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Abstract—In case of underspecified or not fully predictable
systems, models specifying system behaviors are nondeterminis-
tic. Nondeterminism poses several challenges for the validation
and verification activities, including the problem of inconclusive
tests in model-based testing with model checker. It is a validation
technique that use model checker counterexamples as test cases.

In this paper, we tackle the problem of testing nondeter-
ministic systems by combining model-based testing and runtime
conformance monitoring: the input sequences of the tests are
automatically generated from nondeterministic models; then
their execution is runtime monitored to check conformance of
the code w.r.t. its specification. This technique provides an oracle
for the test data, it never bears inconclusive responses, and it
allows measuring the requirement coverage.

The approach uses the Abstract State Machines as formal
method for specification purposes and Java as implementation
language. As a proof of concepts, the Tic-Tac-Toe game is taken
as example of a system with nondeterministic behavior (both at
specification and code levels).

I. INTRODUCTION

In the software system life cycle, models are used to
represent system behavior in a high-level abstract way. Models
are often internally nondeterministic, i.e., given the same input
sequences at different times, different output sequences can be
produced. This distinguishes from external nondeterminism
due to the unknown behavior of the environment. Internal
nondeterminism can be due to i) not fully predictable systems,
ii) underspecification because some implementation choices
are left abstract, iii) model abstraction used to reduce complex-
ity (state space) or to remove constructs, which are difficult for
simulation and verification (e.g., time aspects). For instance,
in object oriented modeling, nondeterminism allows to better
reflect inherent nondeterminism of the domain and reduce
complexity [4].

The presence of internal nondeterminism makes all the
common validation and verification model-based activities,
e.g., model-based testing, more complex.

Model-based testing (MBT) is accepted as a fully auto-
mated, flexible, and efficient technique to generate test cases
from models that can lead to more effective testing [16]. MBT
overcomes some limitations of the white box software testing.
It addresses the test oracle problem, which is still an open

Angelo Gargantini
DIIMM
Universita di Bergamo, Italy
Email: angelo.gargantini@unibg.it

Elvinia Riccobene
Dipartimento di Informatica
Universita degli Studi di Milano, Italy
Email: elvinia.riccobene @unimi.it

problem in the context of software testing: in MBT, models are
used as oracles since expected outputs are generated together
with the inputs. However, nondeterminism poses several chal-
lenges to MBT. For instance, it is well known that derivation
of tests for nondeterministic models is more computationally
difficult than for deterministic models, or even impossible [1].

Research on test generation for nondeterministic systems
has resulted in numerous approaches differing in how test
cases are generated from models and how they are represented.
Two classical approaches are Labelled Transition Systems
(LTS) (that are sometimes also called I/O automata) with
the implementation relation ioco (i.e., Input-Output Confor-
mance) [7], [23], where tests are represented as trees (generally
as particular LTSs), and those for Finite State Machines
(FSM) [21], where tests are represented as sequences (called
checking sequences). Having tests as sequences avoids gener-
ating huge precomputed test cases in order to deal with all
possible responses of the system under test. Indeed, test se-
quences try to sample a large state space rather than attempting
to exhaustively represent it. However, for those approaches
where test cases are linear sequences of execution states, the
nondeterminism of the model poses a challenge for testing the
implementation. Typically, the implementation passes the test
(generated by the model-based approach) if, executed on the
inputs provided by the test, it returns the expected outputs.
In case of nondeterminism, the implementation could deviate
from a test case, taking a different but valid execution path, and
the test case would falsely fail. Therefore, in case of deviation,
no conclusion can be achieved: neither that the implementation
fails nor that it passes the test. These tests are usually called
inconclusive.

The approach we here suggest tries to overcome this limita-
tion. We combine model-based testing, used to automatically
generate, from nondeterministic specifications, the inputs of
the test cases (test data), with runtime monitoring which
provides an oracle that never bears inconclusive responses. Our
approach falls in the category of online testing [7], [27], which
consists in combining into a single algorithm test derivation
from models and test execution over the system under test.
Although for nondeterministic systems it is possible to build



all the desirable test cases before testing, structured as graphs
in LTS or as checking sequences for the FSM, the online
testing offers the advantages of generating test cases at run
time, rather than pre-computing a finite transition system and
its traversals [27].

Among the different techniques existing for MBT, we here
exploit the model checker capability to generate counterexam-
ples upon (trap) property violation, and to interpret counterex-
amples as tests [10]. Model checkers embrace various sophis-
ticated optimization techniques to cope with state explosion
problem, such as BDDs, partial order, and SAT. Nondeter-
minism is not a problem for a model checker itself either, but
this technique suffers from the problem of inconclusive tests
in case of nondeterministic models. This is here solved by
monitoring at runtime the test execution and by checking, at
each step, the conformance of the code w.r.t. its specification,
even at the nondeterministic points. That avoids us to stop
the test execution and discard the test, when the test deviates
from the expected outputs obtained from the test sequence
given by the model checker. A further advantage is that we
are able to check, at each step, which testing requirements
are achieved, so having a measure of adequacy and avoiding
redundant tests. We still provide user-guided control over test
execution by allowing the user to select particular behaviors
(expressed in terms of test predicates) to test.

On the other hand, runtime monitoring can also benefit from
our approach. Runtime monitoring does not suffer from the
test oracle issue, but there is still the problem of selecting
relevant inputs, and of measuring the confidence that the
runtime monitoring covered all the possible system behaviors.

The approach is implemented using the Abstract State Ma-
chines (ASMs) [5] as formal method for specification purposes
and Java as implementation language. With respect to other
formalisms like the LTS and the FSM, the ASM framework
provides a solid mathematical foundation to deal with arbi-
trarily complex states. In particular, ASMs can deal with state
variables and environment inputs (external nondeterminism),
and has a compact construct (the choose rule) to represent
the internal nondeterminism. In [14] the model-based testing
technique for deterministic ASM models has been presented,
while runtime conformance verification of Java programs w.r.t.
corresponding ASM specifications has been introduced in [2].

Note that test sequence generation from models in the
context of FSM is a well studied theoretical problem, also
in the presence of nondeterminism [20], [21], [1]. However,
methods developed for classical FSM are rarely applied for
real size specifications due to state explosion problem. The
proposed combined use of ASM, model checking, and online
testing tries to overcome this problem.

As a novel contribution of this paper, (a) we extend the
model-based testing technique in [14] for nondeterministic
ASMs, (b) we improve the runtime monitoring of Java code
w.r.t. ASM models in case of nondeterminism, (c) we combine
the two approaches to solve the problem of inconclusive
tests, of generating relevant inputs, and of measuring the
requirement coverage.

To experiment our approach, we select the Tic-Tac-Toe
game as example of a system with nondeterministic behavior
(both at specification and code levels). As most testing and
runtime monitoring techniques, our method cannot guarantee
completeness (i.e., every program bug is captured), so to
assess its quality and to measure its fault detection capability,
we apply mutation analysis obtaining satisfactory results. We
perform also a comparison with two program-based testing
techniques in order to evaluate if MBT can outperform white-
box testing for nondeterministic programs.

Although we use ASMs as modeling language and Java
as code language, the same idea can be applied to any
model-based testing technique where test cases are given as
sequences of execution states, and any runtime verification
approach able to check conformance between implementation
and specification.

The paper is organized as follows: Section II introduces
the running case study, recalls basic definitions regarding
the ASM formal method, and presents our previous work
on model-based testing with model checker for ASMs and
runtime conformance verification of Java programs w.r.t. ASM
specifications. In Section III we extend both techniques of
ASM-based testing and runtime conformance checking in the
presence of nondeterminism. Section I'V explains our approach
to combine model-based testing with runtime monitoring,
while Section V reports our experiments on the Tic-Tac-Toe
example. Section VI relates our work with similar contribu-
tions, and Section VII concludes the paper.

II. BACKGROUND
A. A simple nondeterministic model

As motivating example and running case study, we consider
a Tic-Tac-Toe game where a human player challenges a
computer program. The requirements include that only valid
moves are accepted, i.e., each player can put her symbol
(nought or cross) only in an empty cell and when it is her
turn, until one wins. The system must be able to identify
valid moves and ignore invalid moves, check if one player
wins and if the game is tie. The user moves are monitored by
the system, while the program decides its moves according to
some strategies. At specification level, the designer does not
want to detail how the computer will play, since the strategy
may be complex, change in order to improve performance,
and include some random choices. The computer decisions
will be left unspecified as nondeterministic choices. However,
the designer wants to be sure that the implementation satisfies
the requirements of correctness listed above.

B. Abstract State Machines

Abstract State Machines (ASMs) [5] are an extension of
FSMs, where unstructured control states are replaced by states
with arbitrary complex data. The states of an ASM are multi-
sorted first-order structures, i.e., domains of objects with func-
tions and predicates defined on them. Static functions never
change during any run of the machine. Dynamic functions are
distinguished between monitored (only read by the machine



asm ticTacToe
import StandardLibrary
signature:
domain Coord subsetof Integer
enum domain Sign = {CROSS | NOUGHT | EMPTY}
enum domain Status = {TURN_USER | TURN_COMP}
enum domain ActionDomain = {U_MOVE | C_MOVE}
enum domain ResDom = {PLAYING | U_WON | C_WON | TIE}
//first argument is the row, second argument is the column
controlled board: Prod(Coord, Coord) —> Sign
controlled status: Status
monitored uSelCol: Coord
monitored uSelRow: Coord
monitored action: ActionDomain
controlled res: ResDom
controlled numOfMoves: Integer
derived winOnRow: Prod(Coord, Coord, Sign) —> Boolean
derived winOnCol: Prod(Coord, Coord, Sign) —> Boolean
derived winOnDiag: Prod(Coord, Coord, Sign) —> Boolean
definitions:
domain Coord = {0..2}
//derived functions definition

rule r_makeMove($r in Coord, $c in Coord, $s in Sign) =
par
board($r, $c) := $s
numOfMoves := numOfMoves + 1

if($s = CROSS) then
res := U_WON
else if($s = NOUGHT) then
res ;= C_WON
endif endif
else if (humOfMoves = 8) then
res :=TIE
endif endif
endpar

if(winOnRow($r, $c, $s) or winOnCol($r, $c, $s) or winOnDiag($r, $c, $s)) then

rule r_moveUser =
if (status = TURN_USER and
board(uSelRow, uSelCol) = EMPTY) then
par
r_makeMove[uSelRow, uSelCol, CROSS]
status := TURN_COMP
endpar
endif

rule r_moveComp =
if(status = TURN_COMP) then
par
choose $r in Coord, $c in Coord with
board($r, $c) = EMPTY do
r_makeMove[$r, $c, NOUGHT]
status := TURN_USER
endpar
endif

main rule r_Main =
if(res = PLAYING) then
if(action = U_MOVE) then
r_moveUser[]
else
r_moveComp[]
endif
endif

default init sO:
function status = TURN_USER
function board($r in Coord, $c in Coord) = EMPTY
function res = PLAYING
function numOfMoves = 0

Fig. 1: ASM specification of Tic-Tac-Toe

and modified by the environment), and controlled (read and
written by the machine).

ASM states are modified by transition relations specified
by “rules” describing the modification of the functions inter-
pretation from one state to the next one. There is a limited but
powerful set of rule constructors including guarded actions
(1f-then) and simultaneous parallel actions (par). The
constructor choose expresses nondeterminism concisely.

It is also possible to specify state invariants.

A computation of an ASM is a finite or infinite sequence
80581y - - of states of the machine, where sg is an
initial state and each s;;; is obtained from s; by executing
the machine (unique) main rule. An ASM can have more than
one initial state. Because of the nondeterminism of the choose
rule and of the environment moves, an ASM can have several
different runs starting in the same initial state.

The Asmeta framework! is used for the development and
simulation of ASM models. Fig. 1 shows the ASM specifica-
tion of the Tic-Tac-Toe.
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C. Model-based testing for ASMs

One of the main applications of MBT for the ASMs, con-
sists in automatically generating tests from ASM models [13].
Testing requirements are represented by test predicates,
which are formulas over the state determining if a particular

Uhttp://asmeta.sourceforge.net/

testing goal is reached. A coverage criterion C' is a function
that, given an ASM, produces a set of test predicates. A fest
sequence or test is a finite computation. A set of tests, called
test suite, satisfies a coverage criterion C' if each test predicate
generated by C' is satisfied in at least one state of a test
sequence in the test suite.

Several coverage criteria have been defined for ASMs [13].
For instance, one of the basic criteria for ASMs is the decision
coverage. A test suite satisfies the decision coverage criterion
if, for every decision d; of a rule r; (e.g., the guard of
a conditional rule), there exists at least one state in a test
sequence in which r; fires and d; evaluates to true, and there
exists at least a state in a test sequence in which r; fires
and d; evaluates to false. For example, the test predicate for
the coverage at false of the guard of the conditional rule in
r_moveComp (see Fig. 1), is the following predicate:

DC_r_moveComp_CRf: res = PLAYING and action != U_MOVE and
status != TURN_COMP

In order to build test suites satisfying some coverage criteria,
we use a technique based on the capability of the model
checkers to produce counterexamples. The method consists of
the following steps:

1) The test predicates set {¢p;} is derived from the ASM
according to some desired coverage criteria.

2) The ASM specification is translated into the language of
the model checker.
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board(1, 2) = CROSS
_____________ board(2, 0) = UNDEF

res = PLAYING
status = TURN_USER

action = U_MOVE State 3
uSelRow=1
uSelCol =2 res = PLAYING

numOfMoves = 0
board(0, 0) = UNDEF

status = TURN_USER
action = C_MOVE

uSelRow = 2
————————————— uSelCol =2
State 2 numOfMoves = 2
————————————— board(0, 0) = NOUGHT
res = PLAYING board(0, 1) = UNDEF

status = TURN_COMP
action = C_MOVE
uSelRow = 2

uSelCol = 2
numOfMoves = 1
board(0, 0) = UNDEF

Fig. 2: ASM test for the test predicate DC_r_moveComp_CRf

board(1, 2) = CROSS
board(2, 0) = UNDEF
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Fig. 3: CoMA: Conformance monitoring through ASM

conforms?:

3) For each test predicate tp; the trap property never(ip;)
is proved. If the model checker finds a state s where tp; is true,
it stops and returns as counterexample a state sequence leading
to s: from such sequence it is possible to build a test that
covers tp;. If the model checker explores the whole state space
without finding any violation of the trap property, then the test
predicate is said unfeasible and ignored. In the worst case, the
model checker terminates without exploring the whole state
space and without finding a violation of the trap property (i.e.,
without producing any counterexample), usually because of
the state explosion problem. In this case of model checker
inconclusive result, the user does not know if the test predicate
is unfeasible or if a test exists but it is too difficult to find.

In this paper, to derive test sequences from ASM models, we
use the ATGT tool [14], based on the model checker Spin [17].
Fig. 2 shows the ASM trace obtained from the counterexample
produced by Spin under the violation of the trap property of
the test predicate DC_r_moveComp_CRif.

D. CoMA: Conformance Monitoring through ASMs

CoMA is a technique for runtime monitoring of Java
programs through ASMs [2]. The runtime monitor observes
the behavior of a Java code and determines its correctness
w.rt. the ASM specification working as an oracle of the
expected behavior: while the software system is executed, the
monitor checks conformance between the observed state and
the expected state.

Fig. 3 shows the structure of the proposed framework:

o A link between a Java class and an ASM must be provided
(1) in order to describe the conformance relation; a set of
annotations is used to this purpose.

e The Observer evaluates when the Java object observed
state is changed (2), and leads the corresponding ASM to
perform a machine step (3).

o The Analyzer evaluates the conformance between the
Java execution and the ASM behavior (4). If a conformance
violation is detected, a trace in form of counterexample can
be recorded for debugging.

Fig. 4 shows a Java implementation of the Tic-Tac-Toe. It
has been decorated with a set of annotations to link it to its
formal ASM specification in Fig.1.

A complete description of CoOMA can be found in [2]. We
here report only some basic definitions.

Let C be a Java class, O¢ an object of C, and ASM¢s an
ASM model of the expected behavior of any object of C.

We define observed state, OS(C), the set of all public fields,
and pure® public methods of the class C' the user wants to
observe. We define changing methods, CM (C'), the non pure
methods whose execution can change the element values of
0S(C) and that the user wants to monitor.

A Java step is defined by the triple (s,m,s’), being m a
method of C, and s and s’ the states of an object O before
and after the method execution. A change step is a Java step
(s,m,s") where m € CM(C).

Definition 1: State Conformance We say that a state s of
Oc¢ conforms to a state S of ASM ¢ if all observed elements of
C have values in O¢ conforming to the values of the functions
in ASM¢ linked to them; i.e.,

conf(s,S) =
Ve € 0S(C) : valjaa(e, s) cont valasy (link(e), S)

Definition 2: Step Conformance We say that a change step
(s,m, s") of an instance O¢, with m a method of C, conforms
with a step (S,S’) of ASM¢ if conf(s,S) A conf(s',5).

simulation step
ASM¢ S S’
A A

conf

conf

invocation of method m

O¢ s s’
Definition 3: Runtime Conformance Given an observed
computation of a Java instance O¢, we say that C' is run-
time conforming to its specification ASM if the following
conditions hold:

1) the initial state sy of the computation of O¢ conforms to
the initial state Sy of the computation of ASMg, i.e., it
yields conf (so,S0);

2) every observed change step (s,m,s’) with s the current
state of O¢, conforms with the step (S, S") of ASM¢ with
S the current state of ASM¢;

3) no specification invariant of ASM¢ is ever violated.

ITI. DEALING WITH NONDETERMINISM
A. Test generation in the presence of nondeterminism

We extend the approach presented in Sect. II-C in order to
deal with nondeterministic ASM specifications containing a
choose rule of the form:

2A method is pure when its execution does not affect the program state.



@Asm(asmFile = "models/ticTacToe.asm”)
public class TicTacToe {
@FieldToFunction(func = "board”)
public Sign [][] board;
private Random rnd;
@FieldToFunction(func = "numOfMoves”)
public int movesExecuted = 0;
@FieldToFunction(func = "status”)
public Status status;
private Sign winner;

@StartMonitoring
public TicTacToe() {...}

@RunStep(setFunction = "action”, toValue = "U_MOVE”")

public void execUserMove(@Param(func="uSelRow”) int r, @Param(func="uSelCol”) int c) {
if (winner == null && status == Status. TURN_USER && board[r][c] == Sign.UNDEF) {

board[r][c] = Sign.CROSS;

movesExecuted++;

status = Status. TURN_COMP;

if (checkWinner(r, ¢, Sign.CROSS))
winner = Sign.CROSS;

@MethodToFunction(func = "res”)
public String getWinner() { ... }

@RunStep(setFunction="action”, toValue = "C_MOVE”")
public void execComputerMove() {
if (winner == null && movesExecuted < 9 &&
status == Status. TURN_COMP) {
intr=-1;
intc=-1;
do {
r = rnd.nextint (3);
¢ = rnd.nextlnt (3);

}
while(board[r][c]!=Sign.UNDEF);
board[r][c] = Sign.NOUGHT;
movesExecuted++;
status = Status. TURN_USER;
if (checkWinner(r,c,Sign.NOUGHT))
winner = Sign.NOUGHT;
}
}

private boolean checkWinner(int r,int c,Sign sign) { ... }

}

Fig. 4: Java code of Tic-Tac-Toe

choose $x in {a1, as, ... , a,} with cond($x) do R[$x]

where $x is a variable ranging in the set {a;,as, ..., a,} and
satisfying cond($x) in order to fire rule R.

To deal with nondeterminism we have to extend the cover-
age criteria and to provide a translation of the choose rule
in Promela, the language of Spin.

The coverage criteria in [13] are extended in the presence
of the choose rule. For instance, the basic rule coverage
must require both that the choose rule is executed and that
the rule R inside the choose rule is executed as well. This
means that variable $x must take at least a value in the set
{a1,a2,...,a,} with cond($z) true. Moreover, all the test
predicates obtained from the rule R inside the choose rule
must be enriched by taking into account the guard in the
choose rule and the value of $z.

In order to translate the constructor choose to Promela, we
use the nondeterministic guarded case selection shown below,
where $ < a; denotes $x substituted by a;.
if

cond [$z<+ a1]->R[$z+ a1 ]

.+ cond [$2¢ an]—>R[$z< an]
£i

If more than one guard is true, Spin nondeterministically
chooses only one corresponding rule to be executed?.

B. Runtime monitoring in the presence of nondeterminism

Definition 3 assumes that, in any computation, the next state
of a Java class instance O¢ and of its specification ASM¢
is unique. Thus, the definition is adequate for deterministic
systems in which the nondeterminism is limited to monitored

3Nondeterministic choices could be translated in Promela also by means of
monitored variables, but the proposed translation is better because it does not
increase the size of the state, since Spin does not have to retain information
about the chosen $x.

(external) quantities (e.g., which method has been called or
what values have been used as actual parameters). Once these
quantities are fixed by the environment, the evolution of the
system is, however, deterministic.

For dealing with internal nondeterminism, our conceptual
framework must be extended — from now on we refer to
internal nondeterminism only. The following scenarios can be
identified:

o Nondeterministic Java class and nondeterministic ASM
specification. A class method has nondeterministic behavior
(for instance it contains a call to a method in the class
java.util.Random), as well as the abstract specification.

¢ Deterministic Java class and nondeterministic ASM spec-
ification. This situation arises when the ASM model is more
abstract (with less implementation details) than the corre-
sponding Java code. Bekaert and Steegmans have shown
that nondeterminism in the behavioral specifications of object
oriented conceptual models can simplify the representation
of complex functionalities and achieve a better separation of
concerns [4].

In case a class C or its model ASM ¢ are nondeterministic,
the next computational state of O¢c or ASM¢ is not always
uniquely determined, and, therefore, their conformance, ac-
cording to Def. 3, may fail not because of a non conformant
behavior of the implementation, but because O¢ and ASM¢
may choose two next states which are not conformant. We
here refine points 1 and 2 of Def. 3 of runtime conformance
in case of nondeterminism, distinguishing between weak and
strong conformance. For the weak conformance, we require
that the next step of O¢ is state-conforming with at least one
of the next states of the specification ASM¢. For the strong
conformance, we require that the next step of O¢ is state-
conforming with one and only one of the next states of the
specification.

Definition 4: Weak [Strong] runtime conformance We
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say that C' is weakly [strongly] runtime conforming to its

specification ASM¢ if the following conditions hold:

1) the initial state sy of the computation of O¢ conforms
to at least one [one and only one] initial state Sy of the
computation of ASM¢, i.e., 3 [3!] Sy initial state of ASM¢
such that conf (so, So);

2) for every change step (s,m,s’) with s the current state of
Oc¢, 33 (S, S") step of ASM¢ with S the current state of
ASM¢, such that (s, m, s') is step conforming with (S, S").
Currently, our monitoring system can only deal with strong

conformance. A similar assumption is made in nondetermin-

istic FSMs testing [15], where the FSM is required to be
observable, i.e., in each state the transition taken can be
deduced from the applied input and the produced output.
Therefore, in case of nondeterminism, during the runtime
monitoring our system chooses, among the next states of the

ASM, the unique state that conforms to the Java state. Fig.

5a depicts this situation: given the Java state s’ produced by

the execution of the method m, only one of the next states S;-

of the ASM is state conformant with s’. In the Tic-Tac-Toe

example, the method m could be execComputerMove that,

given a board configuration, chooses to place a nought in (0,

2): the obtained Java state is conformant with only one of the

next states of the corresponding ASM model (see Fig. 5b).

If there is more than one next state conformant (weak
conformance), instead, the system does not know which one
to choose and currently rises an exception. Weak conformance
will be considered for future work.

IV. COMBINING MBT AND RUNTIME MONITORING

In this section we explain how our approach combines
model-based testing and runtime monitoring. Fig. 6 depicts
the process we propose.

1) A set of test predicates uncovTPS is built from an ASM
and a set of coverage criteria.

2) An uncovered test predicate tp is randomly chosen
from wuncovTPS. ATGT produces, if possible, an abstract
test sequence ATS that covers tp (see Sect. II-C). If tp is
unfeasible, it is removed from the collection, while in case
of model checker inconclusive result (maybe because of the
state explosion problem), the process continues with another
test predicate.

3) The test data builder translates ATS to a concrete input
sequence (fest data) for the Java code (see Sect. IV-A).

4) The test data are executed and runtime monitored
through CoMA, which provides the oracles for the test data
and evaluates the test predicate coverage (see Sect. IV-B).
During the test data execution, the test predicates that are
covered are removed from uncovTPS and added to covTPS,
the set of covered test predicates. The process restarts from
point 2 until a desired coverage is reached (see Sect. IV-C).

In our process the test data generation and the test execution
are combined together: a single test is executed right after it
has been constructed. Such approach permits to build only the
necessary test data. Sometimes this approach is called online
testing [27], that distinguishes from traditional offline testing
where a complete test suite is built before the test execution.

A. Test data construction

In Sect. II-C we have seen a procedure to derive, from a
specification, test sequences that cover some test predicates.
From each abstract test sequence ATS, the tool derives concrete
Java test data consisting of a sequence of method calls. The
expected outputs in the ATS are discarded and the concrete
tests do not contain any oracle. The procedure that identifies
the inputs in a test sequence and maps them in method
invocations with values for their parameters exploits the Java
annotations* used to implement the linking function of COMA:

e The value of the monitored function in the @RunStep
annotation (e.g., action in the Tic-Tac-Toe example) iden-
tifies what method must be called.

e The values of the monitored functions linked in the
@Param annotations of the (possible) method formal parame-
ters are used as actual parameters in the method invocation
(e.g., the formal parameters r and c of method exec-
ComputerMove are connected to the monitored functions
uSelRow and uSelCol).

public void testDCrmoveCompCRf {
TicTacToe t = new TicTacToe();
t .execUserMove (1, 2);
t .execComputerMove () ;
t .execComputerMove () ;

Fig. 7: Test data derived from the counterexample of the trap
property of the test predicate DC_r_moveComp_CRf (Fig. 2)

Fig. 7 shows the test data produced starting from the
counterexample shown in Fig. 2. In each state, the value
of the monitored function action (that is linked in the
@RunStep annotations) is used to identify what method must
be executed: if its value is U_MOVE, the method exec-
UserMove is executed; otherwise, if its value is C_MOVE,

4@RunSteps identify the changing methods (set CM). The annotation has
two attributes: setFunction specifying the name of a monitored function of
the ASM model, and toValue specifying the value that the function must be
set to, when the corresponding method is executed.
@Param annotates each parameter of the changing methods. It has an attribute
Sfunc specifying the name of a monitored function of the ASM model: when
the corresponding method is executed, the function is set to the value of the
actual parameter.
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the method execComputerMove is executed®. When the
method execUserMove must be executed, the values of the
monitored functions uSelRow and uSelCol, that are linked
in the @Param annotations of its formal parameters r and c,
are used as actual parameters for r and c.

Note that we assume that the implementation is input
enabled, i.e., it never refuses any input. Input enabledness is a
common assumption in MBT; in the ioco theory, for example,
the implementation is represented by an IOTS, i.e., an LTS in
which outputs are initiated by the system and never refused by
the environment, and inputs are initiated by the environment
and never refused by the system [24]. Input enabledness is
also assumed in [6]. In our setting input enabledness means
that any method can always be called with any (type-correct)
values for its parameters; for example, the test data in Fig. 7
calling the method execComputerMove twice in a row, is
correct, although only the first one actually changes the state.

B. Using CoMA as Test Oracle and Coverage Evaluator

In our approach we do not derive the oracle from the test
sequence, as done in classical MBT for deterministic systems,
but we use runtime monitoring to provide the oracle. If CoOMA
detects a not conforming behavior during monitoring, it signals
a failure.

At each Java step, CoMA also checks which test predicates
are covered; note that a test predicate may be not covered by
its test: if the implementation, due to some internal nondeter-
minism, chooses a different behavior, the observed behavior
may not cover the test predicate which the test sequence is
generated for. In this case, the test predicate is kept in the
collection of uncovered predicates uncovTPS. Note, however,
that a test predicate can be removed from the collection even
during the execution of test cases generated for other test
predicates.

SNote that the repetition of method call execComputerMove is inten-
tional and permitted as explained later.

(b) Strong conformant step: Tic-Tac-Toe

conformance

C. Using test predicates as a measure of conformance

The aim of runtime verification techniques is to observe a
system while it is running and determine if it assures some
properties. Empirically, the more the system is executed and
monitored, the higher is the confidence that the system is
correct. But, how to measure such degree of confidence? To do
this we can use coverage criteria. The idea is using CoMA not
only to verify that the implementation is conformant with the
specification, but also to identify what test predicates generated
by MBT have been covered.

We introduce a conformance index

_ #tpsCovered
~ #tpsFeasible

that provides an indication of how deeply a system has been
monitored. CI could be used to decide when to interrupt
the runtime monitoring: when CI becomes greater than a
threshold K, we are confident enough that the system is
correct, and we stop monitoring.

CI (D

V. EXPERIMENTS

To evaluate our approach we use the Tic-Tac-Toe as case
study. The specification of the system is reported in Fig.
1, while its implementation is given in Fig. 4. The Java
implementation randomly chooses the next computer move by
taking an empty cell.

We have run all the experiments on a Linux machine,
Intel(R) Core(TM) i7, 4 GB Ram. For obtaining short coun-
terexamples, we use the breadth-first-search option in Spin.

We consider only the structural coverage criteria: rule cover-
age, decision coverage, update coverage, and MCDC. Totally,
we generate 258 test predicates, 27 of which are unfeasible.
For each test predicate, we have always been able either to
produce a counterexample or to prove its unfeasibility, since
Spin has always terminated with a conclusive result.

As first experiment, we want to assess the viability of
our method by applying the process described in Section IV



and requesting that a given percentage P of (feasible) test
predicates is covered. We have applied our technique for 20
times and computed the average of the data, including the
process execution time. We have not been able to apply our
technique with P greater or equal to 80% in a reasonable time
(we put a time limit of one hour for each experiment). Table
I reports all the data about the following indicators:

1) Conformance Index (CI): the percentage of feasible test
predicates actually covered. CI may be greater than P because
a test may cover more test predicates than requested.

2) Unfeasible: the number of test predicates found unfea-
sible (also as % over all the unfeasible tps).

3) Selected: the number of test predicates selected, that is
equal to the number of iterations in the process in Fig. 6. It
may depends on

4) Checked and not covered: the number of test predicates
for which a test has been generated but, due to some different
choices in the implementation, they were not covered by their
tests and neither by other tests.

5) Java test length: the number of Java statements executed
in the tests.

6) Mutation score: to evaluate the capability of our ap-
proach to detect faults, we have applied mutation analysis by
using the Javalanche tool [22]. The mutation score is the ratio
between the faults detected over all the faults injected.

As shown in the table, one test is enough to cover 10%
of test predicates, and in this case only around 20 Java
instructions are executed with an already acceptable mutation
score. By increasing P, all the quantities increase. In particular,
the time and the number of checked and not covered test
predicates increases more than linearly, while the mutation
score reaches a maximum around 86%. We found that some
test predicates represent behaviors which have a very low
probability of being executed by the implementation and for
this reason they are not covered. The fact that the mutation
score reaches a maximum, is because some injected faults
are not related to the behavior of the implementation, and
special test cases should be developed for them. The CI is a
good index of the fault detection capability of the monitoring
activity.

Since we were already confident that the implementation
actually conformed to its specification, we expected no fault
in the implementation, and this was the case.

A. Comparison with code-based approaches

Although MBT is a very promising technique, in practice
code-based tools are more used. For this reason, we consider of
great interest a comparison of our approach with two state-of-
the-art techniques that generate test cases (with oracles) from
Java code, namely Evosuite and Randoop.

Evosuite [9] is a tool that automatically generates test
cases by applying a search-based approach that generates and
optimizes whole test suites, rather than generating distinct test
cases directed towards distinct coverage goals. It is able to
suggest oracles by adding small sets of assertions that sum-
marize the current behavior. Randoop [19] generates unit tests

using feedback-directed random testing, a technique inspired
by random testing that uses execution feedback gathered from
executing test inputs as they are created, to avoid generating
redundant and illegal inputs. It allows annotation of the source
code to identify methods to be omitted and observer methods
to be used for assertion generation.

Both methods are able to generate test suites together with
oracles, by capturing the current behavior of the system.
This works well in order to protect against future defects
breaking this behavior, but tends to generate falsely failing
tests in correspondence of nondeterminism. We say that a
test falsely fails, if it fails in one execution but there exists
another execution in which it does not fail. For this reason,
we had either to modify the generated tests in order to make
them pass (auto+mod. in Table II) or generating them without
assertions (where possible). In details, for Randoop, we have
applied a mixed approach between those suggested in [19]
(auto+remapping in Table II): some nondeterministic methods
are ignored (like the getWinner method) because their
return value cannot be used in an assertion, while we have
preferred to keep other methods (like the execUserMove
method) and remapping them in order to avoid nondetermin-
istic behavior. Note that even without assertions a test has a
residual fault detection capability due to some implicit oracles
(e.g., no NullPointer exception).

No test suite generated by Evosuite or by Randoop is able
to reach the mutation score obtained by our approach. Even
the best Randoop test suite has a mutation score between the
two worst test suites of ours, but it requires a much greater
number of Java instructions and a comparable time to generate
it. Evosuite produces smaller tests, but with a reduced mutation
score. Although the comparison is not completely fair since
nondeterminism significantly reduces the effectiveness of these
code-based testing tools, our experiments show that MBT has
still several advantages over program-based testing techniques
in the presence of nondeterminism.

VI. RELATED WORK

A way to combine model-based testing and runtime verifi-
cation is presented in [3]. A test case generator, starting from
a model of the input domain given as a nondeterministic Java
program, produces inputs for the application using the Java
PathFinder model checker that has been extended in order
to perform symbolic execution. Together with the inputs also
temporal properties, that must be guaranteed during the execu-
tion, are produced. Then, the execution of the application over
the inputs is monitored by the runtime verification framework
Eagle that checks that the properties are satisfied. The main
conceptual difference w.r.t. our approach is that the properties
for runtime verification depend on the particular input, while
in our case the specifications must be independently provided
and are general for every input.

In [12], [11] the test case generation process using model
checkers is extended in order to deal with nondeterminism.
The authors present a technique that permits to discover if a
deviation exists from the expected output during a test case



P(%) 10% 20% 30% 40% 50% 60% 70%

Conformance Index (CI) (%) 19% 26% 37% 46% 57% 66% 74%

# Unfeasible 0.31 0.25 0.5 1 1.67 6 15.67

Unfeasible (%) 0.31 0.25 0.5 1 1.67 6 15.67

# Selected 1 1.5 3.67 6.75 12.33 28 71

# Checked and not covered 0.86 1.25 3.33 5 10.33 19.5 51

Java test length 19.43 42.25 162.33 183.5 379.33 781 2045.67

Mutation score (%) 74.58 84.60 84.99 85.39 85.56 85.70 86.21

Time (seconds) 30.49 58.49 139.14 248.79 453.66 1036.12 2412.28

TABLE I: Experimental results

Tool EvoSuite Randoop

Options branch coverage mutation 1k 10k 100k
assert no assert assert no assert -

Generation time (sec.) 1004 154 943 605 13 35 209

Oracles auto+mod. No auto+mod. No auto+remapping

N. of tests 12 12 63 86 914 8880 88666

Java test length 205 152 1070 1353 5126 62258 940686

N. of asserts 27 N/A 125 N/A 2 2 6

Execution time (sec.) 0.05 0.05 0.13 0.14 0.16 0.7 2.7

Mutation score avg (%) 29.84 30.65 54.04 26.82 11.7 60.9 81.4

Mutation score var 0.66 0.2 1.95 0.22 25 5.9 0.1

TABLE II: Other approaches results

execution due to a nondeterministic choice: such test cases
are classified as inconclusive. Starting from an inconclusive
test, the proposed process can iteratively build a tree-like test
case in which the alternative valid branches of a computation
are considered. They also extend common coverage criteria
for deterministic systems to nondeterministic systems. This
approach differs from ours since we do not need to stop if the
output deviates from the expected one during test execution.
Indeed, the runtime monitor we use as oracle can discover if
the nondeterministic choice of the implementation is valid.

The problem of test generation for nondeterministic systems
is also dealt with in [6]. They compare the traditional technique
based on model checking, with a module checking approach.
Module checking is useful to verify open systems, i.e, sys-
tems interacting with the environment and whose behavior
is influenced by this interaction. They propose techniques
to derive tests from mutants of the original specification,
distinguishing between weak and strong tests. A weak test
executed on the mutant and on the original specification
can produce different outputs; a strong test, instead, always
produce different outputs. The problem of test execution, in
particular of weak tests, is not tackled.

Two classical approaches for dealing with nondeterminism
are based on FSMs [21], [20], [1] and LTS with its confor-
mance relation ioco [7], [23]. Methods developed for FSMs are
rarely applied for real size specifications due to state explosion
problem. For instance, the Tic-Tac-Toe example would roughly
require 3° x 3 ~ 59k states. Extended FSMs enriching FSMs
with variables, events, and guards, to concisely represent com-
plex systems, promise to overcome these limitations. EFSM
can be seen as a particular class of ASMs.

In LTS, a test is a particular Input Output LTS (IOLTS).
Tests have normally a tree-like structure, although in some ap-

proaches they are extended with verdicts and some additional
properties. For instance, in TGV [18], a IOLTS has a complex
behavior whose structure is a graph with possible loops. A
IOLTS naturally deals with nondeterminism. The test provides
some particular inputs to the implementation under test (IUT)
and can accept any output provided by the IUT (i.e., it is input
enabled), until it reaches a pass or fail state. For this reason,
this approach is suitable for online testing. This approach,
however, suffer from the problem that there is no symbolic
representation of data, that so are encoded in action names
representing concrete values, making the representation of
complex systems very cumbersome and curbing the usability
of test generation tools. In order to deal with this problem,
Symbolic Transition Systems (STS) [8] have been proposed
for symbolic representation of LTS, where the notion of data
and data flow are founded on first order logic.

Moreover, the problem of traversing the IOLTS (also called
synthesis) remains open and several problems in test synthesis
can be understood as reachability problems. Synthesis is
completely random in TorX [25], whereas in TGV [18] it is
driven by some fest purposes (similar to our test predicates),
i.e., descriptions of behaviors to be tested.

In [28], a technique for testing concurrent Java components
is presented. In such a scenario, if multiple threads are waiting
for a resource, the order in which they are woken up is
not predictable, so making the system nondeterministic. The
proposed solution is an extension of the ConAn (Concurrency
Analyser) tool that permits one to write oracles handling
all the possible configurations that can result because of
nondeterminism. The approach seems to be not very scalable,
since all the possible configurations must be considered in
the definition of the oracle. In our approach, instead, the high
power expression of the choose rule permits to concisely



describe any nondeterministic choice of any degree.

Our approach shares several features with that presented
in [27], using the testing framework Spec Explorer [26].
In [27], the testing of reactive systems is seen as a game
between the tester and the IUT. The conformance between
an IUT and its specification is given in terms of alternating
simulation, similar to our notion of runtime conformance.
They share with us the use of the ASMs as specification
language (they use the ASM syntax AsmL). However, we
are able to address some open problems identified by the
authors in [27]. A first one is the scenario control problem, i.e.,
that of generating strategies that obtain particular behaviors,
since it is not unusual that a model program may correspond
to an automaton with a large or even infinite number of
transitions, and in such cases selecting the scenarios is of great
importance. This problem is tackled in [26], where several
different techniques for scenario control are presented. In our
setting this problem is addressed in an uniform way by using
testing criteria that provide goals for the testing. The failure
analysis problem, i.e., understanding the cause of a failure
after a long run, in our setting can be mitigated by requiring
the model checker to provide the shortest counterexample for
a particular goal. Our conformance index also tackles the
achieving and measuring coverage problem of [27].

VII. CONCLUSIONS AND FUTURE WORK

We present a technique that combines model-based testing
and runtime monitoring in an effective manner in order to
deal with nondeterminism. We extend our model-based testing
technique, we improve the runtime monitoring of Java code
w.r.t. ASM models, and we combine the two approaches to
solve the problem of inconclusive tests, of generating relevant
inputs, and of measuring the requirement coverage.

Regarding the runtime monitoring, we plan to extend the
runtime framework for supporting weak conformance.

The initial experiments suggest that our method is viable.
We plan to experiment it by using complex systems, and to
evaluate whether the tests generated by MBT lose efficiency by
increasing the size and the nondeterminism of the implemen-
tation. Indeed, we experienced that the higher is the degree
of nondeterminism, the higher is the probability that a test
predicate is not covered during its test case execution.

Finally, we plan to use a more advanced conformance index
taking into account the kinds of involved coverage criteria by
assigning a weight specifying the importance of each criterion.
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