
Asm2C++: A Tool for Code Generation
from Abstract State Machines to Arduino

Silvia Bonfanti1,2(B), Marco Carissoni1, Angelo Gargantini1,
and Atif Mashkoor2

1 Università degli Studi di Bergamo, Bergamo, Italy
{silvia.bonfanti,angelo.gargantini}@unibg.it,

m.carissoni1@studenti.unibg.it
2 Software Competence Center Hagenberg GmbH,

Hagenberg im Mühlkreis, Austria
atif.mashkoor@scch.at

Abstract. This paper presents Asm2C++, a tool that automatically
generates executable C++ code for Arduino from a formal specifica-
tion given as Abstract State Machines (ASMs). The code generation
process follows the model-driven engineering approach, where the code
is obtained from a formal abstract model by applying certain transforma-
tion rules. The translation process is highly configurable in order to cor-
rectly integrate the underlying hardware. The advantage of the Asm2C++

tool is that it is part of the Asmeta framework that allows to analyze,
verify, and validate the correctness of a formal model.

1 Introduction

The Abstract State Machines (ASM) method [4] is a formal method that is used
to guide the rigorous development of software and embedded systems seamlessly
from their informal requirements. The ASM method follows a design process
based on the refinement principle that allows to capture all details of the system
design by a sequence of refined models till the desired level of detail. It combines
validation (by simulation and testing) and verification methods at any desired
level of detail. The final step of this refinement process consists in realizing the
implementation, generally code that is compiled and deployed on the real system.
Performing this last step manually increases costs, limits the reuse of a formal
specification, is error prone as some faults can be introduced in the code writing
process, and can be a barrier for a wider adoption of ASMs. For these reasons,
we have devised a methodology supported by the Asm2C++ tool that is able to
generate the desired source code from ASMs. In this paper, we target Arduino1

that is a widespread platform for rapid prototyping of embedded systems and

This work is partially supported by the Austrian Ministry for Transport, Innovation
and Technology, the Federal Ministry of Science, Research and Economy, and the
Province of Upper Austria in the frame of the COMET center SCCH.

1 https://www.arduino.cc/.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 295–301, 2017.
DOI: 10.1007/978-3-319-57288-8 21

https://www.arduino.cc/


296 S. Bonfanti et al.

supports C++. It is also suitable for learning the design of embedded systems
due to its low cost.

The ultimate aim of the paper is to show the implementation of the model-
driven engineering (MDE) paradigm through ASMs: requirements models are
platform independent, there is a clear distinction between platform-specific
details and original user and system requirements, the code generation process is
seamless and automatic, and last but not least, the rigorous quality and correct-
ness assurance is embedded in the development process. As an additional goal,
we aim at producing a code which is readable such that the code instructions can
be easily traced back to the specification concepts and constructs. Although this
may decrease the code efficiency, we believe that it increases the maintainability
and the usability of the Asm2C++ tool.

The paper is organized as follows: In Sect. 2, we present the ASM method-
ology. The process of code generation is presented in Sect. 3 and by means of a
simple example, we illustrate some basic concepts of the proposed translation
in Sect. 4. Section 5 presents some related work and Sect. 6 concludes the paper
with some future work.

2 Abstract State Machine Methodology

The ASM method guides the development of software from requirements cap-
ture to code generation through several steps. Figure 1 shows the process of
the ASM-based development. This method is supported by the Asmeta (ASM
mETAmodeling) framework2 [3] which provides a set of tools to help a developer
in various development activities. The modelling process is based on refinement,
i.e., it starts from an abstract model and adds further details to capture the
complete system behaviour described in the requirements document. The correct
refinement between two models is automatically proved using the ASMRefProver
tool. If a model becomes complex, it is difficult to understand the behaviour only
by the textual specification. For this reason, the visualizer AsmetaVis provides
a visual notation that helps in the navigation of the model.

Modelling
Editor AsmetaL - AsmEE

Visualizer AsmetaVis

Refinement prover 
AsmRefProver

ASM 0 ASM 1 ASM 
final

Validation and verification At
 a

ny
 

le
ve

l

Code Generator

Asm2C++ Arduino Code

Conformance Checking
Model-Based Testing 

ATGT
Runtime Verification 

CoMA

Validation Property Verification
Model Checking 
AsmetaSMV

Model Review
AsmetaMA

Interactive Simulation 
AsmetaS

Scenarios 
AsmetaV

Fig. 1. ASM process: from requirements to code

2 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/


Asm2C++: A Tool for Code Generation 297

The validation and verification (V&V) activities are well-integrated in the
process, as shown in Fig. 1, and can be applied to any refined machine. The val-
idation of a model can be achieved in multiple ways: either through the model
simulator AsmetaS, through the model validator AsmetaV or through the model
reviewer AsmetaMA. The simulator AsmetaS allows to perform two type of simula-
tions: interactive simulation (the user inserts the values of parameters by choice)
and random simulation (the tool randomly chooses the values that depends on
the environment). The model validator AsmetaV takes scenarios as input files
that contain the expected system behaviours. The scenarios are executed to check
whether the machine runs correctly. The model reviewer AsmetaMA performs sta-
tic analysis, it determines whether a model has sufficient quality attributes (e.g.,
minimality, completeness, consistency). The verification tool AsmetaSMV verifies
whether the properties, derived from the requirements document, comply with
the behaviour of the model. When the final model is available, the Arduino
code is automatically generated using the Asm2C++ tool (see Sect. 3). When an
actual code of the system implementation is available, conformance checking is
possible. It is divided in model-based testing (to check the conformance offline)
and runtime verification (to check the conformance online). The former uses the
ATGT tool that automatically generates from ASM models tests cases which can
be used to test any programming language. The latter, using the CoMA tool, can
be used to perform runtime verification: the machine code is checked during the
execution.

The language used by Asm2C++ is UASM (Unified Syntax for Abstract State
Machine) [2], the new ASM syntax developed by the ASM community to unify
various ASMs dialects.

3 Code Generation Process

The translation process shown in Fig. 2 generates the runnable C++ code for
Arduino starting from a UASM specification that we assume verified and vali-
dated. The first step of the transformation process consists in parsing the textual

Parse
Generate 

ASM Runner
Code

Generate 
C++ Code

HW 
Integration 
Code .cpp

ASM Runner 
Code .ino

C++ Code
.cpp & .h

UASM 
model

JavaObjects

UASM 
specification

.uasm
Merge Arduino 

Project

Code Generator

Generate 
Template 

Template 
Configuration 

.u2c
User Change

Complete 
Configuration

.u2c

Generate HW 
Code

Integrate 
Hardware

Fig. 2. Transformation process: from specification to code



298 S. Bonfanti et al.

specification and producing the UASM model, which is given to the code gener-
ator. The code generator performs three activities: (1) Generate C++ Code (2)
Generate ASM Runner Code (3) Integrate Hardware. The result is merged as
an Arduino project.

The first activity translates the ASM model into C++ code. The code is
composed of a header (.h) that contains the translation of the ASM signature
and a source (.cpp) file that defines how the ASM evolves by translating each
ASM rule to a C++ method.

The second activity generates the Arduino code that defines the running
policy according to the ASM execution divided in four iterative steps: acquire
inputs, perform the main rule, update state, and release outputs. The output,
the ASM Runner, is an .ino file that is the default extension for the Arduino
C++ code.

The third activity integrates all HW-related aspects into the project: Arduino
board version, I/O devices connections, Arduino-specific libraries that must be
included, and any other HW-dependent information. The tool automatically
generates a template configuration file (with .u2c extension). According to the
HW configuration, the user edits this file which is used to generate the HW
integration file. This is a C++ source file that works as an adapter between the
generated code and the hardware. The output files are finally merged together
to compose the Arduino project.

Asm2C++ is built on top of Xtext [6], a framework for the development of
domain-specific languages, which provides facilities for parsing and code gener-
ation and is fully compatible with the Eclipse Modeling Framework. The code
generator has been developed as a model-to-text (M2T) transformation. The
transformation was realized by means of Xtend, a Java dialect provided by the
Xtext framework with features for code generation. The listing below shows the
translation scheme for the SeqBlock rule of the ASM method. A SeqBlock is a
list of rules which are executed sequentially and is translated as a list of C++
instructions enclosed by curly brackets. In Xtend syntax, the content within ''' '''
symbols is a template string, while the code inside � � brackets is a variable
part of the template expression that will be translated according to the rules
parameter.

override String caseSeqBlock(SeqBlock rules) {

return ''' { �translateRules(rules.getRules())� } '''
}

The detailed information about the Asm2C++ tool can be found at http://
asmeta.sourceforge.net/download/asm2c++.html.

4 Illustrative Example

Asm2C++ has been used to implement a small case study. The system is a control
panel to be placed on the car dashboard that enables the driver to interact with

http://asmeta.sourceforge.net/download/asm2c++.html
http://asmeta.sourceforge.net/download/asm2c++.html


Asm2C++: A Tool for Code Generation 299

various car functionalities. The panel is responsible for controlling the follow-
ing functionalities: 1. Switching on/off the system 2. Climate control 3. Smart
headlights activation 4. Radio system. Code examples 1 to 4 in Fig. 4 focus on
functionality 1 to show some translation rules. The ASM is translated in the
CarPanel class, where domains, functions and rules become respectively data
types, properties and methods. As shown in Code 3, the runner cyclically calls
four CarPanel methods: 1. Acquire inputs from sensors (getInputs) 2. Perform
the main rule (r Main) 3. Update the ASM state (updateState) 4. Set outputs
to actuators (setOutputs). Parallel execution is translated as described in [7],
where controlled functions are duplicated and the state is updated only after
the main rule.

Fig. 3. CarPanel

The implementation process followed the methodology
described in Sect. 2. We first defined a ground model that was
progressively refined. When the model reached the last refine-
ment step, we generated the runnable Arduino code. Along this
process, we proved liveness properties with the model checker
and executed some scenarios with the AsmetaV tool. In order to
check the compliance between the specification and the code,
we ran the same scenarios on the Arduino code, obtaining the
same behavior as for the ASM simulation. The real system is
shown in Fig. 3.

asm CarPanelFinal
enum Switch = {OFF, ON}
controlled carState −> Switch
initially OFF
monitored carButton −> Switch
...
rule r Main =
if carState = OFF then
r SwitchOnCar

else if carButton = ON then
carState := OFF

else
par
r Menu
r Headlights
r SetTemperature
...
endpar

endif
endif
...

Code (1) UASM

Code (2) CarPanel.h

class CarPanel{
enum Switch {OFF, ON};
Switch carState[2],carButton;
public:
void getInputs();
void r Main();
void updateState();
void setOutputs();
...

};
#include ”CarPanel.h”
CarPanel carPanel;
...
void loop(){
carPanel.getInputs();
carPanel.r Main();
carPanel.updateState();
carPanel.setOutputs();

}

Code (3) ASM runner

#include ”CarPanel.h”

// main rule
void CarPanel::r Main(){
if (carState[0] == OFF)
r SwitchOnCar();

else if (carButton == ON)
carState[1] = OFF;

else{
r Menu();
r Headlights();
r SetTemperature();
...

}
}
// apply the update set
// to the current state
void CarPanel::updateState(){
carState[0]=carState[1];

}
...

Code (4) CarPanel.cpp

Fig. 4. Snippets from model and code



300 S. Bonfanti et al.

5 Related Work

Automatic code generation from formal specifications is available as a part of
tool support for several formal methods. SCADE3 and MATLAB/Simulink4 pro-
vide this feature as a commercial off-the-shelf solution. The formal method B [1],
on the other hand, provides this facility in the form of the Atelier B platform5,
that comes with code generators for different target languages, including C,
C++, Java, and Ada, and its Community Edition is freely available without any
restriction. EventB2Java is another tool that generates executable code imple-
mented as a plug-in of the Rodin platform [5].

As best of our knowledge, there is no state of the art, reusable and publicly
available tool for the ASM method that is capable of automatically generat-
ing programming language code from formal specifications written in the ASM
method. In the past, [7] introduced a compilation scheme to transform an ASM
specification (written in ASM-SL) into C++ code, but this work was done within
a company setting. Although some of the key results of the proposed compilation
scheme were useful for our work as mentioned in Sect. 4.

6 Conclusions and Future Work

We have presented Asm2C++, a tool that is able to generate C++ from formal
specifications written as ASMs. This work follows the MDE paradigm: source
code is obtained from requirements models by applying a set of M2T transfor-
mations. We have already successfully tried the tool with students of advanced
programming courses to teach them rapid prototyping and designing of embed-
ded devices.

In the future, we plan to extend the tool with an automatic test cases gener-
ator. From the ASM specification, a series of tests could be automatically gener-
ated which would be executed on the Arduino board. This would test both the
system and the translation from the specification to the code. As, currently, the
conformance relation between the specification and the code is coarsely defined,
we also intend to formally specify and prove the correctness of the code trans-
formation process.

References

1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Arcaini, P., Bonfanti, S., Dausend, M., Gargantini, A., Mashkoor, A., Raschke, A.,
Riccobene, E., Scandurra, P., Stegmaier, M.: Unified syntax for abstract state
machines. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 231–236. Springer, Cham (2016). doi:10.1007/
978-3-319-33600-8 14

3 http://www.esterel-technologies.com/products/scade-suite/.
4 https://www.mathworks.com/products/simulink/.
5 http://www.atelierb.eu/en/.

http://dx.doi.org/10.1007/978-3-319-33600-8_14
http://dx.doi.org/10.1007/978-3-319-33600-8_14
http://www.esterel-technologies.com/products/scade-suite/
https://www.mathworks.com/products/simulink/
http://www.atelierb.eu/en/


Asm2C++: A Tool for Code Generation 301

3. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process for
engineering a toolset for a formal method. Softw.: Pract. Exp. 41, 155–166 (2011)

4. Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, New York (2003)

5. Cataño, N., Rivera, V.: EventB2Java: a code generator for event-B. In: Rayadurgam,
S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 166–171. Springer, Cham
(2016). doi:10.1007/978-3-319-40648-0 13

6. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM International Conference Companion on
OOPSLA, pp. 307–309. ACM (2010)

7. Schmid, J.: Compiling abstract state machines to C++. JUCS 7(11), 1068–1087
(2001)

http://dx.doi.org/10.1007/978-3-319-40648-0_13

	Asm2C++: A Tool for Code Generation from Abstract State Machines to Arduino
	1 Introduction
	2 Abstract State Machine Methodology
	3 Code Generation Process
	4 Illustrative Example
	5 Related Work
	6 Conclusions and Future Work
	References


