
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

TECHNOLOGICAL

Design and validation of a C++ code generator
from Abstract State Machines specifications

Silvia Bonfanti*1 | Angelo Gargantini1 | Atif Mashkoor2,3

1Department of Management, Information
and Production Engineering, University of
Bergamo, Bergamo, Italy

2, Software Competence Center Hagenberg
GmbH, Hagenberg, Austria

3Institute for Software Systems Engineering,
Johannes Kepler University, Linz, Austria
Correspondence
*Silvia Bonfanti
Email: silvia.bonfanti@unibg.it
Present Address
Department of Management, Information
and Production Engineering, viale Marconi,
5 - 24044 Dalmine BG -Italy

Summary

According to best practices of model-driven engineering, the implementation of a
system should be obtained from its model through a systematic model-to-code trans-
formation.We present in this paper amethodology supported by the Asm2C++ tool that
allows the users to generate C++ code from Abstract State Machine models. Thanks
to Asm2C++, the implementation is generated in a seamless manner with an assur-
ance of potential bug freeness of the generated code. Following the same approach,
model-based testing suggests deriving also (unit) tests from abstract models. We
extend the Asm2C++ tool such that it can automatically produce unit tests for the gen-
erated code. Abstract test sequences, either generated randomly or through model
checking, are translated to concrete C++ unit tests using the BOOST library. In a sim-
ilar manner, also scenarios are generated in a Behavior-Driven Development (BDD)
approach. To guarantee the correctness of the transformation process, we define a
mechanism to test the correctness of the model-to-code transformation with respect
to twomain criteria: syntactical correctness and semantic correctness, which is based
on the definition of conformance between the specification and the code. Using this
approach, we have devised a process able to test the generated code by reusing unit
tests. The process has been used to validate our model-to-code transformations.
KEYWORDS:
Abstract State Machine, C++, model-driven engineering, unit tests generation, automatic code generation,
transformation validation, behavior-driven development

1 INTRODUCTION

Formal methods are often used to model requirements of a system under construction at the abstract level. Formal requirements
models are then amenable to a series of quality assurance activities including dynamic analysis like simulation and static analysis
like property verification. However, it may remain unclear how to properly link the final implementation to its abstract specifi-
cation, since the implementation may contain platform-centric details, be written in a programming language, and running on a
specific hardware. Performing a manual transformation of formal models into code increases costs, limits the reuse of a formal
specification, is error prone as some faults can be introduced in the code writing process, and can be a barrier for a wider adoption
of formal methods. It would be very useful to assist designers also in this very delicate last phase of the development process.
Abstract State Machines (ASMs)1 is a formal method that proposes a rigorous software and systems development process

for seamless transformation of informal requirements into implementation. The ASM method is based on the design concept
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of refinement that allows to capture all details of a system design by a sequence of refined models till the desired level of
abstraction encompassing validation and verification (V&V) activities. The final step of this refinement process consists in
manually realizing the implementation – generally code that is compiled and deployed on the real system. Having an automatic
translator from ASM to code would be extremely useful for the motivations mentioned above, but several aspects that make
ASMs very powerful when modeling (like parallel execution of rules, non determinism, and abstract domains), pose a challenge
when such constructs have to be translated to a general purpose programming language.
In this article, we present a methodology supported by the Asm2C++ tool† (part of the Asmeta framework2) that is able to

automatically generate the desired C++ source code from ASM specifications. Compared to the previous work3, where we have
presented a partial translation from UASM to C++, in this work we present the translation of the AsmetaL language (used by
the Asmeta framework) to C++. In our approach, the designer starts at an abstract level to specify the desired system in Asmeta,
then s/he performs a series of refinement steps and V&V activities, and concludes the process by obtaining a detailed Asmeta
model which can be automatically translated into C++ code using Asm2C++. Besides transforming Asmeta specifications into
source code, we also generate unit test cases and scenarios4,5. The goal is to provide the user not only with the code but also
with all the tests that are generally written by hand and that can be very useful especially during the regression testing process.
The approach presented in this paper is an application of the model-driven engineering (MDE) paradigm to ASMs: require-

ments models are platform-independent, there is a clear distinction between platform-specific details, original user and system
requirements, the code generation process is seamless and automatic, and last but not least, the rigorous quality and correctness
assurance is embedded within the development process. For this reason, we have spent a considerable effort not only in defining
the suitable transformations, but also in building a framework for the validation of such transformations. Moreover, it is very
important that also model-to-code transformations are tested and validated in an automatic way6.
The article is structured as follows. In Section 2, we introduce Asmeta and MDE. The generation of C++ code is explained in

Section 4, where we show how Asmeta constructs (like functions and rules) and concepts (like parallelism and nondeterminism)
are translated into C++. We report how Asm2C++ can target a hardware platform – namely Arduino (https://www.arduino.cc/) –
and we specify where platform-specific information are added to the source code. Our code generator is able to produce also
unit tests and scenarios in a behavior-driven development (BDD) style. Section 5 presents our proposal for the validation of the
transformation by means of tests. We employ an indirect testing approach on the translation where we do not check that the
resulting code is exactly as excepted, rather we (automatically) check that the behavior of the code is correct. Section 6 presents
the related work. The article is concluded in Section 7.

2 BACKGROUND

2.1 ASM method
Abstract State Machines (ASMs) are an extension of Finite State Machines (FSMs), where unstructured control states are
replaced by states with arbitrary complex data. ASM states are mathematical structures, i.e., domains of objects with functions
and predicates defined on them. An ASM location – defined as the pair (function-name, list-of-parameter-values) – represents
the abstract ASM concept of basic object containers. The ordered pair (location, value) represents a machine memory unit.
Location values are changed by firing transition rules. They express the modification of functions interpretation from one

state to the next one. Note that the algebra signature is fixed and that functions are total (by interpreting undefined locations
f (x)with value undef ). Location updates are given as assignments of the form loc ∶= v, where loc is a location and v is its new
value. They are the basic units of rule construction. There is a limited but powerful set of rule constructors to express: guarded
actions, simultaneous parallel actions, sequential actions, nondeterminism, and unrestricted synchronous parallelism.
An ASM computation or run is, therefore, defined as a finite or infinite sequence of states s1, s2,… , sn,… of the machine.

s1 is an initial state and each si+1 is obtained from si by firing the unique main rule, which could fire other transition rules (see
Figure 1). All the operations are executed in parallel in the same transition, and the functions are modified during the update
set. The update set consists in change the value of functions in state si+1 with the new value computed in the state si after the
main rule execution.
During a machine computation, not all the locations can be updated. Functions are classified as static (never change during any

run of the machine) or dynamic (may change as a consequence of agent actions or updates). Dynamic functions are distinguished

†The tool and the experiments are available on the Asmeta repository (http://asmeta.sourceforge.net/download/asm2c++.html)

https://www.arduino.cc/
http://asmeta.sourceforge.net/download/asm2c++.html
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FIGURE 1 An ASM run with a sequence of states and state-transitions (steps)

between monitored (only read by the machine and modified by the environment) and controlled (read in the current state and
updated by the machine in the next state). A further classification is between basic and derived functions, i.e., those coming
with a specification or computation mechanism given in terms of other functions.
An ASM can be nondeterministic due to the presence of monitored functions (external nondeterminism) or choose rules

(internal nondeterminism). Our code translation supports both types of nondeterminism, however, testing the generated code in
the presence of internal nondeterminism is challenging as explained in Section 5.4.
To better understand the translation of ASMs written in AsmetaL, here we show the structure of an ASM model. An ASM

specification contains a single ASM definition which is structured into four sections: header, body, main rule and initialization.
There exist two types of ASM files: asmwhich contains a complete ASM and must contain the main rule and asmmodulewhich
contains an ASM without the main rule (thus, it is not executable by itself).
The header contains the imported/exported functions/domains/rules from other ASMs/ASMs module and the signature. The

signature contains the declarations of domains and functions used in the model. The body holds the definition section which
consists of three elements: domains definition which defines using Terms the elements of domains defined in the signature,
functions definition which defines the functions using AsmetaL Terms, and rules declaration and definition. The main rule
defines the transition rule invoked at the beginning of each step and identifies itself from the others using the keyword “main
rule”. When the ASM computation starts, the initial state s1 is automatically chosen by the simulator unless the developer
specifies in the initialization section the values of dynamic domains and functions. Code 1 shows the structure of an ASM using
AsmetaL language. The complete AsmetaL grammar can be found at http://asmeta.sourceforge.net.
In this article, we show the application of the process on an example, a simple counter, whose AsmetaL specification is shown

in Code 2. The counter increments its value when a signal is true. There are two functions, the monitored function signalwhich
reads the environment (normally, it acquires the user input) and the controlled function counter which is the counter value.
Initially the counter is set to 0, and as long as the user inserts “true” (see main rule) the counter is incremented, otherwise the
counter keeps its value.

asm asmname
//import
//export

signature:
//domains declarations
//functions declarations

definitions:
//domains definition
//functions definition
//rule definition

main rule r_Main = //rule definition

default init i:
//functions initialization
//dynamic domain initialization

Code 1 AsmetaL structure

asm Counter
import StandardLibrary
signature:
monitored signal: Boolean
controlled counter: Integer

definitions:
main rule r_count =
if signal then
counter := (counter+1)

endif

default init s1:
function counter = 0

Code 2 Counter ASM model

http://asmeta.sourceforge.net
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2.2 Asmeta framework
The ASM method can facilitate the entire life cycle of software development, i.e., from modeling to code generation. Figure 2
shows the development process based on ASMs.
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Model Review
AsmetaMA

Simulation 
AsmetaS

Scenarios 
AsmetaV

C++ Unit test

Animator 
AsmetaA

FIGURE 2 The ASM development process powered by the Asmeta framework

The process is supported by the Asmeta (ASM mETAmodeling) framework‡ 2 which provides a set of tools to help the
developer in various activities:

• modeling: the system is modeled using the AsmetaL language . During the modeling the user is supported by the editor
AsmEE and by AsmetaVis, the ASMs visualizer which transforms the textual model into a graphical representation. The
user can directly define the last ASM model or s/he can reach it through refinement. The refinement process is adopted
in case the model is complex. In this case, the designer can start from the first model (also called the ground model) and
can refine it through the refinement steps by adding details to the behavior of the ASM. The AsmRefProver tool ensures
whether the current ASM model is a correct refinement of the previous ASM model. It is based on Satisfiability Modulo
Theories (SMT) solvers that are used to automatically prove correctness of model refinement.

• validation: the process is supported by the model simulator AsmetaS, the animator AsmetaA, the scenarios executor
AsmetaV, and the model reviewer AsmetaMA. The simulator AsmetaS allows to perform two types of simulation: inter-
active simulation and random simulation. The difference between the two types of simulation is the way in which the
monitored functions are chosen. During interactive simulation the user inserts the value of functions, while in random
simulation the tool randomly chooses the value of functions among those available. AsmetaA allows the same operation of
AsmetaS, but the states are shown using tables which make the readability of the state easy. AsmetaV executes scenarios
written using the AVALLA language. Each scenario contains the expected system behavior and the tool checks whether the
machine runs correctly. The model reviewer AsmetaMA performs static analysis. It determines whether a model has suffi-
cient quality attributes (e.g., minimality – the specification does not contain elements defined or declared in the model but
never used, completeness – requires that every behavior of the system is explicitly modeled, and consistency – guarantees
that locations are never simultaneously updated to different values).

• verification: the properties derived from the requirements document are verified to check whether the behavior of the
model complies with the intended one. The AsmetaSMV tool supports this process.

• testing: the tool ATGT generates abstract unit tests starting from the ASM specification by exploiting the counter example
generation of a model checker.

• code generation: given the final ASM specification, the Asm2C++ automatically translates it into C++ code. Moreover, the
abstract tests, generated by the ATGT tool, are translated into C++ unit tests. The Asm2C++ tool is presented in this paper.

‡http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/
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3 METHODOLOGY

The approach we present in this paper adheres to MDE principles7. In our approach, the modeler produces a chain of models in a
stepwise manner. As a last step of this rigorous development process, the implementation is derived from the model by applying
suitable transformations. In our approach, like any other typical MDE process, requirements models are platform-independent,
there is a clear distinction between platform-specific details and original user and system requirements, and the code generation
process is seamless and automatic. The code produced in the final step is, however, platform-specific (we will see how we
target the Arduino platform in Sec. 4.3). One additional benefit of our approach is that quality and correctness assurance is
already embedded within the rigorous development process. As another additional goal, we aim at producing a code which is
understandable such that the code instructions can be easily traced back to the specification concepts and constructs8. Although
this may decrease the code efficiency, we believe that it increases the maintainability and the usability of the Asm2C++ tool.
As shown in Figure 3, the starting point of the transformation is a formal specification written in ASM conforming to the

Asmeta grammar. After that, the specification is translated into an Asmeta model conforming to the Asmeta meta-model using
a text-to-model (T2M) transformation. The T2M transformation, also called parsing, is performed by the parser. The parser
takes as input a string (for example, the text file for the specification), verifies whether the string conforms to the grammar, and
creates the corresponding model. In case the text file does not conform to the grammar, an exception is raised and the parsing
process is stopped.
The Asmeta model is later on translated into the C++ code through a model-to-text (M2T) transformation (also known as

model-to-code transformation9). In this transformation, a model is translated into a textual representation, i.e., source code of a
specific language. There are different technologies to support the M2T transformation process, the most common are:

• Xpand:§ It is based on Eclipse modeling framework (EMF) and provides code generation facilities like a meta-model
(Ecore) to describe the models, a set of Java classes for the components of the model, a set of adapter classes that enable
viewing and command-based editing of the model, and a basic editor. The main disadvantage of Xpand is that the output
generation is slow, the code is not maintained, and it is not well tested.

• Xtext:¶ It is a successor of Xpand based on the Java dialect called Xtend. It has the following advantages: it is faster than
Xpand, it is debuggable, and it has its own integrated development environment (IDE).

Consequently, we exploit Xtext in order to transform the Asmeta model into the C++ code in our approach.

Asmeta model
(Java objects)

Asmeta spec
(.asm)

Asmeta parser
T2M

Asmeta meta-modelAsmeta grammar

conform to conform to

C++ code
(.h .cpp)

Xtext M2T

FIGURE 3M2T Transformation: from ASM to the C++ code

4 GENERATION OF C++ CODE

The tool Asm2C++ is based onXtext#, a framework for the development of domain-specific languages, which provides facilities for
parsing and code generation and is fully compatible with EMF. The code generator has been developed as aM2T transformation.

§https://eclipse.org/modeling/m2t/?project=xpand
¶http://www.eclipse.org/Xtext/
#https://www.eclipse.org/Xtext/

https://eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
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Code generator
Asmeta model

Java objects

C++ code
.h .cppParser

Asmeta spec
.asm

FIGURE 4 Code generation process

4.1 Generation process of C++ code
The generation process is designed as described in Figure 4. The steps implementing the translation are parsing and code
generation.
Parsing
The generation process, as described in Figure 4, starts from the Asmeta specification. The specification is written in a textual
notation conforming to the Asmeta grammar and contains all the information about the model. The Asmeta parser takes as input
the Asmeta specification and creates the abstract syntax tree of the model as Java Objects. This is easier to process as compared
to the textual representation.
Code generation
The code generation step (see Figure 4) generates C++ code starting from the Asmeta model adopting M2T transformation.The
output is the C++ code that can be compiled and executed by any compiler that supports the C++ 11 (or more recent) standard.
The C++ code is composed by the header (.h) and the source (.cpp) files.

4.2 Translation from Asmeta to the C++ code
The Asm2C++ tool transforms an Asmeta specification to a C++ code. We have decided to translate an ASM to a C++ class
and split the class into a header (.h) and a source (.cpp) file. The header file (see Code 3) contains the interface of the source
file. Given an ASM model, the interface corresponds to the translation of the ASM signature: domains declaration, domains
definition, functions declaration, and rules declaration. The rules implementation, the functions/domains initialization, and the
functions definitions are contained in the source file (see Code 4). In the following, we explain how the semantics of ASM steps
are translated in C++ in Sect. 4.2.1, while in Sect. 4.2.2 we explain how the state (domains, functions, and terms) is translated.
In the following, we refer to the transformation from ASM to C++ as �.

4.2.1 ASM state evolution in C++
One of the main difference between ASM and C++ is the way the current state is changed, i.e. the execution of a machine in ASM
or of a program in C++. In ASM, as explained before, the execution consists in a sequence of steps where each step executes the
main rule and perform the update set. On the other hand, in C++ the execution corresponds to a sequence of instructions that can
be repeatedly called. The simulation of an ASM step has been implemented using two suitable methods in C++: the mainRule()
method and the fireUpdateSet() method. The mainRule() method corresponds to the translation of the main rule into C++

code, while the fireUpdateSet() method updates the locations to the next state values.
ASM has two semantics concepts that do not have the direct implementation in C++. The first semantic problem is the parallel

execution of all rules while the other problem is the nondeterminism. The solutions adopted are explained below. Furthermore,
in this section we introduce the translation of ASM rules to corresponding C++ instructions.
Parallelism
Parallelism is a fundamental point of ASMs because the operations performed in the same transition are done in parallel. Our
goal is to provide a translator that generates C++ code usable both on platforms which do not support the use of C++ parallel
programming, like Arduino, and on platforms which support the use of C++ parallelism. Nevertheless, it is still possible to run
ASMs in a parallel-like way by showing the same copy of the current state to a sequentially-executed thread following the
approach proposed by others, including J. Schmid10. ASMs run in discrete steps where each step consists of four operations:
acquire inputs, perform the main rule, update the state, and release the outputs. The machine state (represented by controlled
functions) is modified only during the main rule execution. To simulate parallel execution, the controlled part of the state is
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# i f n d e f asmSpecification_H
# de f i n e asmSpecification_H

# inc lude . . . / / i n c l u d e l i b r a r i e s

/ / Domain d e c l a r a t i o n
namespace asmSpecificationnamespace{

/ / e nume ra t i v e domain
enum domainName {value0 , value1 , . . . } ;
/ / c o n c r e t e domain
t ypede f domainType domainName ;

}
us ing namespace asmSpecificationnamespace ;
c l a s s asmSpecification{

/ / Domain c o n t a i n e r s d e c l a r a t i o n :
/ / c o n c r e t e domain and enume ra t i v e domain
cons t s t d : : s e t <domainName>
domainName_elems ;
pub l i c :
/ / Func t i on d e c l a r a t i o n
domainName functionName [ 2 ] ;
/ / c o n t r o l l e d f u n c t i o n
domainName functionName ;
/ / mon i t o r ed f u n c t i o n
/ / Rule d e c l a r a t i o n
void ruleName (parameters ) ;
asmSpecification ( ) ;
void mainRule ( ) ;
void f i r eU p d a t e S e t ( ) ;

} ;
# end i f

Code 3 .h code

/ / asmSpecification . cpp a u t om a t i c a l l y g en e r a t e d
# inc lude ‘ ‘asmSpecification . h "
us ing namespace asmSpecificationnamespace ;
/ / Conver s ion o f ASM r u l e s i n C++ f u n c t i o n s
void asmSpecification : : ruleName (parameters ) {

/ / imp l emen t a t i o n
}
void asmSpecification : :mainRule ( ) {

/ / imp l emen t a t i o n
}
/ / Func t i on and domain i n i t i a l i z a t i o n
asmSpecification : : asmSpecification ( ) :
/ / S t a t i c domain i n i t i a l i z a t i o n
domainName_elems ( value0 ,value1 , . . . ) ,
{
/ / Func t i on i n i t i a l i z a t i o n
functionName [ 0 ] = functionName [ 1 ] = value ;
}
/ / Apply t h e upda t e s e t
void asmSpecification : : f i r eU p d a t e S e t ( ) {

functionName [ 0 ] = functionName [ 1 ] ;
}

Code 4 .cpp code

duplicated: the present state and the future state. Modification made on controlled functions will affect only the future state,
while status readings will refer to the current state. The modification made to controlled functions will take place only when the
execution of the main rule is finished, this means in fireUpdateSet() function. This approach guarantees the proper evolving
of the machine state, even though it is not a true parallelism. Table 1 shows a simple example of parallelism, it swaps the values
of variables x and y. If we translated this example in C++ as a simple sequence x=y; y=x;, the result is not the same as in ASM.
Both variables x and y would contain the value of y. For this reason, we introduce an array of two values for each controlled
function; the first value corresponds to the value of the function in the current state of the ASM execution and the second value
corresponds to the value of the function in the next state of the ASM execution. In this way, we translate an assignment in C++

following this rule: we use the next state (the second element of the array) to the left side of the assignment; we use the current
state (the first element of the array) to the right side of the assignment; after the execution of the rules in the current state (the
mainRule() function in C++) we assign all the values of the next state to the current state. The new current state is used in the
next step of execution. We do not consider the case of inconsistent updates (a function assumes two different values in the same
state) because the methodologies applied during the analysis of the ASM model guarantee that the inconsistent updates will not
occur.

Asmeta Main in C++ fireUpdateSet in C++
controlled x: Integer
controlled y: Integer
rule parRule =
par
x:=y
y:=x

endpar

int x[2];
int y[2];
void parRule(){
x[1]=y[0];
y[1]=x[0];

}

void fireUpdateSet(){
x[0]=x[1];
y[0]=y[1];

}

TABLE 1 Parallelism: translation in C++
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Note that for the example given above, also a simple translation like temp=x; x=y; y=temp; which uses a temporary vari-
able will suffice, and this is the approach proposed for example by Dalvandi et al.11. However in the ASM we cannot loose the
current value of controlled functions which may be used in other rules.
Nondeterminism
Nondeterminism in Asmeta is implemented in the ChooseRule where a random element is picked out from a certain domain
(set of terms of the same nature). This random choice is performed by generating a random index, number that corresponds to
the index of the element to be picked inside the domain. C++ provides functionality for pseudo-random number generation that
generates an integral number in the range between 0 and the number of terms. An example of nondeterminism using the choose
rule is shown in Table 2.

Asmeta
domain D2 subsetof Integer
domain D2 = {5,9,12}
rule chooseRule = choose x in D2 with x>7 do ruleChoose ifnone ruleIfnone

C++

t ypede f i n t D2 ;s t d : : s e t <D2> D2_elems = {5 , 9 , 12} ;
void chooseRu le ( ) {s t d : : v e c t o r <d e c l t y p e ( D2_elems ) : : v a l u e _ t y p e cons t∗> po i n t 0 ;

f o r ( auto cons t& x : D2_elems )
i f ( x>7) p o i n t 0 . push_back (&x ) ;

i n t rndm = rand % ( p o i n t 0 . s i z e ( ) ) ;
auto x = ∗ po i n t 0 [ rndm ] ;
i f ( p o i n t 0 . s i z e ( ) >0){ru l eChoose ( ) ;} e l s e {r u l e I f n o n e ( ) ;}}

TABLE 2 Nondeterminism: translation in C++

Transition rule
Transition rules are translated into class functionswhere every rule is implemented using the C++ basic constructs. The evaluation
strategy adopted in ASMs is the pass-by-name, while in C++ the strategy is pass-by-value. For now, to guarantee the consistency,
we translate only rule calls taking as parameters location variables that are not updated in the rule. The translation of basic rules
in C++ is straightforward most of times. For example, ConditionalRule and CaseRule are implemented respectively with the if-
else and case-switch construct. For the rules that do not have an equivalent construct in C++, some translation blocks have been
defined. For example, the ForallRule is a high level construct defined by Asmeta that executes a rule in parallel for each element
of one (or more) EnumerableTerm that satisfies a given condition. The translation of rules into C++ is shown in Table 3.

4.2.2 Functions, Domains, and Terms
As explained in the next paragraph, functions are translated as members of the class whose type depends on the corresponding
domain. Domains are translated using those available in C++ and sometimes may happen that the correspondence is not exact
as explained in the domain definition paragraph. Furthermore, terms are translated with C++ operators.
Function definition
To declare an ASM function it is necessary to specify the name, the domain (optional field), and the codomain of the function.
Moreover, the function name must be preceded by one of the keywords static, dynamic or derived, depending on its kind.
Dynamic functions are further classified in monitored, controlled and out.
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Rule Asmeta Translation in C++
Definition rule r1 (x1 in D1, ..., xk in Dk) = void r1 (�(D1) x1,...,�(Dk) xk) {...}

r1: rule name
x1 ,...,xk : parameters of the rule
D1 ,...,Dk :domains where parameters take their value

r: method name
�(D1 ), ..., �(Dk ): translation of domains
x1 , ..., xk : parameters of the method

Update l := t �(l) = �(t);
l: location term or variable
t: generic term �(l): translation of location term or variable

�(t): term translation

Conditional

if cond then
Rtℎen

[else
Relse]

endif

if (�(cond)){
�(Rtℎen);

[}else {
�(Relse);]

}
cond: term representing a boolean condition
Rtℎen , Relse : transition rules �(cond): conditional term translation

�(Rtℎen ), �(Relse ): rules translation

Case

switch t
case t1 : R1
...
case tk : Rk

[otherwise
Rk+1]

endswitch

if (�(t)==�(t1)) {
�(R1);
...

} else if (�(t)==�(tk)) {
�(Rk);

} else {
�(Rk+1));

endif
t1 ,...tk : terms
R1 , ..., Rk , Rk+1 : transition rules

�(t), �(t1), ..., �(tk ): terms translation
�(R1), ..., �(Rk ), �(Rk+1 ): rules translation

ForAll
forall v1 in D1, ..., vk in Dk
with Gv1,...,vk do Rv1,...,vk

for(auto �(v1): �(D1)) {
...
for(auto �(vk): �(Dk)) {
if(�(Gv1,...,vk)) {

�(Rv1,...,vk);
}...}}

v1 ,...vk : variables
D1 ,...Dk : domains where v1 ,...vk take their values
Gv1 ,...,vk : term representing a boolean condition over v1 ,...vk
Rv1 ,...,vk : transition rule which contains occurrences of variables v1 ,...vk

�(v1 ),..., �(v1 ): variables translation
�(D1), ..., �(Dk ): domains translation
�(Gv1 ,...,vk ): term translation
�(Rv1 ,...,vk ): rule translation

Extend extend D with v1, ..., vk do R Delems.insert(�(v1), ..., �(vk));
�(R);

D: abstract domain to be extended
v1 ,...vk : variables which are bound to the new elements imported in D
R: transition rule

Delems : variable containing all elements of domain D
�(v1 ), ..., �(vk ): variables translation
�(R): rule translation

While while G do R
while (�(G)){
�(R);

}
G: term representing a boolean condition
R: transition rule �(G): conditional term translation

�(R): rule translation

Call Rule r [t1, ..., tk] r (�(t1), ..., �(tk));
r: rule name
t1 , ..., tk : terms representing the arguments r: method name

�(t1 ), ..., �(tk ): terms translationSkip skip ;

Seq
seq
R1...
Rk

endseq

{
�(R1);
...
�(Rk);

}

Let let (v1=t1, ..., vk=tk) in Rv1,...,vk endlet

{
auto (�(v1) = �(t1));
...
auto (�(vk) = �(tk));
�(Rv1,...,vk);

}
v1 ,...vk : variables
t1 , ..., tk : terms
Rv1 ,...,vk : transition rule which contains occurrences of variables v1 , ..., vk

�(v1 ), ..., �(vk ): variables translation
�(t1 ), ..., �(tk ): terms translation
�(Rv1 ,...,vk ): rule translation

TABLE 3 Rules: translation from Asmeta to C++

Each ASM function is translated as a members of the class as shown in Table 4. ASM static functions are translated to either
constants if the do not have arguments or static methods if they have arguments. Derived functions are always translated as
member functions. Dynamic functions are member variables, that in case of functions with a domain, they become C++ maps.
Controlled functions, for the reason explained before, need to be translated to an array of two elements.
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Asmeta Translation in C++
static F: C static �(C) F;
static F: D-> C static �(C) F(�(D));
derived F: C �(C) F();
derived F: D-> C �(C) F(�(D));
dynamic monitored F: C �(C) F;
dynamic monitored F: D-> C map<�(D), �(C)> F;
dynamic controlled F: C �(C) F[2];
dynamic controlled F: D-> C map<�(D),�(C)> F[2];
dynamic out F:C �(C) F;
dynamic out F: D-> C map<�(D),�(C)> F;
F: function name
D: function domain
C: function codomain
�(C): codomain translation
�(D): domain translation

TABLE 4 Function: translation from Asmeta to C++

Domain definition
ASM domains are considered mathematical set (or a subset of them) and are implemented using C++ data types. Inevitably, the
translation may not preserve the content of some domains which in ASM are infinite or unbounded, while in any implementation
domains or types are finite. These implementations of the mathematical sets is named BasicTD which includes Real, Inte-
ger, Natural, String, Char, Boolean and Rule. Besides BasicTDs, there are EnumTD (enumerative domains), ConcreteDomain,
ProductDomain, SequenceDomain, PowersetDomain, BagDomain, and MapDomain. For the last four domains, there is a
porting of the STL library for C++‖ which provides structured data types. Respectively they are mapped to the STL equivalents
std::list, std::set, std::multiset, std::map. EnumerativeDomains are directly mapped to C++ with enums. Concrete-
Domain can be defined as dynamic (new elements can be added to the domain) or static (no new elements are allowed). The
machine must keep trace of the elements included in the domain and every time an element is added, the include set must be
extended. For this reason, a set of elements is assigned to each ConcreteDomain. ProductDomain is defined as a Cartesian prod-
uct of two or more domains. It is translated into C++ as a tuple of elements, where each element is the domain of the Cartesian
product. Patterns of translation are shown in Table 5.
Terms
In Asmeta different kinds of terms are implemented, while in imperative languages, such as C++, only few of them are present.
The problem is how to translate Asmeta terms which are not implemented in C++. For example, consider CaseTerm, that depend-
ing on the value assumed by a specific term returns a different value. The first approach has been to translate it into the C++

switch-case construct, but if we apply this translation we violate the one-to-one mapping design goal since it is already used
in the translation of CaseRule. A better approach is using lambda functions – an example of function declaration is shown in
Code 5. A lambda function is a function that can be written in-line in the source code and called directly without declaring it.
The main advantages are the flexibility, any kind of function can be defined, and the one-to-one mapping from Asmeta to C++

is guaranteed. The disadvantages of this approach are the worsening of readability and efficiency. The translation of the Asmeta
terms into C++ is shown in Table 6.

[& ] ( ) {
/ / p l a c e your code here
re turn <some_value >;
}

Code 5 Example of lambda function

‖The porting of the STL library is available at https://github.com/rpavlik/StandardCplusplus

https://github.com/rpavlik/StandardCplusplus
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Asmeta Translation in C++
Natural unsigned int
Integer int
String String
Char char
Boolean boolean
rule Not supported
Powerset std::set
Bag std::multiset
Sequence std::list
Map std::map
enum enum
domain D1 subsetof tD
D1: name of the concrete domain
tD : type-domain which identifies the structure of the elements of D1

typedef �(tD) D1
D1: name of the concrete domain
�(tD ): translation of type-domain which identifies the structure of the elements of D1

Prod(D1, D2, D3)
D1, D2, D3: domains over which the cartesian product is defined

tuple<D1, D2, D3>
D1, D2, D3: domains over which the cartesian product is defined

domain D1 subsetof tD
domain D1 = {5,9,12}
D1: name of the concrete domain
tD : type-domain which identifies the structure of the elements of D1

{5,9,12}: domain elements

typedef �(tD) D1;
std::set<D1> D1_elems = {5,9,12}
D1: name of the concrete domain
�(tD ): translation of type-domain which identifies the structure of the elements of D1

{5,9,12}: domain elements

TABLE 5 Domain definition: translation from Asmeta to C++

StructuredTerm
StructuredTerms are identified by comma-separated elements enclosed by brackets inside an Asmetamodel. In C++, these terms
are implemented with the container class of the STL library. Unfortunately, there is no standard notation to refer to them in C++

as for the Asmeta language. For this reason, structured terms are implemented with lambda functions that create and return the
desired term containing the elements. An example is shown in Code 6 – a Powerset of values is assigned to the output function
defined in Powerset(Integer) domain.

out myset: Powerset(Integer)
...
myset := {1, 2, 3}

s t d : : s e t < i n t > myset ;
. . .
myset= [ ] ( ) {

auto x = {1 , 2 , 3 } ;
s t d : : s e t < i n t > s ( x . beg in ( ) , x . end ( ) ) ;
re turn s ;

} ( ) ;

Code 6 Translation of a structured term

4.2.3 Translation of the Example in C++
By applying the Asm2C++ tool, the C++ code is automatically generated, in details the tool generates two files: the header file as
shown in Code 8 and the class implementation as shown in Code 9. The header contains the functions and rules definition. The
monitored function is translated as a bool variable, while the controlled function counter is translated using an array (see Paral-
lelism paragraph). In our example there is only one rule (that corresponds to the main rule) which is translated as C++ method.
The .cpp file contains the r_count() method implementation, the counter is incremented of one, and the fireUpdateSet()
implementation which updates the value of controlled functions.



12 Silvia Bonfanti ET AL

Term Asmeta Translation in C++

Conditional
Term

if cond then
ttℎen

[else
telse]

endif

if �(cond) then
�(ttℎen);

[else
�(telse);]

endif
cond: term representing a boolean condition
ttℎen , telse : terms �(cond): conditional term translation

�(ttℎen ), �(telse ): terms translation

Case

switch t
case t1 : s1
...
case tk : sk

[otherwise
sk+1]

endswitch

if (�(t)==�(t1)) {
�(s1);
...

} else if (�(t)==�(tk)) {
�(sk);

} else {
�(sk+1));

endif
t1 ,...tk : terms
s1 , ..., sk , sk+1 : terms

�(t), �(t1 ), ..., �(tk ): terms translation
�(s1), ..., �(sk ), �(sk+1 ): terms translation

Tuple Term (t1,...tk) make_tuple( �(t), �(t1), ..., �(tk))
t1 ,...tk : terms, that can have a distinct nature �(t), �(t1 ), ..., �(tk ): terms translation

ForAll Term
forall v1 in D1, ..., vk in Dk
with Gv1,...,vk

[&]() {
for(auto �(v1): �(D1)) {
...
for(auto �(vk): �(Dk)) {
if(!�(Gv1,...,vk)) {

return false;
}...}}
return true;
}

v1 ,...vk : variables
D1 ,...Dk : domains where v1 ,...vk take their values
Gv1 ,...,vk : term representing a boolean condition over v1 ,...vk

�(v1),..., �(v1 ): variables translation
�(D1), ..., �(Dk ): domains translation
�(Gv1 ,...,vk ): term translation

Exist Term
exist v1 in D1, ..., vk in Dk
with Gv1,...,vk

[&]() {
for(auto �(v1): �(D1)) {
...
for(auto �(vk): �(Dk)) {
if(�(Gv1,...,vk)) {

return true;
}...}}
return false;
}

v1 ,...vk : variables
D1 ,...Dk : domains where v1 ,...vk take their values
Gv1 ,...,vk : term representing a boolean condition over v1 ,...vk

�(v1),..., �(v1 ): variables translation
�(D1), ..., �(Dk ): domains translation
�(Gv1 ,...,vk ): term translation

Let Term let (v1=t1, ..., vk=tk) in tv1,...,vk endlet

[&]() {
auto (�(v1) = �(t1));
...
auto (�(vk) = �(tk));
�(tv1,...,vk);

}()
v1 ,...vk : variables
t1 , ..., tk : terms
tv1 ,...,vk :term containing free occurrences of variables v1 , ..., vk

�(v1), ..., �(vk ): variables translation
�(t1 ), ..., �(tk ): terms translation
�(tv1 ,...,vk ): terms translation

Size Of Enu-
merable Term

|containerSet| or |containerBag| or
|containerMap| or |containerList|

containerSet.size() or
containerBag.size() or
containerMap.size() or
containerList.size()

TABLE 6 Terms: translation from Asmeta to C++

4.3 Integration with Arduino
Here, we would like to show how easily we can adapt our code generation process for a specific platform. As a target platform, we
have chosen Arduino because it supports C++ language, it is cheap to buy, and it is very accessible. Starting from the generation
process as shown in Figure 4, we have added some steps to generate the Arduino project as shown in Figure 5. The new steps
(explained below) are the HW configuration and integration, the ASM runner generation and the merging of all generated files.
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/ / Counter . h a u t om a t i c a l l y g en e r a t e d
# i f n d e f COUNTER_H
# de f i n e COUNTER_H
# inc lude <s t r i n g . h>
# inc lude <io s t r e am >
us ing namespace s t d ;
t ypede f s t d : : s t r i n g S t r i n g ;
# de f i n e ANY S t r i n g
/ / DOMAIN DEFINITIONS
namespace Counte rnamespace {}
us ing namespace Counte rnamespace ;

Code 7 Counter.h (part 1)

/ / c l a s s d e c l a r a t i o n
c l a s s Coun te r {

/ / DOMAIN CONTAINERS
pub l i c :
/ / FUNCTIONS
bool s i g n a l ;
i n t c o u n t e r [ 2 ] ;
/ / RULE DEFINITION
void r _ c oun t ( ) ;
Coun te r ( ) ;
void g e t I n p u t s ( ) ;
void s e tO u t p u t s ( ) ;
void f i r eU p d a t e S e t ( ) ;

} ;
# end i f

Code 8 Counter.h (part 2)

/ / Counter . cpp a u t om a t i c a l l y g en e r a t e d
# inc lude " Coun te r . h "
us ing namespace Counte rnamespace ;
/ / Conver s ion o f ASM r u l e s i n C++ methods
void Coun te r : : r _ c oun t ( ) {

i f ( s i g n a l ) {
c o u n t e r [ 1 ] = ( c o u n t e r [ 0 ] + 1 ) ;
}

}
/ / Func t i on and domain i n i t i a l i z a t i o n
Coun te r : : Coun te r ( ) {
/ / Func t i on i n i t i a l i z a t i o n

c o u n t e r [ 0 ] = c o u n t e r [ 1 ] = 0 ;
}
/ / Apply t h e upda t e s e t
void Coun te r : : f i r eU p d a t e S e t ( ) {

c o u n t e r [ 0 ] = c o u n t e r [ 1 ] ;
}

Code 9 Counter .cpp

Base HW configuration, HW integration and user change
The HW configuration goes in parallel to the code generation phase and aims to produce the HW-specific part of the Arduino
project which is missing in the automatic C++ code generator. The C++ code containing the HW integration is composed by
three functions: the setup function, which contains the hardware initial settings, and the two functions responsible for acquiring
inputs and setting outputs. Starting from the Asmeta model the tool automatically generates the base .a2c configuration file.
At this step all functions are defined and they are distinguished between monitored and out functions. Monitored functions
are assigned to the inputs while out functions to the outputs. Furthermore, the configuration file contains all hardware settings
including Arduino version, which is the machine step delay, the path to the Asmeta specification, and the list of bindings. The
base configuration file is the minimal skeleton and the user has to complete this file in the user change phase. In this phase, the
user links monitored and out functions to physical hardware pins and further details can be added. Once the .a2c configuration
file is complete, the HW integration code is automatically generated.
ASM runner generation
The generated C++ code is a complete translation of the ASM specification. However, to run the ASM on an Arduino board,
the loop() function (a function continuously called) must be implemented. This part is kept in a separated .ino file to split the
ASM behavior and the execution policy. The loop() function executes iteratively the following functions: getInputs() –
reads the data from the input devices like sensors; mainRule() – contains the behavior described in the Asmeta specification;
fireUpdateSet() – updates the state at the end of each loop; and setOutputs() – sets the output values like the current state
of light-emitting diode (LED).
Merge
In previous steps, different source codes have been produced. The C++ code containing the translation of the Asmeta specifi-
cation, the C++ code for the HW integration, and the .ino code that executes the ASM. The merge process simply links all the
previously generated artifacts together to create the Arduino project. This is done using the include directive of C++.
Generation of Arduino code on the Counter example
The Arduino project is generated by running three process in parallel as shown in Figure 5. We have seen in the previous
section the automatic generation of the C++ code (.h and .cpp files) starting from the ASM model. At the same time three files
are generated: .ino, .a2c and .cpp which contains the hardware integration. The .ino file is generated and no user actions are
required. For the .a2c and hw integration .cpp files the user has to map the ASM functions with the hardware to make the system
executable.
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FIGURE 5Merge process

4.4 Generation of unit tests
The automatic test generation from models has been advocated by researchers in the area of model-based testing (MBT) for
several years. MBT reuses the specification to generate test cases to substitute or at least complement other testing processes,
like manual, capture/replay, or script-based ones.
The complete process for MBT applied to ASMs is presented in Figure 6. The user starts with an ASM specification that

is already validated and verified. By applying the Asm2C++ transformation presented in Section 4.1, the C++ code is obtained
and compiled. At the same time, the abstract test cases are generated starting from the specification and translated into C++

unit tests. The generation of abstract tests can be done in several ways as explained in Section 4.4.1. The translation of abstract
tests to concrete tests is done by the C++ unit tests builder, which follows transformation rules presented in Section 4.4.2. Once
the abstract tests are translated, the C++ unit tests are compiled. All the compiled code (system implementation and tests) is
linked together by the test executor and the C++ tests can be run. The test executor produces some test results that include
possible failures and coverage information, if required. To be more precise, the complete generation of C++ unit tests from ASM
specification, requires at least two steps:

• The generation of abstract tests that are sequences of abstract states.
• The translation of abstract tests to concrete tests done by the C++ unit tests builder.

4.4.1 Generation of abstract tests
We currently support two different ways to generate abstract test sequences from ASMmodels. The first one is based on the use
of the Asmeta simulator. The simulator chooses randomly the values of monitored functions (when they are required to perform



Silvia Bonfanti ET AL 15

# inc lude " Coun te r . h "
void s e t u p ( ) {
}
Coun te r c o u n t e r ;
void l oop ( ) {

c o u n t e r . g e t I n p u t s ( ) ;
c o u n t e r . r _ c oun t ( ) ;
c o u n t e r . f i r eU p d a t e S e t ( ) ;
c o u n t e r . s e tO u t p u t s ( ) ;

}

Code 10 Counter .ino

{
" a r d u i n oVe r s i o n " : "UNO" ,
" s t epTime " : 200 ,
" b i n d i n g s " : [

{
"mode " : "USERDEFINED" ,
" f u n c t i o n " : " c o u n t e r " ,
" minva l " : 0 . 0 ,
" maxval " : 1023

} ,
{

"mode " : "USERDEFINED" ,
" f u n c t i o n " : " s i g n a l " ,
" minva l " : 0 . 0 ,
" maxval " : 1023

}
]
}

Code 11 Counter .a2c

# inc lude " Coun te r . h "
# inc lude <Arduino . h>
void Coun te r : : g e t I n p u t s ( ) {

/ /
/ / TODO p la c e here your i n p u t
/ / b i n d i n g f o r f u n c t i o n s i g n a l
/ /

}
void Coun te r : : s e tO u t p u t s ( ) {

/ /
/ / TODO p la c e here your i n p u t
/ / b i n d i n g f o r f u n c t i o n c oun t e r
/ /

}

Code 12 HW config Counter .cpp
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FIGURE 6 Generation of unit tests from ASMs

the execution of one step) and performs a given number of steps of the machine as requested by the tester. There is no guarantee
at all that all the specification parts (like rules and conditions) will be covered by test cases. However, in this way, we are able
to generate test cases from every ASM, even if it contains complex terms and infinite domains (like integers).
The second approach exploits the counterexample generation of the model checker NuSMV12. In this case, the test sequences

are generated in order to cover the rules and the guards inside the conditional rules. The tool translates the testing requirements
to suitable temporal properties and the counter examples generated by NuSMV are translated to abstract test sequences. In this
case, the tool guarantees that the desired coverage is obtained, but only if the ASM is translatable to the language of the model
checker and if no state explosion occurs. The use of a model checker generally requires more time, since it must perform the
exploration of the whole state space. One could also use techniques for model decomposition13.

4.4.2 Translation of abstract tests to concrete tests
Once abstract test cases are generated, the next step is to translate them to concrete test cases in the C++ programming language.
The test suite is composed of a set of abstract test cases and each test case, in turn, is composed of a sequence of states. The
states contain the values of monitored and controlled functions. Each test suite is translated using the Boost Test C++ library
(https://www.boost.org/). The boost library provides a set of interfaces to write test programs organized in test suites and test
cases. The translation of abstract test cases into concrete test cases is reported in Table 7.

https://www.boost.org/
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Abstract Test Concrete Test

Test Suite BOOST_AUTO_TEST_SUITE(testSuiteName)
...

BOOST_AUTO_TEST_SUITE_END( )

Test Case
BOOST_AUTO_TEST_CASE(testCaseName) {

SUTClass sut;
...

}

State Monitored function
m = val

sut.m = val;

Controlled function c =
val

BOOST_CHECK(sut.c[0] == val);

ASM step sut.step ();

TABLE 7 Translation of abstract tests to concrete tests

A test suite is defined by using the BOOST_AUTO_TEST_SUITE(testSuiteName)macro, it automatically registers a test suite
named testSuiteName. A test suite is ended using BOOST_AUTO_TEST_END(). Each test suite can contain one or more test
cases. A test case is declared using themacroBOOST_AUTO_TEST_CASE(testCaseName). The content of a test case is enclosed
by the symbols {} and the name is unique.
Inside a test case, first we create an instance sut of the class which the ASM is translated to. Then, for each state in the abstract

test, we check the value of controlled functions, we set the value of monitored functions and finally we perform an ASM step. The
controlled functions are checked using the macro BOOST_CHECK(controlledFunctionName[0] == value), while the values to
monitoredFunctionName are assigned using the assignment operator. The ASM step is performed by calling the main function
in C++ (that corresponds to the main rule in ASM) and after that the updateSet is applied in order to obtain the next state.
Test generation on the Counter example
Code 13 shows an example of an automatically generated test suite. This test suite includes four test cases which simulate
different execution scenarios. Each test case instantiates a C++ object of the previously generated C++ class and checks whether
all initialized functions have the values defined in the ASM initialization section. Once the values are verified, the monitored
functions values are set. After that a step of ASM is executed by calling the main method and the update set is applied. Once the
update set is performed, the test case starts again from the check of the controlled function. The translation process continues
until the list of states belonging to the current test case is entirely translated.

4.5 Generation of BDD scenarios
The behavior-driven development (BDD) is considered as the evolution and extension of the test-driven development (TDD)14.
It aims at writing automated acceptance tests that represent complex system stories or scenarios. While classical unit tests focus
more on checking internal functionalities of classes, BDD tests should be examples that anyone from the development team can
read and understand. The use of scenarios is common not only at the code level but also at the level of (abstract) models. In the
Asmeta framework, we have introduced the idea of using scenarios for validating ASMs and developed a language AVALLA
(and a corresponding tool AsmetaV)15 for writing scenarios. With AVALLA, the designer can describe a scenario, which is
briefly a sequence of external actor actions and expected reactions of the system. Scenarios can be executed in order to check
whether the actual behavior of the system conforms to the requirements. In a classical model-driven engineering approach, the
designer writes the abstract specification and then through a process of systematic transformation, s/he can obtain the source
code together with unit tests. In this way, the generated code comes with a set of unit tests that can also be used later for regression
testing. In this section, we extend the Asmeta framework with a translator, called ASMETAVBDD, which translates an abstract
scenario written in the AVALLA language to the BDD code.
Among all the testing framework, we have selected the Catch2 (https://github.com/catchorg/Catch2) which aims to be a

modern, C++-native, header-only, test framework for unit-tests, TDD and BDD. Catch2 and AVALLA share several concepts
that can be found in every BDD approach, so the translation from AVALLA to Catch2 is rather straightforward. Such translation
complements the generation of C++ code3 and the generation of C++ tests4 already supported by Asmeta. It takes an AVALLA
scenario and produces the C++ code. Table 8 summarizes the transformation rules we have defined, which are briefly described
here:

https://github.com/catchorg/Catch2
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BOOST_AUTO_TEST_SUITE(TestCounter)

BOOST_AUTO_TEST_CASE( my_test_0 ){
// instance of the SUT
counter sut;
// check state
BOOST_CHECK(sut.counter[0]==0);
// set monitored variables
sut.signal=true;
// call main rule
sut.step();
BOOST_CHECK(sut.counter[0]==1);
sut.signal=true;
sut.step();
BOOST_CHECK(sut.counter[0]==2);
sut.signal=true;
sut.step();
BOOST_CHECK(sut.counter[0]==3);
sut.signal=false;
sut.step();
BOOST_CHECK(sut.counter[0]==3);

}

BOOST_AUTO_TEST_CASE( my_test_1 ){ ...
}

BOOST_AUTO_TEST_CASE( my_test_2 ){ ...
}

BOOST_AUTO_TEST_CASE( my_test_5 ){
// instance of the SUT
// instance of the SUT

counter sut;
// check state
BOOST_CHECK(sut.counter[0]==0);
// set monitored variables
sut.signal=true;
// call main rule
sut.step();
BOOST_CHECK(sut.counter[0]==1);
sut.signal=true;
sut.step();
BOOST_CHECK(sut.counter[0]==2);
sut.signal=true;
sut.step();
BOOST_CHECK(sut.counter[0]==3);
...

}

BOOST_AUTO_TEST_SUITE_END()

Code 13 Counter test suite example

scenario is simply translated to a SCENARIO macro. The name is taken from the AVALLA scenario.
load is translated to a declaration of an instance of the class that is obtained by translating the ASM to C++. Let’s call that

instance X.
set all the set commands before a step command are grouped together and translated to a WHEN macro. Inside WHEN, every

set is translated to a simple assignment to the field representing the monitored function.
check is translated to a REQUIRE macro. The argument of the check is translated to a C++ term, by reusing the translation

already defined in Asm2C++.
step represents an abstract step of ASM. In C++, it is translated to a call of the function r_main() that computes the update

set, and a call of the function fireUpdateSet() that applies the update set to the current state in order to apply the new
values of controlled location computed by the main rule.

exec allows the user to execute an arbitrary Asmeta rule. The tool translates the rule to a C++ function that is called whenever
exec rule is invoked.

By following the aforementioned rules, the ASMETAVBDD tool generates a C++ file that can be compiled and executed. If
the scenario is validated for the ASM, and translations to C++ of the ASM and of the AVALLA scenario are correct, then the
BDD scenario in C++ will be correct and, when executed, no REQUIRE instruction of the scenario will fail. However, there are
two possible uses of the obtained BDD code. First, the user can manually inspect the BDD test and check whether the C++ code
actually has the intended behavior. In this way, we can produce the C++ code with its tests also given in the BDD style. The use
of the BDD style should increase the comprehension of the test by nontechnical stakeholders like customers or business experts.
Second, the scenarios can be used for regression testing. Indeed, sometimes the C++ code is modified in order to add further
details after its automatic generation. If one wants to check that the expected behaviors are still preserved after the modification,
one can run the BDD tests again for confirmation.
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AVALLA Catch2

scenario name
load spec.asm

SCENARIO( name ){
spec X; / / c r e a t e an i n s t a n c e o f spec
. . .

}
set block
set l1 = v1...
set ln = vn

WHEN( " s e t mon i t o r ed v a r i a b l e s " ) {
X. l 1=v1 ;
. . .
X . l n=vn ;

}
check expr REQUIRE(X.C++expr);

step

THEN( "n− t h s t e p o c cu r s " ) { . . . . .
X . mainRule ( ) ;
X. f i r eU p d a t e S e t ( ) ;

}
exec rule add function definition rule() and call it

TABLE 8 Translation of AVALLA constructs to Catch2 macros

Generation of BDD scenarios on the Counter example
Code 14 shows an example of an automatic BDD scenario generated on the Counter example. The scenario simulate an execution
where the counter starts from 0 to 3, then it interrupts the execution. The scenario instantiates a C++ object of the generated
C++ class, then the initialized functions are checked to verify if the value is the same as in ASM initialization section. Once the
values are verified the monitored functions are set and a step of ASM is executed. Once the step is performed, the scenario starts
again from the check of the functions.

SCENARIO( coun t3 ){
/ / i n s t a n c e o f t h e SUT
c o u n t e r s u t ;
REQUIRE ( s u t . c o u n t e r [ 0 ]= 0 ) ;
WHEN ( ‘ ‘ s e t mon i t o r e dv a r ’ ’ ) {

s u t . s i g n a l=t rue ;
}
THEN ( ‘ ‘1− s t s t e p o c cu r s ’ ’ ) {

s u t . s t e p ( ) ;
}
REQUIRE ( s u t . c o u n t e r [ 0 ]= 1 ) ;
WHEN ( ‘ ‘ s e t mon i t o r e dv a r ’ ’ ) {

s u t . s i g n a l=t rue ;
}
THEN ( ‘ ‘2− s t s t e p o c cu r s ’ ’ ) {

s u t . s t e p ( ) ;
}
REQUIRE ( s u t . c o u n t e r [ 0 ]= 2 ) ;
WHEN ( ‘ ‘ s e t mon i t o r e dv a r ’ ’ ) {

s u t . s i g n a l=t rue ;
}
THEN ( ‘ ‘3− s t s t e p o c cu r s ’ ’ ) {

s u t . s t e p ( ) ;
}
REQUIRE ( s u t . c o u n t e r [ 0 ]= 3 ) ;
WHEN ( ‘ ‘ s e t mon i t o r e dv a r ’ ’ ) {

s u t . s i g n a l= f a l s e ;
}
THEN ( ‘ ‘4− s t s t e p o c cu r s ’ ’ ) {

s u t . s t e p ( ) ;
}
REQUIRE ( s u t . c o u n t e r [ 0 ]= 3 ) ;

}
Code 14 Counter BDD scenario example
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5 VALIDATION OF THE TRANSFORMATION
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FIGURE 7 Validation process

In the previous sections, we have presented the automatic transformation of ASMsmodels to C++ code. However, no validation
activities have been performed to guarantee the correctness of the transformation process. In this section, we define a mechanism
to test the correctness of the M2T transformation with respect to two main criteria – syntactical correctness and semantic
correctness – which is based on the definition of conformance between the specification and the code. Using this approach, we
have devised a process able to test the generated code by reusing unit tests presented in Section 4.4.
In principle, to validate the transformation τ, we would need a set of inputs (a set of ASMs) or a way to generate inputs

according to some criteria and an oracle that tells whether the output of τ (C++ code) is what is intended (for example, the
user could write by hand the expected C++ code for each ASM in the test set). We follow a different path since we use the unit
tests to validate the transformations. In our approach, to check whether the resulting code is what is intended, we first check the
well-formedness of the code and then we test its behavior in order to check whether it conforms to the original ASM. This is
consistent with our definition of correctness given in Definition 3 and is based on Theorem 1. This is a sort of indirect testing16,
in which we do not test directly the transformation rules but the results of such transformations. We exploit the fact that both
the ASM and its translation to C++ are executable.
The validation process is depicted in Figure 7 and is explained as follows. Given an Asmeta textual specification A, A is

parsed by the Asmeta parser that builds the corresponding Java objects. For the specification A, we apply our Asm2C++ tool that
implements the code transformation τ in order to obtain the C++ code. Besides, we apply the test generator component4 and
generate a set of abstract test cases that can be translated to C++ unit tests. Then, we perform the following validation activities:
testing the transformation correctness and coverage computation.

5.1 Code generation correctness
First, we want to introduce the notion of conformity of the target C++ code to the source ASM. Formally, we can define the M2T
transformation as a function τ that takes an ASM A and returns a C++ class τ(A) with the corresponding fields and methods.
Each location l of the ASM A is transformed to a member (field or function) of the class τ(A) (as explained by Bonfanti et al.3).
Definition 1 (State conformance). Given an ASM A, we say that the state of an object O of the class τ(A) conforms to a state
s of A if the value of every location l in s is equal to the value of τ(l) in the target object O.
Informally, to compare ASM states and C++ states we look at the values of the ASM functions that are translated to C++

members. To compare values, we use the equality but in the future wemay extend the concept of conformity between locations in
order to introduce some tolerance, e.g., by allowing a small difference between two values.We can refer to controlled conformity,
if we restrict to only controlled locations.
Additionally, we want to introduce the notion of behavioral conformance. In our approach, we want that the target C++

class C preserves the behavior of the ASM. Since ASMs are executable, we require that every execution of the class C has a
corresponding behavior in the abstract specification.
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Definition 2 (Behavioral conformance). We say that a class C = τ(A) behaviorally conforms to the ASM A, if starting from
any reachable state r of any object O of C such that r is conforming to the state s of A, by executing O.step() we obtain a state
r′ that is controlled conforming to the next state s′ of A.
Informally, our C++ code behaves like the original ASM, if starting from a conforming state (with the same monitored and

controlled locations) and executing a step, then the code will arrive to a next state that has the same controlled locations.
We now introduce the concept of correctness of the M2T transformation. We deal with the correctness from two distinct

points of view: first syntactic or type-correctness and second semantic or behavioral conformity.
Definition 3 (Transformation correctness). We say that the transformation τ(A) is correct if the C++ class is syntactically correct
and behaviorally conforms to A.
Verifying the correctness of the translation τ would require the use of formal techniques like model checking or theorem

proving. As shown by Rahim et al.16, several attempts already exist in this direction. In our case, this would require, at least, to
formalize the target language C++ and this would be a great overhead. Moreover, proving the correctness of the transformation
may still not be enough in case of critical systems. For such systems, the transformation should also be tested in any case
(rephrasing what Ed Brinksma said in his 2009 keynote at the Testcom/FATES conference: "Whowould want to fly in an airplane
with software automatically generated with a code generator that has never been tested?"). As observed by Conrad et al.17,
a translation validation approach, that is based on testing, seems to be a better solution in an engineering context. Therefore,
we have concentrated our efforts in validating the transformation by testing. This activity exploits the generated unit tests, as
explained in Section 4.4, and is based on the following theorem.
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C++

Ci Mi

Ci Mi

step

step

Ci+1 Mi+1

Ci+1
set

Mi+1Ci+1

Monitored and 
controlled
functions 
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Controlled 
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FIGURE 8 ASM/C++ conformance

Theorem 1 (Correctness by testing). Given a C++ test t obtained by translating any run s1,… , sn of A, if τ(A) is correct, then,
when executing t, each C++ state before the i-th O.step() will conform to si, all controlled locations will be checked by t, and
t will pass with no errors.
Proof. The evolution and relations between t and the abstract states are depicted in Figure 8. If τ is correct, then the C++ code
is correct and it can be executed. Let’s consider the pair of states si and si+1 and assume that ri in C++ conforms to si in the
abstract run both in the controlled part Ci and the monitored part Mi. The controlled conformity of ri+1 is guaranteed, thanks
to Definition 2, by executing immediately before each state the instruction O.step() (see Table 7). Then, the unit test sets the
monitored variables in C++ to the values in si+1 (see Table 7). At the end, the state in C++ immediately before the (i + 1)-th
step conforms again to si+1. The test will check the controlled part, and due to the assumption that τ is correct, it will find the
expected values for the controlled part. By induction on i, we can prove the theorem.
Thanks to Theorem 1, we are sure that every test will check the conformance of the states in it with the original sequence

of the ASM, and that if a test fails, then there is a fault in the translation. Of course, testing cannot prove the correctness of
the transformation but can help us in gaining confidence in the translation correctness. In the following section, we explain the
process we have devised to put in practice the proposed methodology.
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5.2 Testing the transformation correctness
Syntactic correctness
Using the C++ compiler, we first check the syntactical correctness of the generated code. We use the -Wall option to turn on all
the possible warning flags and quit the process in case of an error. This first phase captures translation faults that produce invalid
source code. Also the tests are compiled in order to obtain the corresponding obj files. The objs for the Asmeta specification
and for the tests are linked together.
Semantic correctness
The obtained executable is executed in order to check that the behavior as specified by the tests corresponds to the behavior
of the generated code. The tests will set the suitable monitored values and check the conformance of the controlled parts. In
this way, we test the semantic correctness of the code according to Theorem 1. A failing test means that the C++ code does not
conform to its specification and since the code has been obtained by applying the transformation, a fault in the transformation
has been found.

5.3 Tools used
To support the validation process, we have used several tools. Ant∗∗ is a tool that supports users while developing software
across multiple platforms. The configuration files are written using XML where each file contains one project and one or more
targets. A target is composed of one or more tasks - pieces of code that can be executed. Moreover, the configuration file contains
properties to support the user in customizing the build process.
To compute the java code coverage we use JaCoCo††, which is a free code coverage library for Java. JaCoCo requires Ant

tasks to compile and run Java programs and to create the coverage report of the executed code. We have written a project using
Ant to automatically compile and run JUnit tests to test the Asm2C++ generator. Once the specifications are translated into C++

code, another task generates C++ unit tests and runs the tests on the generated C++ code. After C++ unit tests are executed, the
Ant file invokes a task to run the JaCoCo tool, which provides the coverage of the selected code. To compute the coverage of
the C++ code, we use the gcov utility that instruments the generated C++ source code and outputs coverage information when it
is executed.

5.4 Dealing with internal nondeterminism
In ASMs, the internal nondeterminism is represented by the following choose rule:
choose x in D with P do R
meaning to execute rule R with an arbitrary x chosen in D, which is a domain or a set of elements, and satisfying the property P.
In C++, the choose rule is translated by randomly searching an element in D satisfying P and then executing the code obtained
by the translation of R. In this way, however, the ASM and the C++ code may choose different values for x. The test obtained
from the abstract test case may, therefore, fail only because of this reason. To tackle this problem, we have enabled the test case
generator and the C++ translator to enforce a deterministic behavior that consists in taking the first element of D such that P is
true and use that for the variable x. Substituting a known nondeterministic behavior with a deterministic alternative is adopted
also in18. Although this approach cannot guarantee that the actual nondeterministic translation is correct, it allows us to test the
translation of the choose rule and the specification containing it.

5.5 Coverage
Although it suffers from well-known shortcomings, the measure of the coverage of software artifacts during testing can give a
good feedback about the depth of the testing activity itself. For this reason, we propose to measure the coverage of the following
aspects.

• First, the coverage of the source language, AsmetaL in our case, gives a good indication on how many constructs are
tackled by the transformation under test τ. The more constructs τ is able to deal with during testing, the higher the

∗∗https://ant.apache.org/
††http://www.eclemma.org/jacoco/

https://ant.apache.org/
http://www.eclemma.org/jacoco/


22 Silvia Bonfanti ET AL

applicability of τ is. A request of a good level of coverage avoids the problem of transformations that are well tested but
only on a limited set of source specifications. In our approach, we instrument the Asmeta parser in order to collect the
information during parsing. This represents the coverage of the inputs of the transformation.

• Second, the coverage of the transformation code, the Asm2C++ code that implements the transformation written in Xtend
and Java in our case, gives a good indication on how much the transformation code itself is tested. If some parts of the
transformation are never covered, there is the risk that some critical conditions are actually not tested, or that some code
is useless and never used therefore. This represents the pure coverage of the transformation.

• Third, the coverage of the produced code, the C++ code including the unit tests in our case, gives an indication on how
much the tests are able to exercise the generated C++ code. Although among the three coverage measures this is less
significant as it depends also on the technique used to generate the tests, it is important to check whether there are parts
of the produced code that are never covered and this may be a signal that the transformation produces some meaningless
code. This represents the coverage of the outputs of the transformation.

Figure 9 shows the coverage of the source language in terms of number of Asmeta constructs covered during parsing. The
coverage increases with the number of specifications, until most of the constructs are covered (80% of the total). We did not cover
all of them, because there are some constructs that are not used in any Asmeta specification in the repository. We initially started
to write ad hoc Asmeta specifications but then we realized that the language contains useless constructs and such language
over-specification should be addressed before in order to simplify the language.

FIGURE 9 Coverage of the Asmeta parser

The coverage of the transformation code is shown in Figure 10. The result obtained is satisfactory because most of the code is
covered, despite not all the classes are 100% covered. By analyzing the missing coverage, we found that it is due to some error
checking that is never performed since it refers to some errors already caught by the parser, the code will never be executed, and
consequently is not coverable.
Regarding the coverage of the produced code, initially, the value was low because the ASM rules were translated in two

execution modes: the first was in the parallel mode (the standard ASM mode), while the second was in the sequential mode.
The sequential mode is used rarely in ASM specifications and the unused code contributes to decrease the percentage of code
coverage (the highest coverage was ≈70%). For this reason, we have improved the translator by producing the sequential version
of rules only if they are actually called by seqBlock rules. The result of this improvement is a higher percentage of code coverage
and in most cases it reaches 100% of the generated code.
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FIGURE 10 Asm2C++ coverage

6 RELATEDWORK

Automatic code generation from formal specifications is available as a part of tool support for several formal methods. SCADE‡‡

andMATLAB/Simulink§§ provide this feature as a commercial off-the-shelf solution. The formal method B19, on the other hand,
provides this facility in the form of the Atelier B platform¶¶, that comes with code generators for different target languages,
including C, C++, Java, and Ada, and its Community Edition is freely available without any restriction. EventB2Java20 is
another tool that generates executable code implemented as a plug-in of the Rodin platform.
As best of our knowledge, there is no state of the art, reusable and publicly available tool for the ASM method that is capable

of automatically generating programming language code from formal specifications written in the ASM method. In the past,
Schmid10 introduced a compilation scheme to transform an ASM specification (written in ASM-SL) into C++ code, but this
work was done within a company setting. Although some of the key results of the proposed compilation scheme were useful for
our work too as shown in Section 4.2.
The challenging nature of the model transformation process also creates the need for validation. This need and the associated

challenges have been documented in several publications21,22,23. A comprehensive survey on the related state of the art are
presented by Rahim et al.16 and by Calegari and Szasz24.
Wimmer et al.25 present a language-agnostic approach for testing model-to-text and text-to-model transformations. They

extend the object constraint language (OCL) with additional string operations to specify contracts for practical examples and to
evaluate the correctness of current UML-to-Java code generators offered by some UML tools. As compared to this work, our
input models are verified and validated by both users and tools, i.e., they are well-formed, implement the specified requirements,
and do not contain unintended behaviors.
Conrad17 proposes a translation validation workflow for the generated code in the context of the IEC 61508 standard. The

translation validation process is comprised of (a) numeric equivalence testing between the generated code and the corresponding
model, and (b) additional measures to demonstrate that unintended functionality has not been introduced during the translation
process. In a similar work, Sampath et al.26 present a technique for verifying and validating Stateflow (a hierarchical state-
machine modeling language that is part of the Simulink/Stateflow tool-suite from The MathWorks Inc.) model translation to C
code. However, both these works are based on the proprietary tool Simulink. Stateflow (a graphical language) is mostly used
in combination with Simulink, where the former is used to model the discrete controllers and the latter is used to model the
continuous dynamics of a system27. Our work, on the other hand, uses the Asmeta framework, which is an open-source project,
freely available, based on the rigorous method ASM, and allows to model a variety of systems.
Küster et al.28 present their initial experiences with a white box model-based approach for testing model transformations

within the context of business process modeling. They propose multiple techniques for constructing test cases and show how to
use them to locate errors in model transformations. As aforementioned, this work is performed within the context of business
process modeling and uses a supported notation. Our work, in comparison, is generally applicable across multiple domains and
uses ASMs, which is a scientifically well-founded method for systems engineering.

‡‡http://www.esterel-technologies.com/products/scade-suite/
§§https://www.mathworks.com/products/simulink/
¶¶http://www.atelierb.eu/en/
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Stümer et al.29 present a general and systematic test approach for model-based code generation. This approach undertakes
formal descriptions of the optimizations under test by using graph transformation rules. The proposed tool automatically creates
test models (first-order test cases) from the classification tree, which is used to derive a formal description of the input space of
an optimization rule. In a further step, test vectors (second-order test cases) are generated, which ensure structural coverage of
the test model and the corresponding code. Model and generated code then undergo a back-to-back test using these test vectors.
A signal comparison of the test outputs is used to determine functional equivalence between the model and the code. The main
difference between this work and our approach is that, although many of their observations are general, they target Simulink
and Stateflow programs. Moreover, we extend their use of coverage information to measure the quality of the testing activity by
explicitly distinguishing between several types of coverage.
In another work, Satpathy et al.30 generate test cases by performing symbolic execution over a B model, and from those

test cases they obtain a Java program. The resulted Java program acts as a test driver. When it runs in conjunction with the
implementation, testing is performed in an automatic manner. A similar work is reported byAmbert et al.31. In this paper, authors
present the BZ-Testing Tool (BZ-TT), which is capable of generating functional test cases from B as well as Z32 specifications
using constraint logic programming.
Engel et al.33 presented a method for automatic generation of self-contained unit tests in the JUnit format##. The implementa-

tion is based on the verification system KeY34 and supports the JAVA CARD programming language35. The approach exploits
the implementation of a system and does not necessarily require its detailed formal specification.
Cheon et al.36 present an approach to implement unit test oracles from formal behavioral interface specifications. Instead of

writing testing code, a programmer writes formal specifications (e.g., pre- and postconditions) that are later used by runtime
assertion checkers as the decision procedure for test oracles. The authors have implemented the proposed approach using the
Java Modeling Language (JML)37 and the JUnit testing framework.
Lamancha et al.38 present an approach to automatically generate test cases through model transformations. Their work takes

as input UML 2.0 sequence diagrams39 and automatically derive test cases scenarios that conform the UML Testing Profile‖‖.
In this work, these test case scenarios are automatically transformed using the model to text transformation. The models used
for test case generation in this work are not necessarily amenable to verification and validation activities.
One of the main differences between the work presented in this paper regarding testing and other works is that our approach is

grounded in the Asmeta framework that supports the complete model-driven software engineering paradigm. Starting from the
specification, the models are rigorously specified and analyzed for their correctness through validation and verification tools.
After that, the Asm2C++ tool translates the specification in C++ code and generates C++ unit tests to verify the correct behavior
of the generated C++ code.

7 CONCLUSION

In this paper, we have presented the translation of ASM models into C++ code to automatically obtain the system implementa-
tion. The generation of unit tests starting from the ASM models and the generation of BDD scenarios from Asmeta scenarios
have been implemented to automatically obtain tests for the implementation. Finally, we have presented the validation of the
transformation to guarantee the correctness of the process.
The generation process of the C++ code starts from the ASM specification and using Asm2C++ the C++ code of the model is

automatically generated. The translation from Asmeta to C++ code is shown in Section 4.2. We firstly show how a generic ASM
model is translated and then for each ASM constructor we display the translation adopted. We have dealt with two characteristics
of ASM models – the parallelism and the nondeterminism. We have found the solution to maintaining in the C++ code the
ASM behavior. Furthermore, starting from the C++ code generated by Asm2C++ tool, we have applied some steps to generate
a runnable Arduino project as shown in Figure 5. The unit tests are generated automatically starting from the ASM model by
following the process shown in Figure 6. Starting from the ASM specification, the abstract tests are generated by a test case
generator and then they are translated into C++ unit tests using Asm2C++. We have adopted two approaches: the first approach
is based on coverage-driven generation and covers the C++ code better than the second approach which generates test sequences
randomly. However, random generation can be applied to a greater set of specifications and it requires much less resources.
BDD tests are generated starting from AVALLA scenarios using the ASMETAVBDD tool. Most of the textual information in the

##http://junit.org
‖‖http://utp.omg.org/

http://junit.org
http://utp.omg.org/
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BDD scenario is generated automatically from the corresponding AVALLA scenario. The process to automatically validate the
transformation correctness from Asmeta specifications to the C++ code is shown in Section 5. The process consists in parsing
an Asmeta specification, and generating the C++ code and unit test cases. The source code is compiled, linked, and executed.
During tests execution, possible faults can be found and the code coverage information is collected.
The application of the activities presented before guarantee that starting from a validated and verified Asmeta specification,

we can automatically generate the code implementation with unit tests executable on the code.
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