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Abstract In this paper we present a language for Abstract State Madpaci-
fications. The ASM metamodel (AsmM), introduced in [18], M®F-compliant
metamodel representing in an abstract and visual way theeptmand constructs
of the ASMs formalism as described in [3]. Here we preseabacrete syntax
(AsmM-CS), an EBNF (extended Backus-Naur Form) grammaveléfrom the
AsmM as a textual notation to be used by modelers to effdgtiweite ASM
models complaint with AsmM. We also give an overview of thehtdque ap-
plied to derive AsmM-CS from AsmM, showing how the OMG metalelebased
approach can be exploited to derive languages from metdmode

1 Introduction

Metamodelling is nowadays supported by the Model-Driveahtecture (MDA) [11]
approach as a modular and layered way to endow a languaganatbstract notation
S0 separating the abstract syntax and semantics of thedgegionstructs from their
differentconcrete notationdn the MDA vision, a language has to be equipped by at
least a proper metamodel-based definition of the abstratasgf the language, an easy
to learn concrete syntax, possibly graphic, a well-foungehantics, and a uniform
style (through, e.g., the XML base format [25]) of repregemntanguage constructs for
interchanging purposes.

As already discussed in [18], a standard interchange foistadtparticular interest
for the ASM (Abstract State Machines) community, since AS#I$ have been usually
developed by individual research groups, are loosely @ilghd have syntaxes strictly
depending on the target environment (compare, for exarAgl@Gofer [19], ASM-SL
[6], XASM [1], ASML [14]).

Taking advantage of the metamodel-based approach, we défind8] a new
metamodel, calledbstract State Machine Metamod@&lsmM, in brief), for the ASM
method. The AsmM framework introducesalstract syntax a MOF-compliant meta-
model [12] representing in an abstract and visual way theepts and constructs of
the ASM formalism as described in [3] —, andiaterchange syntax a standard XMI-
based format [24] automatically derived from the AsmM — fue tnterchange of ASM
models. Here, we presentcancrete syntaxAsmM-CS), namely an EBNF (extended
Backus-Naur Form) grammar derived from the AsmM as a textogtion to write
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ASM models in a textual form. For thesmM semanticsve assume the ASM seman-
tics given in [3]. A complete description of the AsmM 1.0 sifieation is given in [2].

The AsmM proposal can be viewed as the first step towards aititefiof a stan-
dardfamily of language$or the ASM formal method and a systematic integration of a
number of loosely-coupled ASM tools based upon metamaugtéchniques.

We like to remark that the effort of developing a new BNF graanfor an ASM lan-
guage from scratch would not be less than the effort of d@ietpa MOF-metamodel
for ASMs and deriving a BNF grammar from it. Moreover, the ambdel approach has
the advantage of being suitable to derive different BNE-likammars from the same
MOF-metamodel, and benefits of some other features as tppbst) abstract graphical
view, interchange format, standard encoding in progrargri@inguages, etc.

The paper is organized as follows. In Section 2, the AsmM &tacsyntax is pre-
sented. Section 3 shows an example of an ASM specificatidtewtising our concrete
syntax. The process of deriving the AsmM-CS from the AsmMesatibed in Section
4. Related and future work are given in Sections 5 and 6.

2 The AsmM Concrete Syntax (AsmM-CS)

To understand the content of the following sections, weragdihe reader to be familiar
with the AsmM. The AsmM concrete syntax can be divided roughio four parts,
namely thestructural languagethe definitional languaggethe language of termsand
the behavioural language (lmnguage of rules The structural language corresponds to
the ASMSt ruct ur e package of the AsmM abstract syntax and provides the cartstru
to describe the structure of an ASM. The definitional languagrresponds to th&SM

Defi nitions package of the AsmM abstract syntax and provides the natttidefine
the basic ASM elements such as functions, domains, ruldsxéoms. The language of
terms corresponds to tA€Mrer ns package of the AsmM abstract syntax and provides
all kinds of syntactic expressions which can be evaluatethiASM state. Finally, the
behavioural language corresponds toABKTr ansi t i onRul es package of the AsmM
abstract syntax and provides a notation to specify the ASMsition rule schemes.

The following sections present the notation of each syitt@ettegory in a tabular
way for better readability. The complete EBNF grammar cafobed in [2].

We adopt the following conventions: keywords appedraid face; a pair of square
braces [] (not in bold face) indicates that the enclosedesgion is optional and must
not be considered part of the concrete notation; the not#fio..,t, indicates one or
more elements.

2.1 The Structural Language

An ASM model is structured into four sectionshaader aninitialization, abodyand a
main rule Figure 1 shows the concrete syntax for each section of an A@klel. The
name of the ASM is specified before the header section togeiliethe optional key-
wordi sAsyncr to specify if the ASM is an asynchronous multi-agent or neisyncr

has no meaning for single-agent ASMs. A lightweight notiénmmdule is also sup-
ported; an ASMmoduleis an ASM without a main rule and without a characterization



of the set of initial states. A module has the same syntax &M with the keyword
asmreplaced by the keywontbdul e.

The header section consists of sommport clausesand oneexport clausewhich
describe the ASM interface for the communication with otA&Ms or ASM mod-
ules. Thesignaturecontains thaleclarationsof domains and functions. Every ASM is
allowed to use only identifiers (for domains, functions ankks) which are declared
within its header’s signature or imported from other modulEhe imported domains
and functions will be statically added in the signature &f thachine as new functions
and the imported rules will enrich the module interface efthachine.

The initialization section consists of a setioitial states one of which is elected as
default Figure 1 shows the schema of an initial state. An initialestiefines an initial
value for each dynamic function and eaxincrete-domaifsee sect. 2.2 below) already
declared in the signature of the ASMn addition, the initial state associates eagent
of the machine with the ageitt name angrogram(a named transition rule).

The body section consists définitionsof static concrete-domains and static/derived
functions already declared in the signafiiréeclarations(definitions) of transition
rules, anddeclaration(definitions) of axioms stating assumptions and constsaont
functions, domains, and transition rules of the ASM.

The main rule is a named transition rule denoted by the kegwairn. It is closed
(namely it does not contain free variables) so that its séicedepends only on the
state of the machine. Executing an ASM means executing iis rake starting from a
specified initial state. If the ASM has no main rule, by defiathie ASM starts executing
in parallel the agent’s programs given by the agent initétlon clauses in a specified
initial state.

2.2 The Definitional Language

To declare an ASM function it is necessary to specify its natoenain, and codomain.
The function name must be preceded by one of the keyvstadis, dynamicor derived
depending on the function type. Dynamic functions are ®rrtilassified irmonitored
controlled shared out, andlocal. Dynamic functions are allowed to be declaretbas
only in the scope of a turbo rule with local state (see sed). Zhey are not considered
to be part of the signature of the ASM. Figure 2 shows the air@yntax for a function
declaration.

Our language admits the following domain (or universe)sifasation:type-domains
and concrete-domainsThe type-domains represent all possibiger domainsand
are further classified inbasic type-domainsdomains for primitive data values like
booleans, reals, integers, naturals, strings, stouctured type-domainsiomains for
building data structures (like sets, sequences, bags,,mgpes, etc.) over other type-
domainsabstract type-domairdynamic user-named domains whose elements have no
precise structure and are imported as fresh elements froossilyly infinite reserve

1 Only dynamic functions and dynamic concrete-domains neés initialized.

2 Only static/derived functions and static concrete-domaieed to be defined.

3 In practical applications, the superunivefSgof an ASM stateSis usually divided into smaller
universes. In the AsmM, these smal&iper domainare calledype-domains



Model Element

Concrete Syntax

ASM [asynchr] (asm|module) name
Header [import Hh[(idul"‘lidlm)]
import m [ (id,,, ...,idkm)]]
[export id,,...,id.] or [export *]
signature:
[dom decl,
dom_decl]
[fun_decl;
fun _decl,]
where:
- 1idiq, ..., 1d;,,; are names for domains, functions and rules imported from module m; (if omitted all
the content of the export clause of m; is imported),
-1idq, ..., 1id, are names for domains, functions and rules exported from the ASM (export * is
used to export all functions and rules),
- dom_decl, and fun_decl, are declarations of domains and functions
InitialState [default] init sn:
[domain D,= Dterm,
domain D = Dterm,]
[function f,[(py; in Dy, ...,py, in Dy )]= Fterm
function £ [(py; in Dyy,-v./Ppe, in Dy ) 1= Fterm]
[<a,>:agent <r,>
<a >:agent <r >]
where:
- sn is the name of the initial state,
- Dterm; and Fterm; are terms specifying the initial value of the domains D, and functions £,
- p,; are variables ranging in the domain D, ; and specifying the formal parameters of the functions £,
- a; and r, are respectively the agents id and their associated programs
Body o
definitions
[domain D,= Dterm,
domain D= Dterm,]
[function f;[(py; in Dyj, ..., Py in Dy )= Fterm,
function f [ (Py in Dg, oo/ Pr in Dy ) 1= Frerm]
[rule decl;
rule decl]
[axiom decl,
axiom decl,]
where:
— Dterm; and Ftermn, are terms specifying the definitions of the domains D, and functions £,
- py; are variables ranging in the domain D, ; and specifying the formal parameters of the functions £,
—rule decl; and axiom_decl; are declarations of rules and axioms
MainRule

[main rule decl]

Figure 1. Structure of an ASM model



Model Element Concrete Syntax
StaticFunction static f: [D ->] C
[dynamic]monitored f: [ D -> ] C
[dynamic]controlled f: [ D -> ] C
DynamicFunction | [dynamic]shared f: [ D -> ] C
[dynamic]out f: [ D -> ] C
[dynamic]local f: [ D -> ] C
DerivedFunction |derived f: [ D -> ] C

Figure 2. Notation for declaring a functiofi from D toC

by means okxtend rulegsee sect. 2.4 below); arehum domaindinite user-named
enumerations to introduce new concepts of type (e.g. onedefiye the enumeration
Color = {RED,GREEN,BLUE}o introduce the new concept of “color”).

Concrete domains are, instead, user-named sub-domaigpesfibmains. As for
functions, a concrete domain can be static or dynamic.

Model Element

Concrete Syntax

ProductDomain
SequenceDomain

PowersetDomain

Prod(D,,D,,...,D,)

crtn

Seq(D)

Powerset (D)

BasicTD basic domain D
AbstractTD abstract domain D
enum domain D = {EL,,...,EL]}
EnumTD
where EL,, ..., EL, are the elements of the enumeration
StructuredTD

BagDomain| Bag(D)
MapDomain| Map (D,,D,)
where D, D, . . ., D, are type-domains over which the structured domains are defined
ConcreteDomain [dynamic] domain D subsetof TD

where TD is the type domain identifying the structure of the elements of the concrete domain D

Figure 3. Notation for declaring a domain D

Figure 3 shows the notation for declaring a domain. As bggie-domains (defined
in the standard library) we admit onlgonpl ex, Real , I nteger, Natural, String,
Char, Bool ean, Rul e, and the singletoindef . Moreover, two other special abstract
type-domains are considered predefinedAtfent domain for agents, and tiReser ve
domain for representing a possibly infinite reserve whiabvjates fresh elements to
increase the working space of an ASM. TReser ve domain is considered abstract,



and thereforelynamic since it is updated automatically upon execution ofatend
rule (see sect. 2.4 below) — it can not be updated directly by dthasition rules —.
Finally, Figure 4 shows named transition rules and axionctadation.

ModelElement Concrete Syntax

rule [macro] R [(x; in D,,...,x, in D))]= rule

RuleDeclaration | Where:
— R is a transition rule whose body is rule,

— %, are variables ranging in the domain D, and specifying the formal parameters of R

axiom over id,,...,1d :term

where:

— 1id, are names of functions, domains and rules. Since functions can be overloaded
(provided that their domains differ), to distinguish among functions with the same
name, function names must be followed by the name of the domain enclosed in (),
e.g.,asin £(D).

— tern is the term specifying the constraint

Axiom

Figure 4. Notation for declaring rules and axioms

2.3 The Language of Terms

Terms are syntactic objects denoting elements of ASM st@iggms are interpreted in
an ASM stateSif the elements of the super-universe®# the set of interpretation of
function names of the ASM signature — are assigned to thalas of the terms.

As in first-order logic, we admit basic terms (variables,stants, and function ap-
plications) and in addition we introduce special terms tikgles, collection terms (sets,
maps, sequences, and bags), variable-binding terms(lest comprehension terms,
finite quantification terms, etc.), etc. These last speeiahs have been added by bor-
rowing concepts from the ASM-SL language [6].

The termRuleAsTernis a special term, aule term used to represent a transition
rule where a term is expected (e.g as actual parameter ie application to represent
a transition rule). Its interpretation results, therefamea transition rule.

As in [3], we classify variables (not to be confused with §-famctions fixed by the
ASM signature) inogical variables location variablesandrule variables A location
variable, appearing as formal parameter in a rule dectaratan be used in the rule
body on the left-hand side of an update rule, while a rulealdei can be used at places
where a transition rule is expected. All other variablescanesideredogical. In a rule
application, logical variables have to be replaced by gerierms; location variables
have to be replaced by location terms — namely, functiondestmich start with a dy-
namic function fixed by the ASM signature —; and rule varialiiave to be replaced by
rule terms.

Within the transition rules, each agent can identify itdgff means of a special
reserved O-ary functioself : Agenf which is interpreted by each agerdsa. Moreover,



Model Element Concrete Syntax Examples
ConstantTerm
ComplexTerm| x+iy or x-iy 2+i3, -2-i3
where x and y are real numbers and i is the imaginary unit.

RealTerm | As a floating point numeric literal. +3.4, -3.4, 3.4
IntegerTerm | As a signed numeric literal. +3, -3
NaturalTerm | As a numeric literal. 3

CharTerm | As a char literal delimited by single quotes. ra’

StringTerm | A string literal delimited by double quotes. "hello"
BooleanTerm| true, false true, false
UndefTerm| undef undef
EnumTerm| e RED
where e is an element of an enumeration type-domain.
VariableTerm v $x
where v is the name of a variable.
FunctionTerm [id.]1f [(t1, ... ,En)] max (2,3)
where: abs (-4)
- f is the function to apply, self.f(5)

- (ti1,...,tn)is atuple term representing the actual parameters
- 1dis the agent that apply the function .

See FunctionTerm.

LocationTerm

Figure 5. Basic Terms Notation

for a functionf defined fromX to'Y, both the expressiorf§self x) andself f (x) denote
the private version of (x) of the agenself

2.4 The Behavioral Language (or the Language of Rules)

We classify transition rules in two grouplsasicrules andturbo rules. According to
[3], the former are simply rules, like thekip ruleand theupdate rule while the latter
are rules, like thesequence ruland theiterate rule introduced to support practical
composition and structuring principles of the ASMs. Othderschemes are derived
from the basic and the turbo rules.

Figures 7, 8, and 9 show the concrete notation of all kindsilefsrpresented in [3].

Variables appearing in rules suchleg forall andchooseare not free variable oc-
currences, but they are bound to 8oepedetermined by the rule portion in which they
are used. These variables are not stored in the state of tMelAB in a local envi-
ronment. The formal parameters specified in a rule dectaratie, therefore, the only
freely occurring variables in the rule body.

We consider aamed rule applicatioa form of rule. We distinguish, in particular, a
macro rule application fti,..,t,] (a macro-call rulg — resulting in the execution of the
expansion of obtained replacing in thbodypart ofr the formal parameters, .., X,
(of the declaration of) with the corresponding values of the actual parameterst,

— from aturbo rule application (ty, ..,tn) (theturbo-call rule) with aturbo submachine
semantics (see sect. 4.1.2 of [3]) to express in abstracttioe usual imperative calling



Model Element

Concrete Syntax

Examples

ConditionalTerm

if G then tthen [else teise] endif

where:
— G is aterm representing a boolean condition
— Cthen and teise are terms of the same nature

if $x>0 then 1
else if $x=0 then 0
else 0-1
endif
endif

DomainTerm

D name of a cocrete domain or a type-domain

Integer, prod(Real,String)

RuleAsTerm <<R>> where R is a transition rule <<Lskip>>,<Lf:=1>>
TupleTerm (ti, ..., ta) (1, 'a',<<skip>>), (true)
where ti are terms with a possibly distinct nature. The empty
tuple is not allowed.
CaseTerm switch € switch $x
case 1 s1 case tn : Sn case 1:'a’
[otherwise sn+1] case 2:'b"
endswitch otherwise'c’
where t, t: are terms of the same nature, and s; are terms of endswitch
the same nature too.
CollectionTerm
SequenceTerm | [t1, ..., tn] [1 forthe empty sequence ["hello™, "bye"1, [[],[1,2]]
SetTerm | {t1, ..., tn}  {} forthe empty set {01,01,21, 111}, {'a",'b"}
BagTerm |<ti, ..., ta> <> for the empty bag <1,2,1>, <'a','b','a','b'>
MapTerm | {t1->s1, ..., ta=>sn} {->} for the empty map {'a'->1,'h'->2, 'c'->3}
where ti are terms of the same nature.
Interval notation for finite sequences, sets and bags over reals:
[tiow..tuws[,s]] {tiov..twp[,s]} <tiow..tws[,s]> |[1..4] = [1,2,3,4]
where: {1..2,0.5}={1.0,1.5,2.00}
— tiowand tupp are the lower and the upper real numbers, and  |<1..10,2> = <1,3,5,7, 9>
- sis an unsigned real number for the step (if omitted, s=1) .
Comprehension
Term
SequenceCT | [tvi,...,va|lv1 in Si,...,vnin Sn [with Gvi,...,wn]]|[g($x) | $x in [0..2*3n-1]
with $x mod 2=0]
SetCT|{tvi,...,valv: in D1,...,vain Dn [with Gvi,...,va]} | {2+5x|%$x in {0..S$n}}
BagCT [<tvi,...,vnlvi in Bi,...,vanin Bn [with Gvi,...,va]>|<g($x) 8% in <0..$n> >
MapCT | {tvi,...,vn=>sv1,...,vn|v1 in D1, ...,vn in Dn {5$x=>2%3x|$x in{1,3,5,7}}
[with Gvi,...,vn]}
where:
— Vi, ...,Vnare variables and tvi,...,vnis aterm,
— Si are collection terms where vi take their value, and
— Gv1,...,vn is a term representing a boolean condition.
LetTerm let(vi=ti, ..., vn=tn)in tvi,...,vn endlet let ($double x = $x+5x)
. v . in $double x * S$double x
where vi are variables and t1, . .., tn, tvi,...,vn are terms. Endlet
FiniteQuantification
Term
ExistTerm| (exist viin Di,...,van in Dn [with Gvi,...,vn]) (exist S$x in X with $x=2)
ExistUniqueTerm | (exist unique vi in Di,...,vn in Do (exist unique $x in X
[with Gvi,...,vn]) with $x=0)
ForallTerm | (forall vi in Di,...,ve in Dn [with Gv1,...,vwn]) | (forall $x in X with $x>=0)
where:
— Vi,...,Vnare variables,

— Di are terms representing domains where vi take their value,
— Gvi,...,vais a term representing a boolean condition.

Figure 6. Extended Terms Notation




Model Element

Concrete Syntax

SkipRule Skip
UpdateRule 1 =t
where t is a generic term and 1 can be either a location term or a location variable
BlockRule par R, R, ... R, endpar

where R,,R,, . .. ,R, are transition rules

ConditionalRule

if G then R, [else R, _.] endif

where G is a term representing a boolean condition, R, and R_, _, are transition rules
LetRule let (v, =t,, ..., v, = t)) in
va, ...,vn
endlet
where v,, ...,v arevariables, t,,...,t aretermsandR ,  _ isa transition rule
ForallRule forall v, in D, ..., v in D,
with G, on 4O Ry, i,
where v,, ..., v, arevariables, D, ..., D, are terms representing domains, G, = isa
term representing a boolean conditionand R, s a transition rule
ChooseRule choose v, in D;, ..., v_in D
with G, ., do Ry
[ifnone R]
where v, ..., v _arevariables, D,, ..., D areterms representing domains, G, isa
term representing a boolean condition, R, _ and P are transition rules
MacroCallRule rlty, ...t

where r is the name of a macrorule and t,, . . ., t_ are terms representing the arguments

r[1 stands for a macro application with no arguments

ExtendRule

extend D with v,,...,v, do Ry, ..

where D is the name of the abstract type-domain to extend, v, . .., v _ are logical variables
which are bound to the new elements imported from the reserve, and R is a transition rule

Figure 7. Basic Rules Notation




Model Element

Concrete Syntax

SeqRule seq R, R, ... R, endseq
where R, ,R,, . .., R, are transition rules
IterateRule iterate R enditerate

where R is a transition rule

TurboCallRule

(ty,---,t,)

where r is the name of a transition rule and ¢, .. ., £ are
terms representing the arguments.

()
stands for a rule application with no arguments

TryCatchRule

try P eatch 1,,...,1, O

where P, ¢ are transition rules and 1,, . . ., 1_ are either
location terms or location variables

TurboReturnRule

1 <= oty eee, t)

where 1 is either a location term or a location variable and
r{ty,...,t,) isa TurboCailRuie rule

TurboLocalStateRule

local £, :[D, ->]C; [ Init,]
local £ :[D_ ->]C [Init]
body

where Init,, ..., Init_ and body are transition rules, £,
are local dynamic functions from domain D, to domain C;

Figure 8. Turbo Rules Notation

Model Element

Concrete Syntax

CaseRule switch t

caset,!R, ...caset IR
[otherwise R

w1

endswitch

where t,t,,...,t aretermsandR,, ...,R R, are transition rules

nf ntl

RecursiveWhileRule recwhile Gdo R

where G is a term representing a boolean condition and r is a transition rule

IterativeWhileRule while G do R

where G is a term representing a boolean condition and R is a transition rule

Figure 9. Derived Rules Notation




mechanism. Moreover, since it is assumed that turbo rulécapipns have aall by-

namesemantics, i.e. the formal parameters are substituteeirutebodyby the actual
parameters so that these are evaluated only later when thaysead, aall-by-value
evaluation of a rule application can be achieved (as sugdéntsect. 4.1.2 of [3])
combining the rule with alet rule as follows:

r(yi,...,yn)=let (x1=vi,...,Xa=¥Yn) i n body endl et

A turbo-return ruleis a mechanism which allows one to retrieve the intendedmetu
value of a named turbo application ruiefrom a locationl determined by the rule
caller. Semantically speaking, a turbo-return rule demateule with the overall effect
of executing the body of, where the 0-ary dynamic function denotedIblyas been
substituted for a reserved 0-ary functi@sultwhich acts as placeholder where to store
the intended return value. A good encapsulation discipliigake care, therefore, that
r (i) contains an update rule of the fomesult:=t, and it (i) does not modify the values
of terms appearing ih since they contribute to determine the location where #ilerc
expects to find the return value.

3 An Example of an ASM Specification

In this section, we show the ASM specification of a Flip-FI®pe original model was
given at page 47 of [3] by means of the following two rules: fin&t one (F5M) which
models a generic finite state machine and the second one misteintiates the & for
a Flip-Flop.

Fsm(i,cond,rulej)=if ctl_state=i and condthen {rule, ctl_st=j}
FLiPFLOP = {F sM(0,high,skip,1),Fsm(1,low,skip,0)}

The AsmM specification of the Flip-Flop follors

asmflip_flop
si gnature:
domai n State subsetof Integer
dynamiccontrol l edctl_state : State
dynamni c noni t or ed high : Bool ean
dynami c noni tored|ow : Bool ean

default initinitial _state:
functionctl_state = 0
functionhigh = fal se
functionlow = fal se

4 We assume the following rules to distinguish among namesadfbles, enumeration ele-
ments, domains, rules, and functions: a variable idensfints always with an initial “$”; an
enum literal is a string of length greater than or equal to &vd consisting of upper-case let-
ters only; a domain identifier begins always with an uppesedatter; a rule identifier always
begins with the lower-case letter “r” followed by “_”; a fulien identifier always begins with
a lower-case letter, but can not start with “r_".



definitions:
domain State = {0, 1}
ruler_Fsn($i in State, $cond in Boolean, $rule in Rule,$j in State)=
ifctl_st =% and $cond
t hen par
$rule
ctl_st := §j
endpar
endi f

axi omover hi gh(Bool ean), | ow( Bool ean): not (high and | ow)

mainruler flip_flop =
par
r_Fsn(0, hi gh, <<ski p>>, 1)
r_Fsn(1, | ow, <<skip>>,0)
endpar

4 How to Derive an AsmM-CS from the AsmM: Mapping MOF to
EBNF

MOF is a large OO modelling language with rich concepts taespinformation mod-
els. The main MOF modelling constructs aRacckagefor containment of classes and
associationsClass which contains attributes and participates in associatidssoci-
ation, which represents a set of links between instances of twoifgge classes and
which can have aggregation and composition properfigspute, which can be either
in the form of one of a range of data types or an instance of ssckndReference
which is a class’s view on an association in which it pargs. For more details on
these and other MOF modelling concepts, see the specifidaij.

A mapping from MOF-based metamodels to EBNF grammiansvard engineer-
ing) is more demanding than the oppositeverse engineerijg The reason is that
MOF-based metamodels inherently contain more informattiam EBNF grammars.
An EBNF grammar can be presented as a tree of nodes and diedtes, but the
edges themselves do not contain as much information as mpiegpa a metamodel.
Metamodels instead are graphs with special edges that datelpgreted in many ways
(generalization semantics, aggregation semantics, csitiggosemantics, etc.). A map-
ping from EBNF grammars to metamodels uses only a subseteofdpabilities of
metamodels, and the generated metamodel may need to berfenttiched in order to
make it more abstract.

The AsmM-CS has been derived from the semantic interpogtati the AsmM in
order to simplify the mapping between the concrete syntakthe abstract ofeIn
our AsmM we used a subset of the MOF 1.4 constructs which idl @maugh to be

5 This approach was inspired by the recent OCL 2.0 specific#ti8] (which is also based on a
MOF-compliant metamodel) made to align the OCL languagé wéspect to UML/MOF 2.0
[23].



easily translated in EBNF. Table 1 describes the subseedf#@F constructs we used
together with the mapping rules from MOF to EBNF we adopteakitain the AsmM-
CS. Figure 10 shows the application of the mapping rules tagnfient of AsmM.

[MOF Concepts

|[EBNF Concepts

Package

Class

A non terminal C. The production rule for C is determined by the
attributes and the relations with other classes.

of Boolean type

Attribute (instance level, single primitive value)

A special keyword reflecting the name of the attribute followed by ?

of Enum type

A choice group of keywords reflecting the names of the enum literals

of String type

lentifiers

Association

see Reference

Generalization
from a concrete
super-class

The production rules for the non terminals of the super-class and of the
sub-classes are determined as usual. The properties inherited have
the same representation in both the production for the non terminal of
the super-class and the productions for the non terminals of the
sub-classes.

from an abstract
super-class A to

sub-classes A1, ...,An

A choice group A::=Aq]...|An
The properties inherited have the same representation in all
productions of the non terminals.

Aggregation see Reference

Composition see Reference

Reference
in a composition or A full representation, i.e. an occurrence of the non terminal of the class
aggregation of the contained instance.

in a simple association

A keyword combined with either a full representation of the instance
(an occurrence of the non terminal), or a representation by name, i.e.
an occurrence of the identifier of the instance.

Multiplicity

Repetition ranges
*

+

?or[]

Table 1. Mapping from MOF to EBNF

MOF Referenceare a means for classes to be aware of class instances that pla
part in an association (either simple or composite), by igiiog a view into the associ-
ation as it pertains to the observing instance. For thisoreabe representation within
the production rule of a non terminal corresponding to asciastance of a reference
depends in part on the nature of the association to whiclietse

Since in a composition the contained instance does not eutstde the scope of
the whole instance, the reference to the contained instamepresented in the produc-
tion rule of the non terminal corresponding to the whole £lag afull representation



attribute class

Asm

isfAsynchr: Boolean

headerSectian name : String reference
1 \; =zreference=» headergection | Header

Header ==reference== initialState : Initialization
==reference== defaultinitialState : Initialization
=«reference== hodySection : Body
==reference== mainrule : RuleDeclaration

¢ composition
nitislstate ~ Aumnmmmate lquvsec“m . multiplicity

Initialization Body RuleDeclaration
+name : String (from ASMASMDefintions)
Asm = ("asynchr")? "asm" <|D>
Header
( (Initialization)* "default” Initialization (Initialization)* )?
Body

( "main" RuleDeclaration )?

Figure 10. From MOF to EBNF: an example

i.e. as a non terminal (corresponding to the class of theadmed instance) combined
with other parts of the production taking into account thdtiplicities. An eventual
reference to the whole instance is not represented.

In a simple association (that is, the associated instantexiat outside the scope
of the other instance), instead, the representation oltfeeence consists of a keyword
reflecting the name of the reference (or the name of the agsmtiend) combined with
either a full representation of the instance (an occurreridhe non terminal of the
associated class), dwy namei.e. an occurrence of the identifier (the name attribute
value of the instance) if any, taking into account the miittifies.

The grammar obtained, of course, may need to be further q@thand concretized
for the purpose of construction of a parser/compiler. Retsfmethe derivation process
presented here, for example, the AsmM-CS has been alreatiyneized a bit, in or-
der to allow alternative representations of the same cdadgp. a class instance in
the metamodel can admit many equivalent notations) sucheasmterval notation for
sets/sequences/bags of reals, special expressions torsthgpinfix notation for some
well-known functions on basic domains (like plus, minusjtyetc.), the use of the two
keywordsas mandnodul e to better distinguish an ASM from an ASM module, etc..

5 Related Work

Concerning the definition of a concrete language for ASMiseoprevious proposals
exist. The Abstract State Machine Language (AsmL) [14] tged by the Foundation
Software Engineering group at Microsoft is the greatesirefh this respect. AsmL is
a rich executable specification language, expression ajedtadriented, based on the



theory of Abstract State Machines and fully integrated itte .NET framework and
Microsoft development tools; AsmL does not provide a seiattucture targeted for
the ASM method. “One can see it as a fusion of the AbstraceS3tchine paradigm
and the .NET type system, influenced to an extent by otheifgmion languages like
VDM or Z” [26]. Adopting a terminology currently used in theDA [11] approach,
AsmL is a powerful platform-specific modelling language PSor the .NET type
system. A similar consideration can be made also for the AsfmGanguage [19]. An
AsmGofer specification can be seen, in fact, as a specific RBMhé Gofer environ-
ment. Other specific languages for the ASMs, no longer miaieth are ASM-SL [6],
which adopts a functional style being developed in ML andolthas inspired us in
the language of terms, and XASM [1] which is integrated in t@es, an environment
generally used for defining programming language semaatidgrammar.

A platform-independent modelling (PIM) language for ASMsutd allow to de-
fine precisdransformation bridgeg order to automatically map an ASM PIM into an
AsmGofer-PSM, or into an AsmL-PSM, and so on. In the same ame may “com-
pile” ASMs models into programming languages such as C++,Ja¥a and so on, to
provide efficient code generation capabilities aadnd trip engineerindacilities as
well.

Concerning the metamodelling technique for the definitibfanguages, we can
mention the official metamodels supported by the OMG [15]M®F itself [12], for
UML [22], for OCL [13], for CWM [4], etc. Academic communitgelike the Graph
Transformation community [21,16] and the Petri Net comrufil7,7], have also
started to settle their tools on general metamodels and XMl-based formats.

Recently, a metamodel for the ITU language SDL-2000 [20] deasloped [9,10].
The authors present a semi-automagicerse engineeringethodology that allows the
derivation of a metamodel from a formal syntax definition ofexisting language.
The SDL metamodel has been derived from the SDL grammar tisinghethodology.
Their method is complementary with the derivation processented in this paper (see
Sect. 4 above), since our approach has to be considdoediard engineeringprocess
consisting in deriving a concrete textual notation from bsteact metamodel.

Other more complex MOF-to-text tools, capable of genegatixt grammars from
specific MOF-based repositories, exist [8,5]. These tamisler the content of a MOF-
based repository (known as a MOFlet) in textual form, comfiog to some syntactic
rules (grammar). However, although automatic, since theydasigned to work with
any MOF model and generate their target grammar based oefpred patterns, they
do not permit a detailed customization of the generatediagg.

6 Conclusions and Future Directions

Within the language engineering area, metamodels provataralardized visual rep-
resentation easy to learn and supported by a number of mdissign, implement and
document languages.

We propose a metamodelling-based definition of a languégeAsmM, for the
ASM theory described in [3]. The AsmM has been defined usirgrvetalanguages:



the MOF [12] and EBNF. The MOF is used to describe the abssyadix, while the
EBNF is used to describe the (textual) concrete syntax.

A prior version of the AsmM and also of an XML/XMI -based intbange syntax
was presented in [18]. In this paper, we present the AsmM rebasyntax and we
describe the MOF-to-EBNF mapping rules applied to derieedbncrete syntax from
the abstract syntax.

The all AsmM is still evolving because, in order to make it tatglard”, one of our
main goals is to modify existing constructs and add (or eeemave) concepts to meet
the needs of the ASM community. We also plan to develop a pfoséhe AsmM lan-
guage based on our syntax definition to link it to a proper imgeenvironment, and
to provide support for “transformations” (text-To-MOF, NEcXo-text, XMI-To-MOF,
MOF-To-XMI, MOF-To-ANY, etc.). In this way, a designer calWrite her/his ASM
specification in the textual form of AsmM-CS, transform itthe XMI interchange
format easily readable and modifiable by tools.

Benefits provided by a standardized notation for the ASMs paaytribute to in-
crease the practical use of the ASMs method and provide amegffinteraction among
ASM tools for a higher quality design based on the ASM forsrali
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Appendix A — the AsmM-CS

In the EBNF grammar reported below, nonterminals are plauhlgeral symbols are
enclosed in double quotes. In addition, words enclosed gieabrackets indicate a
placeholder for a literal value that must be substitutechvaih actual value ( e.g.,
<DIAT> ::=[0"-"9"]").

The structural language
Asm::= ( "asynchr" )? ( "asnf | "nodul e"

) <ID> Header (( Initialization )* "default" Initialization (
Initialization )*)? Body ( "main" Rul eDeclaration )?

Header ::= ( InportCause )* ( ExportC ause )? Signature
InmportC ause ::= "inport" <MOD_ID> ( "(" ( <ID_DOVAIN> |

<ID FUNCTION> | <ID RULE> ) ( "," ( <ID_DOMAIN> | <I'D FUNCTION> |
<ID RULE> ) )* )" )?

ExportC ause ::= "export" ( ( <ID_DOMAIN> | <ID_FUNCTI ON> |
<IDRUE>) ( "," ( <IDDOMAIN> | <ID FUNCTION> | <ID RULE> ) )*
)

Signature ::= "signature" ":" ( Domain )* ( Function )*
Initialization ::="init" <ID>":" ( Domainlnitialization )*

( Functionlnitialization )*
( Agentlnitialization )*

Functionlnitialization ::= "function" <ID_FUNCTION> ( "("
Variabl eTerm"in" ( <ID DOMAIN> | StructuredTD) ( ","
VariableTerm"in" ( <ID_DOVAIN> | StructuredTD) )* ")" )? "="

Term
Domai ninitialization ::= "domain" <I D DOVAIN> "=" Term
Agentlnitialization ::= "<" |D AGENT ">" ":" "agent" "<" (

<IDRULE> | Rule ) ">"

Body ::= "definitions" ":" ( DomainDefinition )*

( FunctionDefinition )*

( Rul eDeclaration )*

( Axiom)*
FunctionDefinition ::= "function" <ID FUNCTION> ( "(" Variabl eTerm
"in" ( <ID_DOVAIN> | StructuredTD) ( "," VariableTerm"in" (

<ID_DOVAIN> | StructuredTD ) )* ")" )? "=" Term

Domai nDefinition ::= "domain" <ID_DOVAIN> "=" Term



Rul eDecl aration ::= "rule" ( "macro" )? <ID RULE> ( "("
Variabl eTerm"in" ( <ID DOMAIN> | StructuredTD) ( ","

Variabl eTerm"in" ( <ID_ DOVAIN> | StructuredTD) )* ")" )? "="
Rul e

Axi om ::= "axiont "over" ( ID.DOMAIN | ( IDFUNCTION "(" (
<ID_DOVAIN> | StructuredTD)? ")" ) | ID.RULE) ( "," ( ID DOVAIN
| ( ID.FUNCTION "(" ( <ID DOMAIN> | StructuredTD)? ")" ) |
IDRUE ) )* ":" Term

The definitional language
Domain ::= (ConcreteDomain | TypeDomain)

ConcreteDomain ::= ( "dynamic" )? "domain" <ID DOVAIN> "subsetof "
( <ID_DOVAIN> | StructuredTD )

TypeDomain ::= ( StructuredTD | EnunTD | AbstractTD | BasicTD |
"anydomai n" <l D DOVAI N> )

Basi ¢cTD ::= "basic" "domain" <I D DOVAl N>

AbstractTD ::= "abstract" "domain" <I D _DOVAI N>

EnuniD ::= "enunt "domain" <ID_DOMAIN> "=" "{" EnunElement ( "|"
EnunEl erent )* "}"

Enuntl ement ::= <I D ENUM>

StructuredTD ::= ( ProductDomain | SequenceDomain | Powerset Donain

| BagDomein | MapDomain )

Product Domain ::= "Prod" "(" ( <ID_DOVAIN> | StructuredTD) ( ","
( <ID_DOVAIN> | StructuredTD) )+ ")"

SequenceDomain ::= "Seq" "(" ( <ID DOMAIN> | StructuredTD) ")"

Power set Domain ::= "Powerset" "(" ( <ID_DOMAIN> | StructuredTD )
"y

BagDonmain ::= "Bag" "(" ( <ID_DOMAIN> | StructuredTD) ")"

Nap[brrmn ci= "Map" "(" ( <| D_DO\/AIN>| StrUCtUredTD) " (
<ID_DOMAIN> | StructuredTD) ")"

Function ::= ( BasicFunction | DerivedFunction )

Basi cFunction ::= ( StaticFunction | Dynam cFunction )



DerivedFunction ::= "derived" <ID FUNCTION> ":" ( ( <ID_DOVAIN> |
StructuredTD ) "->" )? ( <ID_DOVAIN> | StructuredTD )

StaticFunction ::= "static" <ID FUNCTION> ":" ( ( <ID_DOVAIN> |
StructuredTD ) "->" )? ( <ID_DOVAIN> | StructuredTD )

Dynam cFunction ::= ( "dynamic" )? ( "monitored" | "controlled" |
"shared" | "out" | "local"™ ) <ID_FUNCTION> ":" ( ( <ID_DOVAIN> |

StructuredTD ) "->" )? ( <ID_DOMAIN> | StructuredTD )

The language of terms
Term::= ( Expression | ExtendedTerm)

Expression ::= or_xorLogi cExpr ( "inplies" or_xorLogi cExpr | "iff"
or _xor Logi cExpr )*

or _xor Logi cExpr ::= andLogi cExpr (
andLogi cExpr )*

or" andLogi cExpr | "xor"

andLogi cExpr ::= notLogi cExpr ( "and" notLogi cExpr )*

not Logi cExpr ::= ( "not" includesExpr | includesExpr )

includesExpr ::= relational Expr ( "in" relational Expr | "notin"
rel ational Expr )?
relational Expr ::= additiveExpr ( ( "=" additiveExpr | "!="

additiveExpr | "<" additiveExpr | "<=" additiveExpr | ">"
addi tiveExpr | ">=" additiveExpr ) )*

additiveExpr ::= nultiplicativeExpr ( "+" nultiplicativeExpr | "-"
mul tiplicativeExpr )*

mul tiplicativeExpr ::= powerExpr ( "*" powerExpr | "/" powerExpr |
"nmod" power Expr )*

power Expr ::= unaryExpr ( """ unaryExpr )* unaryExpr ::=( "-" "("
basi cExpr ")" | basicExpr )

basi cExpr ::= ( BasicTerm| DomainTerm| "(" Expression ")" )
Basi cTerm::= ( ConstantTerm | VariableTerm | FunctionTerm)
FunctionTerm::= ( ID_AGENT "." )? <ID FUNCTION> ( TupleTerm)?

LocationTerm::= ( ID_AGENT "." )? <ID FUNCTION> ( TupleTerm)?

Vari abl eTerm :: = <I D VAR ABLE>



Constant Term::= ( ConplexTerm| Real Term| IntegerTerm |
Natural Term | CharTerm| StringTerm | Bool eanTerm | Undef Term |
Enuniferm )

Conpl exTerm : : = <COVPLEX_NUVBER>

Real Term::= ( "+" | "-" )? <REAL_NUVBER>

IntegerTerm::= ( "+" | "-" ) <NUMBER> Natural Term ::= <NUVBER>
CharTerm ::= <CHAR LI TERAL> StringTerm::= <STRI NG LI TERAL>

Bool eanTerm::= ( "true" | "false" ) UndefTerm::= "undef"

EnunTerm :: = <I D_ENUW>

Ext endedTerm ::= ( Conditional Term| CaseTerm| TupleTerm |
Col l ectionTerm | Variabl eBi ndingTerm | Rul eAsTerm | Donai nTerm)

Conditional Term::= "if" Term"then" Term( "else" Term)? "endif"

CaseTerm::= "switch" Term( "case" Term":" Term)+ ( "otherwise"
Term)? "endswitch"

TupleTerm::="(" Term( "," Term)* ")"
Col l'ectionTerm::= ( SequenceTerm| SetTerm | MpTerm | BagTerm)
SequenceTerm::="[" ( Term( ( "," Term)+ | ( ".." Term( ","

( <REAL_NUMBER> | <NUMBER> ) )? ) )?)? "]"

SetTerm::="{" ( Term( ( "," Term)+ | ( ".." Term( "," (
<REAL_NUMBER> | <NUMBER> ) )? ) )?)? "}'

MapTerm::= "{" ( "->" | ( Term"->" Term( "," Term"->" Term)*
) )
BagTerm::= "<" ( Term( ( "," Term)+ | ( ".." Term( "," (

<REAL_NUMBER> | <NUMBER> ) )? ) )? )2 ">

Variabl eBindingTerm ::= ( LetTerm| FiniteQuantificationTerm |
Conpr ehensi onTerm )

FiniteQuantificationTerm::= ( ForallTerm| ExistUniqueTerm |
Exi st Term)

ExistTerm::= "(" "exist" VariableTerm"in" Term( ","
VariableTerm"in" Term)* ( "with" Term)? ")"



Exi st Uni queTerm ::= "(" "exist" "unique" VariableTerm"in" Term (
"," VariableTerm"in" Term)* ( "with" Term)? ")"

Foral I Term::= "(" "forall" VariableTerm"in" Term( ","
VariableTerm"in" Term)* ( "with" Term)? ")"

LetTerm::= "let" "(" VariableTerm"=" Term( "," VariableTerm"="
Term)* ")" "in" Term"endlet"

Conpr ehensi onTerm ::= ( SetCT | MapCT | SequenceCT | BagCT )

SetCT ::="{" Term"|" VariableTerm"in" Term( "," VariableTerm
"in" Term)* ( "with" Term)? "}"

MapCT @ := "{" Term"->" Term"|" VariableTerm"in" Term( ","
Variabl eTerm"in" Term)* ( "with" Term)? "}"

SequenceCT ::= "[" Term"|" VariableTerm"in" Term( ","
VariableTerm"in" Term)* ( "with" Term)? "]"

BagCT ::= "<" Term"|" VariableTerm"in" Term( "," VariableTerm
"in" Term)* ( "with" Term)? ">"

Domai nTerm ::= ( <ID_DOMAIN> | StructuredTD )

Rul eAsTerm ::

"<<" Rule ">>"

The language of rules

Rule ::=( BasicRule | TurboRule | TermAsRule | DerivedRule )
TermAsRul e ::= ( FunctionTerm| VariableTerm)

BasicRule ::= ( SkipRule | UpdateRule | MacroCallRule | Bl ockRule

| Conditional Rule | ChooseRule | ForallRule | LetRule | ExtendRule
)

SkipRul e ::= "skip"

UpdateRule ::= ( LocationTerm| VariableTerm) ":=" Term

Bl ockRule ::= "par" Rule Rule ( Rule )* "endpar"

Conditional Rule ::="if" Term"then" Rule ( "else" Rule )? "endif"
ChooseRul e ::= "choose" VariableTerm"in" Term( "," VariableTerm

"in" Term)* "with" Term"do" Rule ( "ifnone" Rule )?

Foral lRule ::= "forall" VariableTerm"in" Term( "," VariableTerm



"in" Term)* "with" Term"do" Rule

LetRule ::="let" "(" VariableTerm"=" Term( "," VariableTerm"="
Term)* ")" "in" Rule "endlet"

MacroCal IRule ::= <ID RULE> "[" ( Term( "," Term)* )? "]"

ExtendRul e ::= "extend" <ID DOMAIN> "with" VariableTerm( ","
Variabl eTerm)* "do" Rule

TurboRule ::= ( SeqRule | IterateRule | TurboReturnRule |
TurboCal | Rul e | TurbolLocal StateRule | TryCatchRule )

SeqRule ::= "seq" Rule Rule ( Rule )* "endseq"

IterateRule ::= "iterate" Rule "enditerate"

TurboCal [ Rule ::= <ID RULE> "(" ( Term( "," Term)* )? ")"
TurboReturnRule ::= ( LocationTerm| VariableTerm) "<-"
TurboCal | Rul e

Turbolocal StateRul e ::= DynanicFunction "[" Rule "]" (

nam cFunction "[" Rule "]" )* Rule
Dy

TryCatchRule ::= "try" Rule "catch" ( LocationTerm| Variabl eTerm
) ("," ( LocationTerm| VariableTerm) )* Rule

DerivedRule ::= ( BasicDerivedRule | TurboDerivedRule )
Basi cDerivedRul e ::= CaseRul e

CaseRule ::= "switch" Term( "case" Term":" Rule )+ ( "otherwise"
Rule )? "endswi tch"

TurboDerivedRule ::= ( RecursiveWileRule | IterativeWileRule )
RecursiveWileRule ::= "whilerec" Term"do" Rule

IterativeWileRule ::= "while" Term"do" Rule

Final terminals
I D_AGENT ::= <I D_FUNCTI ON>
<ID VARIABLE> ::= "$" <LETTER> ( <LETTER> | <DIGT> )*

<IDENUM> ::=[ "A" - "2 ] [ "A"-"Z 1 (" A -2t ]
<DIAT> )*>



JIDDOMAIN> ::=[ "A" - "Z' 1 (" " | ["a -"z"]]| <DAT>)* >
<IDRUE> ::="r_" ( <LETTER> | <DIGT> )+

<IDFUNCTION> ::=[ "a" - "z" ] ( <LETTER> | <DIGT> )*

<ID> ::= <LETTER> ( <LETTER> | <DIGT> )*

<MD ID> ::= ( <LETTER> | "." | "\" | "//" ) ( <LETTER> | <DIGT>
[ A A AN

<NUMBER> ::= ( <DIG@T> )+

<REAL_NUMBER> ::= ( <DIG@T> )+ "." ( <DIGAT> )+
<COMPLEX_NUMBER> ::= ( ( ["+", "-"]1 )? ( <DGAT>)+ ( "." (
<DGAT>)+)?)? (["+, "-"])? "i" ((<DA@T>)+ ("." |
<DIAT>)+)?)?

SCHARLITERAL> := " " " ( (~[ "' ", "W, "\n", "\r" ] ) | (
W[ et b, e L

SSTRING LITERAL> t:= " \" " ( (~[ " \" ", "\", "\n", "\r" ] )
[ "\ ([ "n", "t", "b", "r", "f", "W\",ooroomAtt ]|
077 ] ([0 )2 | [0 ][0T ][0T
)) )t T

<LETTER> ::=[ "_" , "a" - "z" , "A" - "Z" ]

<DIGT> ::=[ "0" - "9" ]



