the order in which trap properties are se-
lected can have an influence on the results; for example, the
length of a test case might vary according to the order of
trap properties, and consequently the size of a test suite can
vary also. However, experiments with regard to trap prop-
erty order [12] lead us to the assumption that repeating the
experiments 10 times should be sufficient to remedy effects

of the order.
Some kinds of faults, not considered in this paper, may

provide an additional motive for preferring either long or
short test cases. For instance, discovering a fault in an im-
plementation that adds new extra states requires very long
input sequences, also called combination locks. This fact
has been proved for finite state machines [20], where the
minimum length of tests capable of discovering k extra
states increases exponentially with k.

5.4. Related work

Andrews et al. [3] investigated the question whether to
execute a small number of long test cases or a large number
of short test cases in the context of random testing. We only
considered random testing in a limited scope (e.g., only sim-
ilar test case lengths as for the other techniques), therefore
this work can be seen as complementary to ours. Similarly
to our findings, their results show that the length has a ma-
jor influence on the effectiveness of random testing, but the
optimal length with regard to quality and costs varies.

Rothermel et al [22] performed experiments on the test
suite granularity – which essentially is similar to the num-
ber of test cases and their length – in the context of regres-
sion testing, which was not part of our investigations; they
arrived at similar conclusions as this paper regarding the ef-
fects on test suite reduction and fault finding effectiveness.
In contrast, Xie and Memon [23] showed that in a GUI test-
ing context it is favorable to initially generate many short
test cases to cover ‘shallow’ bugs, and then turn to longer
test cases for ‘deep’ bugs.

6. Conclusions

In this paper we have reported on investigations regard-
ing the structure of test suites. In particular it is of interest
how the length of individual test cases influences the char-
acteristics of a test suite. To analyze this we have performed
a set of experiments, where the average length of test cases
is continually increased and the effects on test suite size,
length, coverage, redundancy, minimization, and monitor-
ing were observed.

When deciding whether to prefer long or short test cases
there are many different special cases depending on the test-
ing environment that need to be considered. For example,
longer test cases are counterproductive if minimization is
applied as a post-processing step. However, in most scenar-
ios it seems feasible to give preference to fewer longer test
cases instead of many short test cases: In fact an increase
in test case length can reduce the overall size and length of
the resulting test suites while actually increasing the fault
detecting capability at the same time.



References

[1] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt. Evalua-
tion of Three Specification-Based Coverage Testing Criteria.
In Proceedings of the 6th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2000),
pages 179–187, Tokyo, Japan, September 2000. IEEE Com-
puter Society.

[2] P. E. Ammann, P. E. Black, and W. Majurski. Using Model
Checking to Generate Tests from Specifications. In Pro-
ceedings of the Second IEEE International Conference on
Formal Engineering Methods (ICFEM’98), pages 46–54.
IEEE Computer Society, 1998.

[3] J. Andrews, A. Groce, M. Weston, and R.-G. Xu. Ran-
dom Test Run Length and Effectiveness. In Proceedings of
the 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), pages 19–28, Sept. 2008.

[4] R. Bharadwaj and C. L. Heitmeyer. Model Checking Com-
plete Requirements Specifications Using Abstraction. Auto-
mated Software Engineering, 6(1):37–68, 1999.

[5] A. Calvagna and A. Gargantini. A Logic-Based Approach to
Combinatorial Testing with Constraints. In Tests and Proofs,
volume 4966 of Lecture Notes in Computer Science, pages
66–83. Springer-Verlag, 2008.

[6] J. Chilenski and L. A. Richey. Definition for a masking form
of modified condition decision coverage (MCDC). Techni-
cal report, Boeing, 1997.

[7] V. Chvatal. A Greedy Heuristic for the Set-Covering Prob-
lem. Mathematics of Operations Research, 4(3), 1979.

[8] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
NUSMV: A New Symbolic Model Verifier. In CAV ’99:
Proceedings of the 11th International Conference on Com-
puter Aided Verification, pages 495–499, London, UK,
1999. Springer-Verlag.

[9] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao.
Efficient Generation of Counterexamples and Witnesses in
Symbolic Model Checking. In Proceedings of the 32st Con-
ference on Design Automation (DAC), pages 427–432. ACM
Press, 1995.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, Cambridge, MA., 1 edition, 2001. 3rd print-
ing.

[11] G. Fraser and F. Wotawa. Using LTL Rewriting to Improve
the Performance of Model-Checker Based Test-Case Gener-
ation. In A-MOST ’07: Proceedings of the 3rd International
Workshop on Advances in Model-based Testing, pages 64–
74, New York, NY, USA, 2007. ACM Press.

[12] G. Fraser and F. Wotawa. Ordering Coverage Goals in
Model Checker Based Testing. In A-MOST’08: Proceedings
of the 4th International Workshop on Advances in Model-
based Testing, pages 31–40, April 2008.

[13] G. Fraser, F. Wotawa, and P. E. Ammann. Testing with
model checkers: a survey. Software Testing, Verification and
Reliability, 2009. To appear.

[14] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man & Co., New York, NY, USA, 1979.

[15] A. Gargantini. Using Model Checking to Generate Fault
Detecting Tests. In Proceedings of the International Con-
ference on Tests And Proofs (TAP), volume 4454 of Lec-
ture Notes in Computer Science, pages 189–206, Zurich,
Switzerland, 2007.

[16] A. Gargantini and C. Heitmeyer. Using Model Checking
to Generate Tests From Requirements Specifications. In
ESEC/FSE’99: 7th European Software Engineering Confer-
ence, Held Jointly with the 7th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, volume 1687,
pages 146–162. Springer, 1999.

[17] G. Hamon, L. de Moura, and J. Rushby. Generating Effi-
cient Test Sets with a Model Checker. In Proceedings of the
Second International Conference on Software Engineering
and Formal Methods (SEFM’04), pages 261–270, 2004.

[18] M. J. Harrold, R. Gupta, and M. L. Soffa. A Methodology
for Controlling the Size of a Test Suite. ACM Trans. Softw.
Eng. Methodol., 2(3):270–285, 1993.

[19] J. Kirby. Example NRL/SCR Software Requirements for an
Automobile Cruise Control and Monitoring System. Tech-
nical Report TR-87-07, Wang Institute of Graduate Studies,
1987.

[20] D. Lee and M. Yannakakis. Principles and methods of test-
ing finite state machines - A survey. In Proceedings of the
IEEE, volume 84, pages 1090–1126, 1996.

[21] S. Rayadurgam and M. P. E. Heimdahl. Coverage Based
Test-Case Generation Using Model Checkers. In Proceed-
ings of the 8th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems
(ECBS 2001), pages 83–91, Washington, DC, April 2001.
IEEE Computer Society.

[22] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and
B. Davia. The impact of test suite granularity on the cost-
effectiveness of regression testing. In ICSE ’02: Proceed-
ings of the 24th International Conference on Software Engi-
neering, pages 130–140, New York, NY, USA, 2002. ACM.

[23] Q. Xie and A. M. Memon. Studying the Characteristics of
a ”Good” GUI Test Suite. In ISSRE ’06: Proceedings of
the 17th International Symposium on Software Reliability
Engineering, pages 159–168, Washington, DC, USA, 2006.
IEEE Computer Society.


