
Generating minimal fault detecting test suites for
Boolean expressions

Gordon Fraser
Software Engineering Chair

Saarland University, Saarbrücken, Germany
E-mail: fraser@cs.uni-saarland.de

Angelo Gargantini
Dip. di Ing. dell’Informazione e Metodi Mat.

University of Bergamo, Dalmine, Italy
E-mail: angelo.gargantini@unibg.it

Abstract—New coverage criteria for Boolean expressions are
regularly introduced with two goals: to detect specific classes of
realistic faults and to produce as small as possible test suites. In
this paper we investigate whether an approach targeting specific
fault classes using several reduction policies can achieve that less
test cases are generated than by previously introduced testing
criteria. In our approach, the problem of finding fault detecting
test cases can be formalized as a logical satisfiability problem,
which can be efficiently solved by a SAT algorithm. We compare
this approach with respect to the well-known MUMCUT and
Minimal-MUMCUT strategies by applying it to a series of case
studies commonly used as benchmarks, and show that it can
reduce the number of test cases further than Minimal-MUMCUT.

I. INTRODUCTION

Boolean expressions are frequently found in logical pred-
icates inside programs and specifications to model complex
conditions under which some code is executed or an action is
performed. In theory, a Boolean predicate p with n variables
requires 2n test cases in order to be distinguished from any
other predicate not equivalent to p. In practice, n can be
quite big, as for example shown in a study by Chilenski
and Miller [1], who found Boolean expressions with 30 or
more conditions in an electronic flight implementation system.
Consequently, exhaustive testing is not feasible in practice, and
therefore testing criteria are applied to select subsets of all
possible test cases. Using these criteria can lead to reasonably
small test suites, but their fault detection capability is reduced
with respect to exhaustive testing.

As a consequence of this problem new criteria are intro-
duced and existing criteria are improved, aiming to maximize
the fault detection capability while keeping the number of test
cases small. These criteria are defined by algorithms or rules to
build test cases starting from a given Boolean expression. Such
algorithms consider the syntactical structure of the Boolean
expression but not explicitly the fault classes thereof, and so
the fault detection capability has to be analyzed later. This
paper investigates an approach that generates test cases directly
targeting specific fault classes and uses several reduction
policies to minimize the size of resulting test suites. This
guarantees that all considered fault classes are fully covered
while reducing the number of test cases more than any single
previously introduced criterion could achieve, as we show in
this paper. The problem tackled by this approach is how to

determine values for the literals of Boolean expressions; if the
expression is embedded in source code then determining inputs
that drive variables to appropriate values is another problem
that is not the scope of this paper.

A test case is generated for each possible fault of a fault
class given a Boolean predicate. This by itself may lead to
larger test suites than other test criteria would create. However,
a range of optimizations can be applied to the process:
Monitoring guarantees that only faults not yet detected are
considered for test case generation, ordering can reduce the
number of faults that need to be considered during test case
generation, collecting merges several faults into a single test
predicate, and minimization as a post-processing step removes
redundant test cases with regard to the considered fault classes.

In order to automatically generate the test cases we formal-
ize the goals of the test case generation as Boolean predicates,
and the problem of finding a test case that covers a test goal
reduces to the problem of finding a model for a Boolean
formula. This problem can be efficiently solved by means of
several techniques; in the experiments in this paper we use a
SAT solver for test case generation.

The research question we are addressing in this paper is
whether the reduction achieved by such an optimized approach
can reduce the number of test cases over the well known
MUMCUT and Minimal-MUMCUT test generation strategies.

II. BACKGROUND

Programs and specifications often use Boolean expressions
as guards for conditional instructions, cycles, or transitions.
Many specification formalisms such as the often used AND-
OR tables (as those used in RSML [2] or in SCR [3]) can also
be seen as Boolean expressions. Note that derivation of input
values that drive variables in programs to the desired values
is not focus of this work. This section gives all necessary
definitions for the remainder of the paper, presents some
related work, and introduces fault classes.

A. Definition and notation

For simplicity, we assume that Boolean expressions are
given in minimal disjunctive normal form (DNF) which allows
comparison with the existing literature, but the described
approach can be extended to Boolean expressions in any
form. In this paper we follow the notation proposed by Lau



and Yu [4]: Boolean expressions are those involving Boolean
operators like AND, OR, and NOT (denoted by ∧, ∨, ¬ or
by “·”, “+”, “−”, respectively). The “·” is omitted if it is clear
from the context. A literal is an occurrence of a variable1

inside a predicate (note that a variable may occur several times
in the same predicate). DNF expressions consist of terms, i.e.,
Boolean expressions that are conjunctions consisting only of
possibly negated literals, and terms are connected disjunc-
tively. For example, the DNF expression ab + ac, contains
two terms ab and ac, and the variable a occurs twice as a
positive literal in the first term and as a negative literal (i.e.,
negated) in the second term. In the context of testing Boolean
predicates, a test case is a value assignment to every Boolean
variable in the formula (a “complete” model of the formula).
A test suite simply is a set of test cases.

B. Testing criteria - Related work

There is a body of literature on testing Boolean expressions,
including a range of well-known standard criteria such as
decision or condition coverage. Several testing criteria have
also been developed to target specific common faults in
Boolean expressions. Weyuker et al. [7] introduced a family of
strategies for automatically generating test cases from Boolean
expressions, of which the MAX-A and MAX-B strategies
are the most powerful and subsume all others. Chen and
Lau [8] introduced three testing criteria: Multiple Unique
True Point (MUTP), Multiple Near False Point (MNFP),
and Corresponding Unique True Point and Near False Point
(CUTPNFP). These three strategies were integrated by Chen
et al. [9], [10] in the MUMCUT testing strategy which (1)
guarantees to detect nine types of faults in Boolean expres-
sions in irredundant disjunctive normal form just like MAX-
A and MAX-B do, and (2) requires only a subset of the
test suites that satisfy the previously proposed MAX-A and
MAX-B strategies. Kaminski and Ammann [11] introduced
an extension of MUMCUT, called Minimal-MUMCUT, which
takes the feasibility of the three components of MUMCUT into
account and guarantees to detect the same types of faults with
fewer test cases. In this paper, we compare all results to those
of MUMCUT and Minimal-MUMCUT, because they subsume
the other criteria in terms of the detected fault classes and
because they have been shown to result in significantly less
test cases.

C. Some fault classes

The possible faults in Boolean expressions can be catego-
rized into fault classes; research on this topic has resulted
in the definition of several such classes that represent typical
programmer mistakes and in a hierarchy among them (where
possible). The approach presented in this paper does not target
any specific fault classes but can be applied to any possible
fault classes.

1A variable is sometimes called clause [5], while a literal is sometimes
called condition [6].

Table I
EXAMPLE FAULT CLASSES ILLUSTRATED ON EXPRESSION ab + cd.

Fault class Example

TNF Term negation fault ab + cd
TOF Term omission fault ab
LNF Literal negation fault ab + ac
LOF Literal omission fault a + cd
LIF Literal insertion fault abc + cd
LRF Literal reference fault ab + bd

ENF Expression negation fault ab + cd
ORF[+] Operator + reference fault abcd
ORF[·] Operator · reference fault a + b + cd

In Table I we list the fault classes targeted by most coverage
criteria like MAX-A, MAX-B, MUMCUT, and Minimal-
MUMCUT, with which we compare our approach in the
experiments. Further fault classes exist, and we refer to the
literature [4], [5], [12]–[14] for more information.

Figure 1 relates the fault classes presented in Table I in the
fault hierarchy presented by Lau and Yu [4]. An arrow from
a fault class F1 to another class F2 indicates a subsumption
relation, i.e., if a test suite is able to detect all the faults in F1

then it will also detect all the faults in F2. Such a hierarchy
can be useful when generating tests: In theory, if one generates
a test suite detecting LIFs and LOFs, then all the other faults
in the hierarchy will be detected by the same test suite as
well. In practice this is not always the case, as even if the
tests of a class F1 can detect all the faults of another class F2

this does not guarantee the existence of a test case for every
fault in F1 [15]. Sometimes faults of a given fault class do
not exist for part of an expression where faults of subsumed
fault classes do exist, and sometimes a fault simply does not
change the truth values of the predicate.

Example 1 Consider the Boolean expression S = ab + ab.
The test suite for LIFs of S is empty since there is no literal
that can be inserted in any of the terms – both literals a and
b are already present in both terms. However, a TOF would
cause S to be implemented as either ab or ab and the empty
test suite for LIF would not discover these faults.

Kaminski and Ammann [11] exploit this weak subsumption
relation between LIF and LRF and between LRF and LOF in
the Minimal-MUMCUT strategy to obtain test suites with the
same fault detection capability (LIF, LRF, and LOF and all the
other subsumed classes) with fewer test cases than MUMCUT.

In addition subsumption relations are not always known;
sometimes only empirical data about the relationships among
fault classes are available (e.g., [7]). Consequently, to guar-
antee that all fault classes are fully detected the approach we
describe in this paper does not depend on a strong subsumption
hierarchy, and takes the faults of all considered fault classes
into account. As we will show, however, subsumption relations
can still be used to improve the efficiency of the process.



Figure 2. The general test case generation process.

Figure 1. Fault hierarchy [4].

D. Fault based testing

The erroneous implementation ϕ′ of a Boolean expression
ϕ can be discovered only when there exists a test case t in
which the condition ϕ ⊕ ϕ′, called detection condition [12],
evaluates to true, i.e., t |= ϕ⊕ϕ′ where ⊕ denotes the logical
exclusive or operator. Indeed, ϕ⊕ϕ′ is true only if ϕ′ evaluates
to a different value than the correct predicate ϕ. This detection
condition is also called Boolean difference or derivative [16].

The erroneous implementation ϕ′ is also used in the context
of mutation analysis, which is a technique to evaluate the
quality of a test suite by the number of artificially introduced
faults that can be distinguished from the original program. For
every fault class C it is possible to define a mutation operator
µC , which can be seen as a function that returns all possible
faulty Boolean expressions that can be obtained from a given
Boolean expression according to the fault class. In mutation
testing, the erroneous implementation ϕ′ is called mutant,
since it can be obtained by applying a small syntactical change
(mutation) to ϕ. Each mutation can be seen as belonging to a
fault class, and it can be automatically generated by applying
mutation operators to Boolean expressions.

In accordance with test case generation from logical predi-
cates, we call the predicate ϕ⊕ ϕ′ test predicate or test goal.

Example 2 If the Boolean predicate a ∧ b is implemented as
a (a literal omission fault), then the test predicate is a∧ b⊕a
which is equivalent to a ∧ ¬b. Only a test case in which a is
true and b is false can uncover the fault.

Let ϕ be a predicate and C a fault class. We denote with
FC(ϕ) the set of all the possible faulty implementations of ϕ

according to the fault class C (as explained in Section II-C).
FC(ϕ) can be obtained by repeatedly applying the mutation
operator µC that represents the fault class C to ϕ. The test
predicates to discover the fault C in ϕ are the expressions
ϕ⊕ ϕ′ for all ϕ′ in FC(ϕ).

Example 3 Consider the expression a ∧ b and let the fault
class C be LOF, then FLOF (a ∧ b) = {a, b} and the test
predicates are the following two expressions: (a∧b)⊕a (which
is equivalent to a ∧ ¬b ) and (a ∧ b)⊕ b (which is ¬a ∧ b).

Definition 1 Test Predicates. Let ϕ be a Boolean predicate.
The set ΓC(ϕ) of test predicates for the fault class C is given
by the expressions {ϕ⊕ ϕ′ | ϕ′ ∈ FC(ϕ)}.

A test suite T is adequate to test the predicate ϕ with respect
to a fault class C if it covers every test predicate generated
for ϕ and C: i.e., if for every test predicate tp in ΓC(ϕ) there
exists a test case t in T such that t is a model of the test
predicate tp (i.e. it evaluates to true in t).

Definition 2 Fault Detecting Adequacy. The test suite T is
adequate to test the predicate ϕ with respect to the fault class
C if and only if ∀tp ∈ ΓC(ϕ)∃t ∈ T t |= tp.

III. GENERATING FAULT DETECTING TEST CASES

This section presents a general method to derive test cases
for specific fault classes. Given a Boolean predicate ϕ, a fault
class C, and a test predicate tp representing a concrete fault of
the predicate belonging to the fault class, Definition 2 reduces
the problem of finding a test case that covers the test predicate
to the problem of finding a model for a Boolean formula (tp).

Finding a model of a Boolean expression, if there exists
one, can be efficiently solved by means of several techniques.
Previously [6], we used a model checker for operational
specifications, which, however, is less efficient for our current
scenario considering that here we deal only with test predicates
that are simple Boolean expressions. SAT algorithms can
solve the problem of satisfiability of a Boolean expressions
efficiently and they are therefore the best choice in this setting.

The entire process of generating a test suite using a SAT
solver for test case generation is depicted in Figure 2. The test
predicate generator (1) takes the Boolean predicate ϕ and the
fault classes and generates a list of test predicates ΓCi

(ϕ)



for every fault class Ci. The generation of test predicates
consists of first taking the original predicate ϕ and applying
the mutation operator for the fault class Ci in order to obtain
all the possible faulty versions ϕ′k of ϕ. Then, test predicates
are obtained by simply combining the original predicate with
all the mutants as tpk = ϕ⊕ ϕ′k. The test suite generator (2)
takes one test predicate tp that has not been considered yet
and finds a test case t that satisfies the chosen test predicate
(3), i.e., t |= tp. By iterating the activities (2) and (3), one can
build a test suite that is adequate to cover ϕ with respect to
the desired fault classes.

A. Feasibility problem

Not all faults of a fault class can be distinguished from the
original Boolean predicate: For some faults ϕ′ of a predicate
ϕ it may be the case that for any model t |= ϕ it also
holds that t |= ϕ′ and vice versa. In mutation testing, such
faults are referred to as equivalent mutants, and in the general
case of program mutants, detecting equivalent mutants is
not decidable. Under the assumption that the Boolean space
is complete, equivalent faults of Boolean predicates can be
detected by the SAT solver, as ϕ⊕ ϕ′ is unsatisfiable if ϕ′ is
equivalent to ϕ. If there exist constraints among the literals in
ϕ and therefore the Boolean space is not complete, then ϕ′

may be an equivalent mutant of ϕ even though ϕ⊕ ϕ′ has a
model but such model does not satisfy the constraints. In this
case, the SAT solver can still find equivalent faults provided
that the constraints are modeled as Boolean predicate Φ, by
proving that (ϕ⊕ ϕ′) ∧ Φ is unsatisfiable.

Consequently, equivalent faults consume time during test
case generation in order to be detected but do not contribute
to the resulting test suite. The main problem in our scenario
is in the case when a SAT solver takes a long time to find a
solution and is timed out by the user or the system – in this
case it is not known whether the fault is equivalent or not.

IV. IMPROVING THE TEST CASE GENERATION PROCESS

The basic process of generating test cases consists of
generating a set of test predicates for a given Boolean predicate
and a set of fault classes and then deriving one test case per
test predicate. This process can be improved with respect to
the number of test cases generated by several activities, as
summarized in Figure 3.

A. Monitoring coverage ((4) in Figure 3)

A test case generated for one test predicate may satisfy
a number of further test predicates. Consequently, it is not
strictly necessary with respect to achieving the test objective
(i.e., satisfaction of all test predicates) to generate test cases for
all test predicates. Instead, each time a test case is generated
the remaining uncovered test predicates can be checked against
the new test case (i.e., they are monitored for satisfaction),
and any satisfied test predicate can be omitted from test case
generation because it is already covered.

Checking whether a test predicate tp is covered by a test
case t simply requires evaluating the test predicate with the

model that t represents. If t |= tp then t also covers tp. This
process is usually cheaper than running a SAT solver on each
test predicate, even if the number of test predicates is large.

B. Ordering test predicates ((5) in Figure 3)

When monitoring is applied the order in which test pred-
icates are selected may impact the size of the resulting test
suite. In theory, there might be cases where choosing a single
test predicate leads to satisfaction of all other test predicates,
and other cases where a bad order leads to one test case
for every test predicate. We have previously investigated the
ordering of test predicates [17], showing that the ordering of
the test predicates can have an impact on the number of test
cases generated. Some orders that are applicable to the test
predicates for fault classes are:

1) Random order: We use random order as a sanity check;
any feasible heuristic should achieve better results. Oth-
erwise a strategy to achieve good results is to use several
runs with different random order and pick the best result,
which minimizes the risk that a bad ordering leads to
larger test suites. Our previous research [17] showed that
it is difficult to find a heuristic that improves over the
average random case.

2) Subsuming order: If the subsuming relation between
fault classes is known, or at least a subsumption relation-
ship is suspected to be in place due to some empirical
data, one can choose a test predicate ordering depend-
ing on that relation. The hierarchies of fault classes
for specification-based testing have been established to
prioritize test cases so as to achieve earlier detection
of more faults [4]. Fault classes could be used before
the classes they subsume in order to reduce the number
of test cases that are generated (if F1 subsumes F2,
the test cases for F1 will cover also the test predicates
for F2). For example, LIF and LOF weakly subsume
all the other 6 fault classes presented in Section II-C,
so subsuming order would start with test predicates
from these fault classes. In this paper we use also the
extended subsumption relation presented by Kaminski
and Ammann [11] and Chen et al. [15], which takes into
account also the feasibility problem (see Section III) of
testing criteria and therefore the order will be LIF, LRF,
LOF, TOF, LNF, ORF+, ORF*, TNF, and ENF.

C. Collecting test predicates ((6) in Figure 3)

Instead of generating one test case for each test predicate,
one can collect many test predicates [18] in a unique conjoint
in a way that a model for the conjoint is a model of all the
collected test predicates. Per definition, given a test predicate
TP = tp1 ∧ . . . ∧ tpn, a model t of TP (i.e. t |= tp) is a model
for tp1, . . . , tpn.

Consequently, one can collect many test predicates not
covered yet and generate one test case that covers them all.
However, when collecting test predicates we must add a test
predicate tp to the collected TP only if it is consistent with
TP, i.e., there exists a model for both TP and tp. Furthermore,



Figure 3. The improved test case generation process.

special care must be given to infeasible test predicates: Since
they are never consistent with any other test predicate they
should be detected as early as possible to avoid repeatedly
trying to collect them. The resulting process of collecting is
presented in Algorithm 1, which shows the single activity of
obtaining a collected test predicate and its test case from a set
of test predicates TPS.

The algorithm works on the set TPS of test predicates that
still need to be considered. In a loop it randomly chooses
one test predicate tp out of this set at a time, and checks if
there exists a model for the conjunction of the set of selected
test predicates C and the newly selected test predicate tp. If
there is a model then this tp is covered and removed from
TPS and added to C, else we need to check if tp by itself
is feasible or not. If there is no model that satisfies tp we
know it is infeasible and can remove it from TPS. In the
end, the algorithm returns a test case that is a model for the
set of selected test predicates in C, and the remaining test
predicates in TPS. If one does not bound the number of test
predicates that can be collected at a time, then after the first
run all infeasible test predicates are removed from TPS and
the feasibility check can be omitted in the next run.

The algorithm also removes from TPS infeasible test
predicates and predicates that are covered because they are
collected. Initially TPS contains all the test predicates and the
algorithm must be iterated until TPS becomes empty.

D. Post reduction (minimization, (7) in Figure 3):

A test suite is minimal [19] with regard to an objective if
removing any test case from the test suite will lead to the
objective no longer being satisfied. The problem of finding
the optimal (minimal) subset is NP-hard, which can be shown
by a reduction to the minimum set covering problem. In this
paper, we use a simple greedy heuristic to the minimum set
covering problem for test suite minimization: The heuristic
selects the test case that satisfies the most test predicates and
remove all test predicates satisfied by that test case. This is
repeated until all test predicates are satisfied.

Monitoring and minimization can behave very differently:
Minimization requires existing, full test suites while mon-
itoring checks test predicates on the fly during test case

Algorithm 1 collection process
Require: TPS : set of all the test predicates to be considered
C ← {}
for tp ∈ TPS do

if ∃t : t |= (
∧

c∈C c) ∧ tp then
C ← C ∪ {tp}
TPS← TPS\{tp} {tp is covered}

else if 6 ∃t : t |= tp then
TPS← TPS\{tp} {tp is infeasible}

else
{ tp cannot be collected together with C }

end if
end for
return t : t |= (

∧
c∈C c)

generation. On the other hand, monitoring does not guarantee
minimal test suites.

Note that the post reduction may reduce the fault detection
capability of the test suite, but not with respect to the fault
classes it initially covered since the set of test predicates
covered remains the same.

V. EXPERIMENTS

A. A challenge to traditional coverage criteria

The approach explained in the previous section can be used
to set up a challenge about the final test suite size to the
coverage testing criteria like those presented in Section II-B in
the following way: Given a testing criterion which guarantees
to detect a set of fault classes {c1,, . . . , cn} we can use our
method with the test predicates Γ = ∪n

i=1Γci
(ϕ), and the final

test suite will guarantee the same fault detection but possibly
with fewer test cases. This section presents experimental
results to witness that this is indeed the case.

B. Experimental setup

For experimentation, we considered the same set of pred-
icates commonly used as benchmarks in several papers on
testing DNF expressions: Weyuker et al. selected 13 of the
larger transition specifications from a traffic collision avoid-
ance system (TCAS). They also added 7 specifications after



having identified variable dependencies. This set was used
to evaluate several testing criteria and generation techniques
introduced by Weyuker et al. [7]. Chen, Lau, and Yu evaluated
the MUMCUT criterion against the same specifications (except
the 12th predicate, as it contains a typo). The same set was
used by Kaminski and Ammann [11] to evaluate the Minimal-
MUMCUT strategy.

We generated test predicates for all the fault classes pre-
sented in Section II-C, as these fault classes are the types of
faults that can be detected with MUMCUT [10]. Test suites
were generated with and without collecting test predicates, and
for the two orderings presented in Section IV.

The reason for comparing with MUMCUT and Minimal-
MUMCUT is that these criteria can detect the same nine fault
classes presented in Sect. II-C as MUTP, MNFP, CUTPNFP,
MAX-A and MAX-B but result in fewer test cases [10], [11];
we used the same fault classes to generate test cases in our
experiments.

For test case generation we initially investigated the use
of standard SAT implementations. However, we found two
main problems: (1) not all SAT solvers return the actual
model of a Boolean expression; some of them just solve the
satisfiability problem by checking whether a model exists or
not without printing out this model and (2) the SAT solvers
we evaluated have their input Boolean expressions in CNF
(Dimacs format) while our test predicates are an exclusive or
between two DNF expressions. The conversion of a generic
Boolean expression to a CNF formula is itself a research
problem, so we preferred to use a more powerful tool that was
able to deal with generic Boolean formulas. We decided to use
the SMT solver Yices [20], which includes a very efficient SAT
solver and claims to be “competitive as an ordinary SAT and
MaxSAT solver” [20]. Note that the choice of one algorithm
over another should only influence the time taken to solve the
problem and not the size, assuming models can be found for
all feasible test predicates.

C. Results

Table II summarizes the results of our experiments: Part A
of Table II reports the number of variables in the benchmarks
specifications (vars), the total number of test predicates (tot.)
and how may of those are infeasible (inf.).

The first column (Orig.) of part B of Table II lists the mean
sizes of the test suites obtained by the MUMCUT strategy as
computed by the GUCN method [10]. As the GUCN method
achieves better results than the original method [9], we only
compare to the improved values. The second column (Min) of
Part B reports the sizes computed by Minimal-MUMCUT [11].

Part C lists the test suite size obtained by our method
using different optimizations: no collect/collect, random order
(RND)2, and by considering the subsumption relation (SUB).
The SAT solver was able to find test cases for all feasible test
predicates. The red. column reports the number of test cases
after performing post reduction; (’-’ means reduction removed

2The table shows the average over 20 runs with random order

Table III
IMPROVEMENTS OF THE TEST SUITE SIZE

Optimization Relative to Resulting size reduction
Average Variance Max

Subsumption order Random order 5% ±0.4% 19%
Reduction No reduction 6% ±0.4% 31%
Collect No collect 24% ±4% 71%

no test cases); For each expression, the minimum test suite size
is displayed in boldface.

Finally, Part D of Table II reports the time required to build
the final test suite.

VI. DISCUSSION

The main result of the experiments is evidence that the
approach presented in this paper using the collect/subsumption
strategy can cover all faults of the fault classes that test cases
generated for MUMCUT and Minimal-MUMCUT would also
cover.

A. Comparison among strategies

The optimizations considered in our approach allow a
number of different strategies on how to reduce the number of
test cases. Table III shows the reduction (average, variation,
and maximum of 400 runs) of the size of the final test suite
when using different strategies.

Ordering by subsumption produces test suites 5% smaller
on average compared to test suites generated with random
ordering. In one case, without reduction and collecting, the
subsumption ordering reduced the test suite size by 19%.

On average, the test suite reduction post optimization de-
creased the number of test cases by 6%, and achieved a
maximum of 31%. While optimal minimization of a test
suite is an NP-hard problem, this heuristic is computationally
quite easy to perform. We conclude that it is worthwhile to
always apply it when size is important. Theoretically, reduction
could lead to even smaller test suites without monitoring, as
results with monitoring depends on the ordering. We did not
observe this in our experiments, and as omitting monitoring
would mean one would have to create test cases for all
test predicates (including subsumed faults) we conclude that
monitoring should always be used.

The collection strategy reduced the number of test cases by
24% on average with a maximum of 71%.

We can conclude that, in terms of the test suite size, the
best strategy is to apply monitoring, collection, ordering test
predicates using the subsumption strategy, and applying test
suite reduction. This strategy produced the smallest test suites
in all cases.

The smallest test suites are generated with monitoring,
ordering by subsumption, collecting, and minimizing.

While the results in terms of the reduction in the number
of test cases generated clearly suggests the use of the collect



Table II
EXPERIMENTAL DATA

Part A: Expressions Part B: #Tests Part C: #Tests using fault based approach Part D: Time (secs)
Vars. Test pred. MUMCUT NO COLLECT COLLECT NO COLLECT COLLECT

tot. inf. Orig. Min RND (avg) SUB RND (avg) SUB RND SUB RND SUB
[10] [11] full red. full red. full red. full red.

1 7 186 4 39 27 34.4 30.4 28 - 30.5 29.2 27 - 0.6 0.4 45.6 52.3
2 9 634 9 116 81 86.0 83.3 81 - 89.7 85.5 81 - 2.1 2.6 1821.1 613.4
3 12 2859 67 238.7 157 221.5 187.8 229 188 143.5 139.2 128 - 27.2 13.6 20680.4 9448.9
4 5 76 4 11.8 9 13.8 12.9 14 13 10.2 10.1 9 - 1.4 0.4 43.2 9.2
5 9 550 33 43 36 49.2 43.0 53 43 35.4 35.0 33 - 7.3 1.9 823.0 238.4
6 11 360 4 84 66 77.0 65.6 66 62 67.7 63.8 62 - 7.3 1.5 879.2 242.0
7 10 559 8 106 66 81.0 79.6 72 72 64.3 63.0 58 - 7.5 1.8 1860.0 377.8
8 8 109 0 16 36 36.9 36.0 36 - 36.0 - 36 - 3.2 0.8 261.4 57.3
9 7 46 0 86 16 16.2 16.0 16 - 16.0 - 16 - 1.4 0.3 34.6 10.4

10 13 602 12 124 62 73.5 68.1 62 - 69.5 66.6 62 - 8.1 1.7 2151.4 446.6
11 13 1094 12 112.4 72 95.0 65.7 79 65 58.3 51.7 51 - 62.8 2.4 2816.5 935.6
13 12 425 17 36.1 22 55.7 52.7 58 53 19.9 19.7 17 - 6.5 1.5 536.9 128.8
14 7 262 12 34 22 31.5 28.5 32 30 24.3 23.6 24 22 3.9 0.9 292.1 101.5
15 9 694 41 60.7 39 54.7 50.0 55 50 38.5 37.9 35 34 8.1 2.1 1007.5 422.1
16 12 2327 95 153.1 107 159.4 139.6 158 140 94.1 91.9 86 - 24.1 8.0 10267.8 4541.8
17 11 542 4 76.3 40 65.0 61.0 66 61 26.7 25.1 27 21 6.2 1.5 843.0 249.2
18 10 637 14 78.4 48 73.9 66.5 69 64 40.8 38.4 39 32 7.8 1.8 1206.5 431.1
19 8 217 0 44.6 16 33.3 28.3 34 29 18.2 17.4 20 16 3.1 0.7 208.4 63.6
20 7 68 0 24 14 14.8 14.0 15 14 14.3 14.0 14 - 1.4 0.3 42.5 9.6
Σ 1184 936 1272.7 1129.0 1223 1107 897.9 864.0 825 805 190.0 44.2 45821.2 18380

strategy, this approach is costly: The time required by using the
collection strategy is on average 328 times the time required
by the strategy without collection (see Table II). This increase
in the time required is caused by the additional calls to the
SAT solver (see Figure 1); the SAT solver is called each time
a new test predicate is collected.

Collecting test predicates is effective at reducing the num-
ber of test cases, but computationally expensive.

Consequently, the preferred strategy is a trade-off between
time necessary to generate test cases and time needed to
execute the test cases: If resources for test case generation are
not critical, then collecting is clearly preferable as it results
in smaller test suites. However, if the resources for test case
generation are limited, then collecting is less recommendable.

B. Comparison with the MUMCUT strategies

Compared to the original MUMCUT strategy [9] (data not
included in Table II to keep it readable), the number of test
cases produced with our approach is even smaller when using
no optimizations at all: On average our worst result is 4.77
times smaller, while our best result was on average 11.77 times
better with a maximum of 99 times for case 13 (17 vs. 1687).

With respect to the more recent MUMCUT experiments
using the GUCN method [10] (see Table II), the test suites
produced by our approach are smaller for all the specifications
and all policies. Our test suite obtained with the best methods
was on average 32% smaller than the MUMCUT test suite.

The comparison with respect to the Minimal-MUMCUT
strategy [21] is shown in Fig. 4, which reports the percentages
of cases we performed better, equally, or worse than Minimal-
MUMCUT, depending on the strategy adopted. The best

Figure 4. Comparison with Minimal-MUCUT

strategy (SUB+COLL+RED) performed equally or better, but
never worse than Minimal-MUMCUT.

Creating test cases directly for fault classes using opti-
mizations can reduce the number of test cases necessary
to cover all faults of these classes in comparison to
MUMCUT and Minimal-MUMCUT.

We cannot compare our approach to MUMCUT and
Minimal-MUMCUT in terms of the time necessary to create
test suites, as our approach is the first to use a SAT solver
to generate the test cases, and previous work on MUMCUT
does not include data on the time necessary to automatically
generate the test suites.

C. Threats to validity

External threats to validity are given by the choice of
predicates for experimentation. Although the comparison to



previous results is valid in that these predicates are a common
benchmark for testing Boolean predicates, generalization of
our findings is based on the assumption that these are realistic
predicates. In particular, all predicates have at least 5 literals,
while in practice many predicates will be simpler, in which
case the effects on the test suite size will be smaller.

Using a SAT solver for test case generation has the draw-
back that SAT can be very computationally expensive. It
might occur that the SAT solver is timed out even though the
test predicate is feasible, thus suggesting the test predicate
is infeasible, although of course no definitive conclusions
information about whether the test predicate is feasible or not
can be drawn. Depending on the implementation, a strategy
like MUMCUT might not have this problem for the same
predicate. In our experiments, the SAT solver was able to find
test cases for all feasible test predicates easily.

Although minimization does not impact the fault detection
capability with respect to the considered fault classes, it might
still reduce the residual fault detection capability. This is a
general observation about minimization and not specific to our
approach.

Internal threats to validity may result from the ordering
of test predicates: Even though we ordered test predicates
according to subsumption of fault classes the test predicates
within the same fault class were chosen randomly, thus po-
tentially influencing results to the worse or for the better.
Collecting test predicate is also susceptible to the order in
which predicates are considered, in theory. Based on our
previous observations [17] we believe that the ordering is
unlikely to change the general findings.

The test predicates generated in our approach could theoret-
ically also be used to minimize test suites derived with other
criteria (e.g., MUMCUT); as we only compared to published
results we have no data on this. However, as the main
reduction in our approach is not caused by the minimization
but the collecting we believe this would not impact the general
findings. We also did not consider the controllability problem,
i.e., whether and how a program can be driven to reach a
specific valuation for a Boolean expression.

D. Extension to generic Boolean expressions

The work presented in this paper focuses on Boolean
predicates given in DNF, because it is possible to prove fault
detection capability of coverage criteria when using DNF
predicates. However, our approach is not limited to DNF
predicates. Therefore, as future work we plan to extend our
approach to generic Boolean expressions, not only predicates
given in DNF. This would require the definition of suitable
fault classes for generic Boolean expressions together with
their mutation operators.

There would be several advantages in doing so: First of all,
it would remove the need to transform expressions to DNF
that are not already in this form. Translating a generic Boolean
expression to DNF may require exponential time.

Second, fault-based testing of normalized predicates may
miss (few) faults which can be detected if test cases are

generated from the original predicates [7], [22]. Chen et
al. [23] performed an empirical study to assess the fault
detection capability of the MUMCUT strategy with respect
to Boolean predicates written in a general form instead of the
irredundant disjunctive normal form. They found that 99,5%
of the faults guaranteed to be detected by MUMCUT for DNF
predicates were also detected by MUMCUT for non DNF
predicates. Although this figure is very high, it may not suffice
for safety critical software.

Finally, the number of terms and literals after conversion to
DNF can be greater than in the original predicate. This means
that less test cases are required for the original predicate (as
proved also by Kaminski et al. [24]). Consider for example
the expression ϕ = a ∨ (b ∧ c) containing 3 variables and 3
literals. In DNF, it becomes ϕDNF = ab+ac which contains 4
literals. The number of possible faults of ϕDNF is greater than
the number of faults of ϕ; for example, there are three possible
LOFs for ϕ, while there are 4 possible LOFs forϕDNF .
Therefore, normalized expressions may require more test cases
than the original expression. A recent study [25] shows that
general form (GF)-oriented strategies could enhance the fault
detection capability and reduce the sizes of test suites.

VII. CONCLUSIONS

In this paper, we have shown that instead of introducing new
criteria or improving existing criteria and then investigating
their fault detection capability it is also feasible to generate test
cases directly targeting certain fault classes. This guarantees
the capability to detect all faults of any given fault class
while reducing the number of test cases necessary to achieve
this in comparison to existing coverage criteria. Experimental
evaluation demonstrated that the number of test cases is indeed
smaller than for related coverage criteria.

In addition to often resulting in smaller test suites, this
approach has the advantage that new fault classes can be
added or removed (for example if there is the knowledge
of a particular error pattern) and targeted without the need
to introduce new test criteria, for which the fault detection
capability has to be investigated. All that is necessary in order
to support an additional fault class is to define a mutation
operator that represents the fault class and creates faults usable
for the test predicates. In contrast, introducing a new test
criterion targeting a specific fault class is much more difficult
than just defining the mutation operator for that class.

The findings presented in this paper have implications for
several fields of software testing where Boolean expressions
occur. A main application is test case generation from spec-
ifications; this is the context where most previous work on
testing Boolean expressions focused on. However, Boolean
expressions also exist in normal source code, and these ex-
pressions need to be tested as well.

REFERENCES

[1] J. Chilenski and S. Miller, “Applicability of modified condition/decision
coverage to software testing,” Software Engineering Journal, vol. 9,
no. 5, 1994.



[2] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese,
“Requirements specification for process-control systems,” IEEE Trans-
actions on Software Engineering, vol. 20, no. 9, pp. 684–707, Sep. 1994.

[3] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw, “Automated con-
sistency checking of requirements specifications,” ACM Transactions of
Software Engineering Methodology, vol. 5, no. 3, pp. 231–261, 1996.

[4] M. F. Lau and Y.-T. Yu, “An extended fault class hierarchy for
specification-based testing,” ACM Transactions on Software Engineering
and Methodology, vol. 14, no. 3, pp. 247–276, 2005.

[5] V. Okun, P. E. Black, and Y. Yesha, “Comparison of fault classes
in specification-based testing,” Information and Software Technology,
vol. 46, pp. 525–533, 2004.

[6] A. Gargantini, “Using model checking to generate fault detecting tests,”
in TAP’07: Proceedings of the 1st International Conference on Tests
and Proofs, ser. Lecture Notes in Computer Science (LNCS), vol. 4454.
Springer Verlag, 2007, pp. 189–206.

[7] E. Weyuker, T. Goradia, and A. Singh, “Automatically generating test
data from a Boolean specification,” IEEE Transactions on Software
Engineering, vol. 20, no. 5, pp. 353–363, May 1994.

[8] T. Y. Chen and M. F. Lau, “Test case selection strategies based on
Boolean specifications.” Software Testing, Verification and Reliability,
vol. 11, no. 3, pp. 165–180, 2001.

[9] T. Chen, M. Lau, and Y. Yu, “Mumcut: A fault-based strategy for
testing boolean specifications,” in Asia-Pacific Software Engineering
Conference. Los Alamitos, CA, USA: IEEE Computer Society, 1999,
p. 606.

[10] Y. T. Yu, M. F. Lau, and T. Y. Chen, “Automatic generation of test cases
from boolean specifications using the MUMCUT strategy,” Journal of
Systems and Software, vol. 79, no. 6, pp. 820–840, 2006.

[11] G. K. Kaminski and P. Ammann, “Using Logic Criterion Feasibility to
Reduce Test Set Size While Guaranteeing Fault Detection,” in ICST’09:
Proceedings of the 2nd International Conference on Software Testing
Verification and Validation. Washington, DC, USA: IEEE Computer
Society, Apr. 1–4, 2009, pp. 356–365.

[12] D. R. Kuhn, “Fault classes and error detection capability of specification-
based testing,” ACM Transactions on Software Engineering and Method-
ology, vol. 8, no. 4, pp. 411–424, Oct. 1999.

[13] T. Tsuchiya and T. Kikuno, “On fault classes and error detection
capability of specification-based testing,” ACM Transactions of Software
Engineering Methodology, vol. 11, no. 1, pp. 58–62, 2002.

[14] K. Kapoor and J. P. Bowen, “Test conditions for fault classes in

Boolean specifications,” ACM Transactions on Software Engineering and
Methodology, vol. 16, no. 3, p. 10, 2007.

[15] Z. Chen, B. Xu, and C. Nie, “A detectability analysis of fault classes
for Boolean specifications,” in SAC ’08: Proceedings of the 2008 ACM
Symposium on Applied Computing. New York, NY, USA: ACM, 2008,
pp. 826–830.

[16] J. Sheldon B. Akers, “On a Theory of Boolean Functions,” Journal of
the Society for Industrial and Applied Mathematics, vol. 7, no. 4, pp.
487–498, 1959.

[17] G. Fraser, A. Gargantini, and F. Wotawa, “On the order of test goals in
specification-based testing,” Journal of Logic and Algebraic Program-
ming, vol. 78, no. 6, pp. 472–490, July 2009.

[18] A. Calvagna and A. Gargantini, “Combining Satisfiability Solving and
Heuristics to Constrained Combinatorial Interaction Testing,” in TAP’09:
Proceedings of the 3rd International Conference on Tests and Proofs.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 27–42.

[19] M. J. Harrold, R. Gupta, and M. L. Soffa, “A Methodology for
Controlling the Size of a Test Suite,” ACM Transactions on Software
Engineering and Methodology, vol. 2, no. 3, pp. 270–285, 1993.

[20] B. Dutertre and L. de Moura, “The Yices SMT solver,” SRI Available
at http://yices.csl.sri.com/tool-paper.pdf, Tech. Rep., 2006.

[21] G. Kaminski and P. Ammann, “Using a Fault Hierarchy to Improve the
Efficiency of DNF Logic Mutation Testing,” in ICST’09: Proceedings of
the 2nd International Conference on Software Testing Verification and
Validation. Washington, DC, USA: IEEE Computer Society, Apr. 1–4,
2009, pp. 386–395.

[22] P. E. Black, V. Okun, and Y. Yesha, “Mutation Operators for Specifi-
cations,” in ASE’00: Proceedings of the Fifteenth IEEE International
Conference on Automated Software Engineering. Los Alamitos, CA,
USA: IEEE Computer Society, 2000, p. 81.

[23] T. Y. Chen, M. F. Lau, K. Y. Sim, and C. A. Sun, “On detecting faults
for Boolean expressions,” Software Quality Journal, vol. 17, no. 3, pp.
245–261, 2009.

[24] G. Kaminski, G. Williams, and P. Ammann, “Reconciling perspectives
of software logic testing,” Software Testing, Verification and Reliability,
vol. 18, no. 3, pp. 149–188, 2008.

[25] Z. Chen, B. Xu, and C. Nie, “Comparing Fault-based Testing Strategies
of General Boolean Specifications,” in COMPSAC ’07: Proceedings
of the 31st Annual International Computer Software and Applications
Conference. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 621–622.


