
Validation of transformation from
Abstract State Machine models to C++ code?

Silvia Bonfanti1, Angelo Gargantini1, and Atif Mashkoor2,3

1 Università degli Studi di Bergamo, Italy
{silvia.bonfanti,angelo.gargantini}@unibg.it

2 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
atif.mashkoor@scch.at

3 Johannes Kepler University, Linz, Austria
atif.mashkoor@jku.at

Abstract. The automatic transformation of models to code is one of the
most important cornerstones in the model-driven engineering paradigm.
Starting from system models, users are able to automatically generate
machine code in a seamless manner with an assurance of potential bug
freeness of the generated code. Asm2C++ [4] is the tool that transforms
Abstract State Machine models to C++ code. However, no validation
activities have been performed in the past to guarantee the correctness of
the transformation process. In this paper, we define a mechanism to test
the correctness of the model-to-code transformation with respect to two
main criteria: syntactical correctness and semantic correctness, which is
based on the definition of conformance between the specification and the
code. Using this approach, we have devised a process able to test the
generated code by reusing unit tests. Coverage measures give a user the
confidence that the generated code has the same behavior as specified
by the ASM model.

1 Introduction

The Abstract State Machines (ASM) method [6] is a formalism that is used
to guide the rigorous development of software and systems. The ASM-inspired
development starts with an abstract specification of a system and then contin-
ues until all details of the system have been captured through a sequence of
refinements. During this process, the specifier can apply classical validation and
verification (V&V) techniques like simulation, scenarios validation, and model
checking. The last step of the development process is the transformation of mod-
els into code. If not performed carefully, this step can be critical and error-prone.

The automatic transformation of models into code is an important corner-
stone of model-driven engineering [12]. This is also a common practice in indus-
try. For example, Airbus uses automatic code synthesis from SCADE models

? The writing of this article is supported by the Austrian Ministry for Transport,
Innovation and Technology, the Federal Ministry of Science, Research and Economy,
and the Province of Upper Austria in the frame of the COMET center SCCH.

to generate the code for embedded controllers in the Airbus A380 [3]. Following
this paradigm, we have built the tool Asm2C++ [4], which is able to generate C++
code from formal specifications given in terms of ASMs. Furthermore, it is able
to produce unit test cases [5], which can be used, for example, for regression
testing.

The code generation activity, however, may introduce new issues in the devel-
opment process, e.g., an error in model transformation may introduce faults in
the code that jeopardize all the V&V activities performed during the modeling
phase. Therefore, it is very critical that the generated code is syntactically well
formed and, mostly, it faithfully transforms the specification into code. This also
means that the code transformation process must also be analyzed, validated,
and verified, which at times can become a difficult task [3].

There exist several techniques for the validation of a transformation, includ-
ing the use of theorem proving or model checking [1]. In this paper, we propose an
approach based on testing. In principle, testing a generated code could be a use-
less activity if the transformation could be formally proven correct. In practice,
however, specifiers want to test code transformations in order to gain confidence
that errors are not inadvertently introduced at any step (including code compil-
ing, for example)4. In order to address such issues, in this paper, we tackle the
problem of validation of model-to-code transformation τ by contributing in the
following directions:

1. we formally define when the generated code is correct both syntactically and
semantically w.r.t. the original specification,

2. we show that generated tests can detect possible errors in τ and help the
designer to fix them in the implementation of τ,

3. we setup a methodology that uses a combination of code compiling and
execution in order to validate τ, and

4. we provide a user with a measure (coverage) that helps in building the con-
fidence that τ is correct.

The rest of the paper is organized as follows. We present ASMs in Sect. 2.
In Sect. 3, we present the process applied to transform ASMs into C++ code.
The validation of the transformation is presented in Sect. 4 and corresponding
results are presented in Sect. 5. The related work is presented in Sect. 6. The
paper is concluded in Sect. 7.

2 Abstract State Machines and Asmeta framework

Abstract State Machines (ASMs) [6] are an extension of Finite State Machines
(FSMs), where unstructured control states are replaced by states with arbitrarily
complex data. ASM states are mathematical structures, i.e., domains of objects

4 Rephrasing what Ed Brinksma said in his 2009 keynote at the Testcom/FATES
conference: ”Who would want to fly in an airplane with software automatically
generated with a code generator that has never been tested?”

2

State0 State1 StatenTransition1 Transition2 Transitionn

Fig. 1. An ASM run with a sequences of states and state-transitions (steps)

with functions and predicates defined on them. An ASM location - defined as
the pair (function-name, list-of-parameter-values) - represents the abstract ASM
concept of basic object containers. The ordered pair (location, value) represents
a machine memory unit.

Location values are changed by firing transition rules. They express the mod-
ification of functions interpretation from one state to the next one. Note that the
algebra signature is fixed and that functions are total (by interpreting undefined
locations f(x) with value undef). Location updates are given as assignments of
the form loc := v, where loc is a location and v is its new value. They are the
basic units of rule construction. There is a limited but powerful set of rule con-
structors to express: guarded actions, simultaneous parallel actions, sequential
actions, nondeterminism, and unrestricted synchronous parallelism.

An ASM computation or run is, therefore, defined as a finite or infinite se-
quence of states s1, s2, . . . , sn, . . . of the machine. s1 is an initial state and each
si+1 is obtained from si by firing the unique main rule, which could fire other
transitions rules (see Fig. 1).

During a machine computation, not all the locations can be updated. Func-
tions are classified as static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment) and controlled (read in the current state and up-
dated by the machine in the next state). A further classification is between basic
and derived functions, i.e., those coming with a specification or computation
mechanism given in terms of other functions.

An ASM can be nondeterministic due to the presence of monitored func-
tions (external nondeterminism) and of choose rules (internal nondeterminism).
Our code translation supports both types of nondeterminism, however, testing
the generated code in the presence of internal nondeterminism is challenging as
explained in Sect. 4.4.

Asmeta framework. The ASM method can facilitate the entire life cycle of
software development, i.e., from modeling to code generation. Fig. 2 shows the
development process based on ASMs. The process is supported by the Asmeta

(ASM mETAmodeling) framework5 [2] which provides a set of tools to help the
developer in various activities:

– modeling: the system is modeled using the language AsmetaL. The user is
supported by the editor AsmEE and by AsmetaVis, the ASMs visualizer which

5 http://asmeta.sourceforge.net/

3

http://asmeta.sourceforge.net/

Modelling

Editor AsmetaL - AsmEE

Visualizer AsmetaVis

Refinement prover
AsmRefProver

ASM 0 ASM 1
ASM
final

Validation and verification A
t

a
n

y
le

ve
l

Code Generator

Asm2C++ C++ Code

Abstract unit tests generator

Model-Based Testing
ATGT

Validation Property Verification

Model Checking
AsmetaSMV

Model Review
AsmetaMA

Simulation
AsmetaS

Scenarios
AsmetaV

C++ Unit test

Animator
AsmetaA

Fig. 2. The ASM development process powered by the Asmeta framework

transforms the textual model into a graphical representation. The user can
directly define the last ASM model or s/he can reach it through refinement.
The refinement process is adopted in case the model is complex. In this case,
the designer can start from the first model (also called the ground model) and
can refine it through the refinement steps by adding details to the behavior of
the ASM. The AsmRefProver tool ensures whether the current ASM model
is a correct refinement of the previous ASM model.

– validation: the process is supported by the model simulator AsmetaS, the
scenarios AsmetaV, and the model reviewer AsmetaMA. The simulator AsmetaS
allows to perform two types of simulation: interactive simulation and random
simulation. The difference between the two types of simulation is the way
in which the monitored functions are chosen. During interactive simulation
the user inserts the value of functions, while in random simulation the tool
randomly chooses the value of functions among those available. AsmetaS ex-
ecutes scenarios written using the Avalla language. Each scenario contains
the expected system behavior and the tool checks whether the machine runs
correctly. The model reviewer AsmetaMA performs static analysis. It deter-
mines whether a model has sufficient quality attributes (e.g., minimality -
the specification does not contain elements defined or declared in the model
but never used, completeness - requires that every behavior of the system
is explicitly modeled, and consistency - guarantees that locations are never
simultaneously updated to different values).

– verification: the properties derived from the requirements document are
verified to check whether the behavior of the model complies with the in-
tended behavior. The AsmetaSMV tool supports this process.

– testing: the tool ATGT generates abstract unit tests starting from the ASM
specification by exploiting the counter example generation of a model checker.

– code generation: given the final ASM specification, the Asm2C++ automat-
ically translates it into C++ code. Moreover, the abstract tests, generated
by the ATGT tool, are translated to C++ unit tests.

4

C++ code
.h .cpp

Test case
generator

Abstract test
cases

C++ unit tests
builder

C++ unit test
cases

ASM model

ASM to C++
trasformation

Fig. 3. Asm2C++ tool

3 Code generation

The Asm2C++ tool implements the model-to-code transformation. The tool is
divided into two activities: transformation of the ASMs specifications into C++

code and generation of C++ unit tests starting from the ASMs specifications (see
Fig. 3). Asm2C++ is based on Xtext6, a framework for the development of domain-
specific languages, which provides facilities for parsing and code generation and is
fully compatible with the Eclipse Modeling Framework. The code generator has
been developed as a model-to-text (M2T) transformation. The transformation
code is written mainly in Xtend - a Java dialect provided by the Xtext framework
with features for code generation and text transformation.

3.1 C++ code generation

The Asm2C++ tool transforms an ASM to a C++ class [4]. The generated C++

class is split into a header (.h) and a source (.cpp) file. The header file (see
Code 1) contains the translation of the ASM signature: domains declaration,
domains definition, functions declaration and rules declaration. The rules im-
plementation, the functions/domains initialization and the functions definitions
are contained in the source file (see Code 2) . The simulation of an ASM step,
has been implemented using the step() method which calls sequentially the main
method and the fireUpdateSet() method. The main method corresponds to the
translation of the main rule into C++ code, while the fireUpdateSet method
updates the locations to the next state values.

3.2 C++ unit tests generation

The Asm2C++ tool is also able to produce unit tests from ASM specifications [5].
It generates abstract tests starting from the ASM specification and then the
tests are translated into C++ unit tests using the Boost Test C++ library.7

The abstract tests are generated in two different ways. The first is based on
the Asmeta simulator while the second exploits the ATGT tool. Once the unit
tests and the C++ code of the ASM specification are compiled, they are linked
together and the tests are run on the code.

6 https://www.eclipse.org/Xtext/
7 https://www.boost.org/

5

https://www.eclipse.org/Xtext/
https://www.boost.org/

#ifndef asmSpecification H
#define asmSpecification H

#include ... /* include libraries */

/* Domain declaration */
namespace asmSpecificationnamespace{
/* enumerative domain */
enum domainName {value0 , value1 , ...};
/* concrete domain */
typedef domainType domainName;
}
using namespace asmSpecificationnamespace;
class asmSpecification{
/* Domain containers declaration:
concrete domain and enumerative domain */
const std::set<domainName>

domainName elems;
public:
/* Function declaration */
domainName functionName[2];
/* controlled function */
domainName functionName;
/* monitored function */
/* Rule declaration */
void ruleName (parameters);
asmSpecification();
void mainRule();
void fireUpdateSet();
void step();
};

#endif

Code 1. .h code

//asmSpecification.cpp automatically generated
#include ‘‘asmSpecification.h”
using namespace asmSpecificationnamespace;

// Conversion of ASM rules in C++ methods
void asmSpecification::ruleName (parameters){

/* implementation */
}

void asmSpecification::mainRule(){
/* implementation */

}

// Function and domain initialization
asmSpecification::asmSpecification():

// Static domain initialization
domainName elems(value0 ,value1 ,...),
{

//Function initialization
functionName[0] = functionName[1]

= value;
}

// Apply the update set
void asmSpecification::fireUpdateSet(){

functionName[0] = functionName[1];
}

void asmSpecification::step(){
mainRule();
fireUpdateSet();

}

Code 2. .cpp code

The translation from abstract tests to concrete tests is done by following
the rules reported in Tab. 1. A test suite TS is defined by using the macro
BOOST AUTO TEST SUITE(testSuiteName), it automatically registers a test suite
named testSuiteName. A test suite is ended using BOOST AUTO TEST END().
Each test suite can contain one or more test cases. A test case is declared using
the macro BOOST AUTO TEST CASE(testCaseName). The content of a test case
is enclosed by the symbols {} and the name is unique. Each test case contains
an instance sut of the class which the ASM is translated to. Then, for each state
transition in the abstract test, the test performs in order three tasks:

1. It sets the values of monitored functions (using the assignment operator).
2. It checks the value of controlled functions by using the macro BOOST CHECK.
3. It performs an ASM step by calling the step method in the C++ class.

After each step, the monitored locations will be changed and the controlled
location will be checked again, till the end of the abstract test sequence.

3.3 Code generation correctness

First, we want to introduce the notion of conformity of the target C++ code
to the source ASM. Formally, we can define the model-to-code transformation

6

Abstract Test Concrete Test

Test suite TS
BOOST_AUTO_TEST_SUITE(testSuiteName)
translation of each test case in TS
BOOST_AUTO_TEST_SUITE_END()

Test case t: s0, s1 . . . sn

BOOST_AUTO_TEST_CASE(testCaseName) {
SUTClass sut;
translation of each state transition in t
}

ASM step si → si+1

set monitored locations in si
check controlled locations in si
sut.step();

State
Monitored location m = val sut.m = val;
Controlled location c = val BOOST CHECK(sut.c[0] == val);

Table 1. Translation of abstract tests to concrete tests

as a function τ that takes an ASM A and returns a C++ class τ(A) with the
corresponding fields and methods. Each location l of the ASM A is transformed
to a member (field or method) of the class τ(A) (as explained in [4]).

Definition 1 (State conformance). Given an ASM A, we say that the state
of an object O of the class τ(A) conforms to a state s of A if the value of every
location l in s is equal to the value of τ(l) in the target object O.

Informally, to compare ASM states and C++ states we look at the values
of the ASM functions that are translated to C++ members. To compare values,
we use the equality but in the future we may extend the concept of conformity
between locations in order to introduce some tolerance, e.g., by allowing a small
difference between two values. We can refer to controlled conformity, if we restrict
to only controlled locations.

Additionally, we want to introduce the notion of behavioral conformance. In
our approach, we want that the target C++ class C preserves the behavior of the
ASM. Since ASMs are executable, we require that every execution of the class
C has a corresponding behavior in the abstract specification.

Definition 2 (Behavioral conformance). We say that a class C = τ(A)
behaviorally conforms to the ASM A, if starting from any reachable state r of
any object O of C such that r is conforming to the state s of A, by executing
O.step() we obtain a state r′ that is controlled conforming to the next state s′

of A.

Informally, our C++ code behaves like the original ASM, if starting from a
conforming state (with the same monitored and controlled locations) and execut-
ing a step, then the code will arrive to a next state that has the same controlled
locations.

We now introduce the concept of correctness of model-to-code transforma-
tion. We deal with the correctness from two distinct points of view: first syntactic
or type-correctness and second semantic or behavioral conformity.

Definition 3 (Transformation correctness). We say that the transforma-
tion τ(A) is correct if the C++ class is syntactically correct and behaviorally
conforms to A.

7

ASM

C++

Ci Mi

Ci Mi

step

step

Ci+1 Mi+1

Ci+1
set

Mi+1Ci+1

Monitored and
controlled
functions

conform to

Controlled
functions

conform to

Monitored and
controlled
functions

conform to

Si Si+1

ri ri+1 ri+1

Fig. 4. ASM/C++ Conformance

Verifying the correctness of the translation τ would require the use of formal
techniques like model checking or theorem proving. As shown in [1], several at-
tempts already exist in this direction. In our case, this would require, at least,
to formalize the target language C++ and this would be a great overhead. More-
over, proving the correctness of the transformation may still not be enough in
case of critical systems. For such systems, the transformation should also be
tested in any case (recall the statement of Ed Brinksma). As observed in [8], a
translation validation approach, that is based on testing, seems to be a better
solution in an engineering context. Therefore, we have concentrated our efforts
in validating the transformation by testing. This activity exploits the generated
unit tests, as explained in Sect. 3.2, and is based on the following theorem.

Theorem 1 (Correctness by testing). Given a C++ test t obtained by trans-
lating any run s1, . . . , sn of A, if τ(A) is correct, then, when executing t, each
C++ state before the i-th O.step() will conform to si, all controlled locations
will be checked by t, and t will pass with no errors.

Proof. The evolution and the relations between t and the abstract states are
depicted in Fig. 4. If τ is correct, then the C++ code is correct and it can be
executed. Let’s consider the pair of states si and si+1 and assume that ri in
C++ conforms to si in the abstract run both in the controlled part Ci and the
monitored part Mi. The controlled conformity of ri+1 is guaranteed, thanks to
Def. 2, by executing immediately before each state the instruction O.step()

(see Tab. 1). Then, the unit test sets the monitored variables in C++ to the
values in si+1 (see Tab. 1). At the end, the state in C++ immediately before the
(i + 1)-th step conforms again to si+1. The test will check the controlled part,
and due to the assumption that τ is correct, it will find the expected values for
the controlled part. By induction on i, we can prove the theorem. ut

Thanks to Thm. 1, we are sure that every test will check the conformance
of the states in it with the original sequence of the ASM, and that if a test
fails, then there is a fault in the translation. Of course, testing cannot prove the
correctness of the transformation but can help us in gaining confidence in the
translation correctness. In the following section, we explain the process we have
devised to put in practice the proposed methodology.

8

Asmeta
spec

Parser
Asmeta

java objects

ASM2C++
Trasformation

C++ code

C++ unit
test cases

Parser and
EMF coverage

C++ translator
coverage

Test resultCode
Coverage report

ExecutableCompiler
& linker

Executor

C++ code
coverage

Fig. 5. Validation process

4 Validation of the transformation

In this section, we explain how we have devised a process able to validate our
transformation by testing. In principle, to validate the transformation τ, we
would need a set of inputs (a set of ASMs) or a way to generate inputs according
to some criteria and an oracle that tells whether the output of τ (C++ code) is
what is intended (for example, the user could write by hand the expected C++

code for each ASM in the test set). We follow a different path since we use the
unit tests to validate the transformations. In our approach, to check whether
the resulting code is what is intended, we first check the well-formedness of the
code and then we test its behavior in order to check whether it conforms to the
original ASM. This is consistent with our definition of correctness given in Def. 3
and is based on Thm. 1. This is a sort of indirect testing [1], in which we do not
test directly the transformation rules but the results of such transformations. We
exploit the fact that both the ASM and its translation to C++ are executable.

The validation process is depicted in Fig. 5 and is explained as follows. Given
an Asmeta textual specification A, A is parsed by the Asmeta parser that builds
the corresponding Java objects. For the specification A, we apply our Asm2C++

tool that implements the code transformation τ in order to obtain the C++
code. Besides, we apply the test generator component [5] and generate a set of
abstract test cases that can be translated to C++ unit tests. Then, we perform
the following validation activities: testing the transformation correctness and
coverage computation.

4.1 Testing the transformation correctness

Syntactic correctness. Using the C++ compiler, we first check the syntactical
correctness of the generated code. We use the -Wall option and quit the pro-
cess in case of an error. This first phase captures translation faults that produce
invalid source code. Also the tests are compiled in order to obtain the corre-
sponding obj files. The objs for the Asmeta specification and for the tests are
linked together.

Semantic correctness. The obtained executable is executed in order to check
that the behavior as specified by the tests corresponds to the behavior of the

9

generated code. The tests will set the suitable monitored values and check the
conformance of the controlled parts. In this way, we test the semantic correctness
of the code according to Thm. 1. A failing test means that the C++ code does
not conform to its specification and since the code has been obtained by applying
the transformation, a fault in the transformation has been found.

4.2 Coverage computation

Although it suffers from well-known shortcomings, the measure of the coverage
of software artifacts during testing can give a good feedback about the depth of
the testing activity itself. For this reason, we propose to measure the coverage
of the following aspects.

1. First, the coverage of the source language, AsmetaL in our case, gives a good
indication on how many constructs are tackled by the transformation under
test τ. The more constructs τ is able to deal with during testing, the higher
the applicability of τ is. A request of a good level of coverage avoids the
problem of transformations that are well tested but only on a limited set of
source specifications. In our approach, we instrument the Asmeta parser in
order to collect the information during parsing. This represents the coverage
of the inputs of the transformation.

2. Second, the coverage of the transformation code, the Asm2C++ code that im-
plements the transformation written in Xtend and Java in our case, gives a
good indication on how much the transformation code itself is tested. If some
parts of the transformation are never covered, there is the risk that some crit-
ical conditions are actually not tested, or that some code is useless and never
used therefore. This represents the pure coverage of the transformation.

3. Third, the coverage of the produced code, the C++ code including the unit
tests in our case, gives an indication on how much the tests are able to exer-
cise the generated C++ code. Although among the three coverage measures
this is less significant as it depends also on the technique used to generate
the tests, it is important to check whether there are parts of the produced
code that are never covered and this may be a signal that the transformation
produces some meaningless code. This represents the coverage of the outputs
of the transformation.

4.3 Tools used

To support the validation process, we have used several tools. Ant8 is a tool
that supports users while developing software across multiple platforms. The
configuration files are written using XML where each file contains one project
and one or more targets. A target is composed of one or more tasks - pieces of
code that can be executed. Moreover, the configuration file contains properties
to support the user in customizing the build process.

8 https://ant.apache.org/

10

https://ant.apache.org/

To compute the java code coverage we use JaCoCo9, which is a free code
coverage library for Java. JaCoCo requires Ant tasks to compile and run Java
programs and to create the coverage report of the executed code. We have written
a project using Ant to automatically compile and run JUnit tests to test the
Asm2C++ generator. Once the specifications are translated into C++ code, another
task generates C++ unit tests and runs the tests on the generated C++ code.
After C++ unit tests are executed, the Ant file invokes a task to run the JaCoCo

tool, which provides the coverage of the selected code. To compute the coverage
of C++ code, we use gcov that instruments the generated C++ source code and
outputs coverage information when it is executed.

4.4 Dealing with internal nondeterminism

In ASMs, internal nondeterminism is represented by the following choose rule:

choose x in D with P do R

meaning to execute rule R with an arbitrary x chosen in D, which is a domain or
a set of elements, and satisfying the property P. In C++, the choose rule is trans-
lated by randomly searching an element in D satisfying P and then executing the
code obtained by the translation of R. In this way, however, the ASM and the
C++ code may choose different values for x. The test obtained from the abstract
test case may, therefore, fail only because of this reason. To tackle this problem,
we have enabled the test case generator and the C++ translator to enforce a
deterministic behavior that consists in taking the first element of D such that P
is true and use that for the variable x. Substituting a known nondeterministic
behavior with a deterministic alternative is adopted also in [14]. Although this
approach cannot guarantee that the actual nondeterministic translation is cor-
rect, it allows us to test the translation of the choose rule and the specification
containing it.

5 Results

We have taken 44 ASM models taken from the public repository of the Asmeta

framework10 and we apply the validation process to each of them. The validation
activity has allowed us to find and fix several faults and the coverage has given
us a good indication on how to extend and improve the Asm2C++ tool.

5.1 Discovered faults

The validation process has allowed us to find faults in the transformation that
have been classified into four categories:

1. missing translation: the translation of an ASM construct to C++ is missing;

9 http://www.eclemma.org/jacoco/
10 Source code and examples are available at http://asmeta.sourceforge.net/

11

http://www.eclemma.org/jacoco/
http://asmeta.sourceforge.net/

2. syntactically incorrect translation: the translation to C++ is syntactically
incorrect and the compiler finds the error;

3. semantically incorrect translation: the code is compiled by the C++ compiler,
but the test cases fail because the behavior of the code does not conform to
the behavior of the specification; and

4. incorrect test case generation: the generation of test cases is not correct.

The identification between the first two categories of errors is easy because
in the first case the Asm2C++ generator throws an exception and in the second
case the compiler fails to compile the C++ code and prints an error message.
The classification of errors between the third and the fourth category requires a
deep analysis, because in both cases the tests fail when a conformance fault is
found without providing any other information.

Missing translation. These errors are caused probably by forgetfulness or
distraction of the programmer. In our case, for example, the first error reported
by the Asm2C++ tool concerned the translation of natural numbers which was
missing. We have now translated natural numbers as unsigned integers.

Another fault we have discovered is the missing translation of abstract do-
mains. We have now added a translation rule that for each abstract domain A
produces a C++ class CA, while constants in A are translated as objects. A set
that contains all the objects of type CA is also added to CA to keep track of the
static constants of A.

Syntactically incorrect translation. These errors are due to a misunder-
standing of the semantics of the source notation (ASMs) and how it is translated
to the target notation (C++). It can be also caused by an incomplete knowledge
of the target language, C++ in our case. For instance, the compiler has found an
error in the translation of case terms. Each case is translated as nested if-else
and the otherwise clause was translated using the “otherwise” keyword which
does not exist in C++, and that caused an error during compilation. This error
has been resolved by replacing “otherwise” with the “else” keyword.

Semantically incorrect translation. These errors are caused because ASMs
and C++ are executed differently. ASMs runs are sequences of states (rules are
executed and then the functions are updated) while C++ programs execute in-
structions sequentially. For example, we found an error regarding the semantics
of seqRule. In ASM specifications, rules are executed in parallel, but sometimes
it is allowed to model sequential execution by means of seqRule. In case of
a sequential block, the value of controlled functions must be updated immedi-
ately in both current and next states. This behavior had not been taken into
consideration and some test cases failed.

Incorrect test case generation. These errors are caused when the test gen-
eration produces wrong test cases or when the translation from abstract test
cases to concrete tests is incorrect. For example, we found an error that con-
cerns invariants, which are constraints that must be satisfied during the ASMs

12

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

320
330
340
350
360
370
380
390
400
410
420

Number of specifications

N
u
m

b
er

o
f

co
n
st

ru
ct

s

Fig. 6. Coverage of Asmeta parser

execution. Sometimes the expression of an invariant contains monitored func-
tions which are chosen automatically by the test generator in order to build test
cases. Initially, they were chosen randomly, but some test cases failed because
the corresponding invariants could not be satisfied. To overcome this problem,
we have forced the test generator to continue choosing values for monitored
functions until they satisfy the corresponding invariants.

5.2 Coverage

In Sect. 4.2, we have listed the measures of code coverage one should perform
during the testing of the transformation: coverage of the source language, cov-
erage of the transformation code, and coverage of the produced code. In this
section, we present the results obtained for each coverage criteria.

Fig. 6 shows the coverage of source language in terms of number of Asmeta

constructs covered during parsing. The coverage increases with the number of
specifications, until most of the constructs are covered (80% of the total). We
did not cover all of them, because there are some constructs that are not used in
any Asmeta specification in the repository. We initially started to write ad hoc
Asmeta specifications but then we realized that the language contains useless
constructs and such language overspecification should be addressed before in
order to simplify the language.

Coverage of the transformation code is shown in Fig. 7. The result obtained
is satisfactory because most of the code is covered, despite not all the classes are
100% covered. This is because the code contains many redundant checks in case
of critical situations that should never happen.

The third coverage is about the produced code. Initially, the value was low
because the ASM rules were translated in two execution modes: the first was
in the parallel mode (the standard ASM mode), while the second was in the
sequential mode. The sequential mode is used rarely in ASM specifications and
the unused code contributes to decrease the percentage of code coverage (the
highest coverage was ≈70%). For this reason, we have improved the translator

13

Fig. 7. Asm2C++ coverage

by producing the sequential version of rules only if they are actually called by
seqBlock rules. The result of this improvement is a higher percentage of code
coverage and in most cases it reaches 100% of the generated code.

6 Related work

The challenging nature of model transformation creates the need for validation
of this systematic process. This need and the associated challenges have been
documented by several researchers, e.g., [3,9,15]. A comprehensive survey on the
related state of the art can be found in [1] and [7].

Wimmer et al. [16] present a language-agnostic approach for testing model-
to-text and text-to-model transformations. They extend the Object Constraint
Language with additional String operations to specify contracts for practical ex-
amples and to evaluate the correctness of current UML-to-Java code generators
offered by some UML tools. As compared to this work, our input models are ver-
ified and validated by both users and tools, i.e., they are well-formed, implement
the specified requirements, and do not contain unintended behaviors.

Conrad [8] proposes a translation validation workflow for the generated code
in the context of the IEC 61508 standard. The translation validation process is
comprised of (a) numeric equivalence testing between the generated code and
the corresponding model, and (b) additional measures to demonstrate that unin-
tended functionality has not been introduced during the translation process. In
a similar work [11], Sampath et al. present a technique for verifying and validat-
ing Stateflow11 model translation to C code. However, both these works, i.e., [8]
and [11], are based on the proprietary tool Simulink12. Our work, on the other
hand, is based on the Asmeta framework, which is an open-source project and
freely available.

11 Stateflow is a hierarchical state-machine modeling language that is part of the
Simulink/Stateflow tool-suite from The MathWorks Inc.

12 www.mathworks.com/products/simulink

14

www.mathworks.com/products/simulink

In [10], Küster et al. present their initial experiences with a white box model-
based approach for testing model transformations within the context of busi-
ness process modeling. They propose multiple techniques for constructing test
cases and show how to use them to locate errors in model transformations. As
aforementioned, this work is performed within the context of business process
modeling and uses a supported notation. Our work, in comparison, is gener-
ally applicable across multiple domains and uses ASMs, which is a scientifically
well-founded method for systems engineering.

In [13], Stümer et al. present a general and systematic test approach for
model-based code generation. This approach undertakes formal descriptions of
the optimizations under test by using graph transformation rules. The proposed
tool automatically creates test models (first-order test cases) from the classifi-
cation tree, which is used to derive a formal description of the input space of
an optimization rule. In a further step, test vectors (second-order test cases)
are generated, which ensure structural coverage of the test model and the corre-
sponding code. Model and generated code then undergo a back-to-back test using
these test vectors. A signal comparison of the test outputs is used to determine
functional equivalence between the model and the code. The main difference be-
tween this work and our approach is that, although many of their observations
are general, they target Simulink and Stateflow programs. Moreover, we extend
their use of coverage information to measure the quality of the testing activity
by explicitly distinguishing between several types of coverage.

7 Conclusion

In this paper, we have presented a process to automatically validate the trans-
formation correctness from Asmeta specifications to C++. The process is based
on the notion of conformity between C++ code and Asmeta specifications, and
on the definition of correctness (see Def. 3). It consists in parsing an Asmeta

specification, and generating the C++ code and unit test cases. The source code
is compiled, linked, and executed. During tests execution, possible faults can be
found and code coverage information is collected. The coverage regards several
artifacts involved in the transformation, namely the inputs (ASM specs), the
transformation itself (Xtext code), and the outputs (the generated C++ code).

We have applied this process to a set of ASMs and we were able to dis-
cover several faults both within the transformation code and the test generator
component. Such faults were sometimes due to the subtle misunderstanding of
ASM semantics (like the SeqRule) that requires a peculiar translation to C++.
Further, this activity has allowed us to increase the applicability of the transfor-
mation by extension to missing ASM constructs, and identification of parts of
the Asmeta language, which are not used in practice.

References

1. Ab. Rahim, L., Whittle, J.: A survey of approaches for verifying model transfor-
mations. Software and Systems Modeling 14(2), 1003–1028 (May 2015)

15

2. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience
41, 155–166 (2011)

3. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers
to systematic model transformation testing. Commun. ACM 53(6), 139–143 (Jun
2010)

4. Bonfanti, S., Carissoni, M., Gargantini, A., Mashkoor, A.: Asm2C++: A Tool for
Code Generation from Abstract State Machines to Arduino. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NASA Formal Methods: 9th International Symposium, NFM
2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings. pp. 295–301. Springer
International Publishing (2017)

5. Bonfanti, S., Gargantini, A., Mashkoor, A.: Generation of C++ unit tests from
Abstract State Machines Specifications. In: 14th Workshop on Advances in Model
Based Testing (A-MOST’18) @ICST 2018, Väster̊as, Sweden (2018)

6. Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag New York, Inc. (2003)

7. Calegari, D., Szasz, N.: Verification of model transformations: A survey of the
state-of-the-art. Electronic Notes in Theoretical Computer Science 292, 5 – 25
(2013), proceedings of the XXXVIII Latin American Conference in Informatics
(CLEI)

8. Conrad, M.: Testing-based translation validation of generated code in the context
of IEC 61508. Form. Methods Syst. Des. 35(3), 389–401 (Dec 2009)

9. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: 2007 Future of Software Engineering. pp. 37–54. FOSE’07, IEEE
Computer Society, Washington, DC, USA (2007)

10. Küster, J.M., Abd-El-Razik, M.: Validation of model transformations – first ex-
periences using a white box approach. In: Kühne, T. (ed.) Models in Software
Engineering. pp. 193–204. Springer, Berlin, Heidelberg (2007)

11. Sampath, P., Rajeev, A.C., Ramesh, S.: Translation validation for stateflow to c.
In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). pp. 1–6
(June 2014)

12. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)
13. Stuermer, I., Conrad, M., Doerr, H., Pepper, P.: Systematic Testing of Model-Based

Code Generators. IEEE Transactions on Software Engineering 33(9), 622–634 (Sep
2007)

14. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Tests
and Proofs, pp. 134–153. Springer (2008)

15. Van Der Straeten, R., Mens, T., Van Baelen, S.: Challenges in model-driven soft-
ware engineering. In: Chaudron, M.R.V. (ed.) Models in Software Engineering. pp.
35–47. Springer, Berlin, Heidelberg (2009)

16. Wimmer, M., Burgueño, L.: Testing M2T/T2M transformations. In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) Model-Driven Engineering
Languages and Systems. pp. 203–219. Springer, Berlin, Heidelberg (2013)

16

