
Using SRI SAL model checker for combinatorial tests
generation in the presence of temporal constraints

Andrea Calvagna
Dip. Ingegneria Informatica e delle

Telecomunicazioni
University of Catania - Italy

andrea.calvagna@unict.it

Angelo Gargantini
Dip. Metodi Matematici e Ingegneria

dell’Informazione
University of Bergamo - Italy

angelo.gargantini@unibg

ABSTRACT
In this paper we describe an approach to use formal analy-
sis tools in conjunction with traditional testing to improve
the efficiency of the test generation process. We have de-
veloped a technique for the construction of combinatorial
test suites, featuring expressive constraints over the models
under test and cross coverage evaluation between multiple
coverage criteria: combinatorial, structural and fault based.
Our approach is tightly integrated with formal logic, since it
uses formal logic to specify the system inputs (including the
constraints), test predicates to formalize testing as a logic
problem, and applies the SAL model checker tool to solve
it, and hence to generate combinatorial test suites. Early
results of experimental assessment are presented, supported
by a prototype tool implementation.

1. INTRODUCTION
Verification of highly-configurable software systems, such as
those supporting many optional or customizable features, is
a challenging activity. In fact, due to its intrinsic complexity,
formal specification of the whole system may require a great
effort. Modeling activities may become extremely expensive
and time consuming, and the tester may decide to model
only the inputs and require they are sufficiently covered by
tests. On the other hand, unintended interaction between
optional features can lead to incorrect behaviors which may
not be detected by traditional testing [27, 35]. To this aim,
combinatorial interactive testing (CIT) techniques [12, 20,
27] can be effectively applied in practice [2, 31, 26]. CIT
consists in employing combination strategies to select val-
ues for inputs and combine them to form test cases. The
tests can then be used to check how the interaction among
the inputs influences the behavior of the original system un-
der test. The most used combinatorial testing approach is to
systematically sample the set of inputs such a way that all
t-way combinations of inputs are included. This approach
exhaustively explores t-strength interaction between input
parameters, generally in the smallest possible test execu-
tions.

In particular, pairwise interaction testing aims at generat-
ing a reduced-size test suite which covers all pairs of input
values. Significant time savings can be achieved by imple-
menting this kind of approach, as well as in general with
t-wise interaction testing. As an example, exhaustive test-
ing of a system with a hundred boolean configuration op-
tions would require 2100 test cases, while pairwise coverage
for it can be accomplished with only 10 test cases. Simi-
larly, pairwise coverage of a system with twenty ten-valued
inputs (1020 distinct input assignments possible) requires a
test suite sized less than 200 tests cases only. Also, it has
been experimentally shown that CIT is really effective in
revealing software defects [25]. A test set that covers all
possible pairs of variable values can typically detect 50%
to 75% of the faults in a program [32, 13]. Other experi-
mental work shown that usually 100% of faults are already
triggered by a relatively low degree of features interaction,
typically 4-way to 6-way combinations [27], and that the
testing of all pairwise interactions in a software system finds
a significant percentage of the existing faults [13]. Dunietz
et al. [15] compare t-wise coverage to random input testing
with respect to structural (block) coverage achieved, with
results showing higher reliability of the former in achiev-
ing block coverage if compared to random test suites of the
same size. Burr and Young [6] report 93% code coverage
as a result from applying pairwise testing of a commercial
software system. For this reason combinatorial testing is
used in practice and supported by many tools [29]. How-
ever, as explained in Section 2, most combinatorial testing
techniques either ignore the constraints which the environ-
ment may impose on the inputs or require the user to modify
the original specifications and add extra information to take
into account the constraints. In this paper we investigate
the use of CIT in the presence of constraints, and in par-
ticular with constraints over how input values can change
over time, or briefly, temporal constraints. Our approach is
particularly useful (but not limited to) if one wants to ap-
ply CIT to reactive systems, for which temporal constraints
play a fundamental role.

We argue that a mixed approach, where both testing and
formal analysis (model checking) tools are used in conjunc-
tion, could be of advantage in order to balance the required
efforts over time. Specifically, we devise an approach where
formal modeling of system’s input/output domains and of its
state space (behavior), is not required all at once but can
be done in successive stages, respectively. At start-up stage,
formal modeling of just the input domain allow for exhaus-

tive exploration of features interactions, using for instance
combinatorial testing. This lets us achieve a high degree of
confidence on the system correctness with relatively little
effort. Meanwhile, or later in time, the same model can be
extended to include the actual system’s behavioral descrip-
tion. At this second stage, temporal properties which ex-
press constraints over sequences of inputs over time can also
be checked. That is, feedback from the model checker can be
used in order to customize the combinatorial test suites, al-
lowing only valid tests, with respect to the requirements on
the dynamics of the system parameters. Thus, still improv-
ing the significance of the resulting test process. Moreover,
the behavioral model of the system can be also used as an
oracle to compute expected outputs to each test, thus en-
abling also fully automated evaluation of the test process. In
this context, we present a technique to express constraints
over the dynamics of a system and to use them to build a
valid combinatorial test suite. This technique has been im-
plemented in a tool (ATGT)1 designed in order to exploit
model checkers to generate tests. Considering models pos-
sibly with their complete behavioral specification, allowed
us to derive a combinatorial test suite and then evaluate
its cross coverage with respect to structural and fault-based
criteria.

The paper is organized as follows: section 2 gives some in-
sight on the topic and recently published related works. Sec-
tion 3 presents our approach, how we deal with propositional
constraints, how we use the SAL model checker to generate
combinatorial tests, and how we evaluate the tests. Section
4 explains how we incorporate temporal constraints over the
input domain. Section 5 evaluates early results on some case
studies carried out in order to assess the correctness of the
proposed approach. Finally, section 6 draws our conclusions
and points out some ideas for future extension of this work.

2. RELATED WORK
Many algorithms and tools for combinatorial interaction test-
ing already exist in the literature. Grindal et al. count more
than 40 papers and 10 strategies in their recent survey [20].
There is also a web site [29] devoted to this subject and
several automatic tools are commercially [8] or freely avail-
able [32]. Most of the currently available methods and tools
are strictly focused on providing an algorithmic solution to
the mathematical problem of covering array generation only,
while very few of them account also for other complemen-
tary features, which are rather important in order to make
these methods really useful in practice in more general sit-
uations, like i.e. the ability to handle constraints on the
input domains. In a previous paper [7] we have identified
the following requirements for a effective combinatorial test-
ing tool, extending the previous work on this topic by Lott
et al. [28]:

A. Ability to deal with user specific requirements on
the test suite. The user may require the explicit exclusion
or inclusion of specific test cases, e.g. those generated by
previous executions of the used tool or by any other means,
in order to customize the resulting test suite. The tool could

1ATGT tool is available for download at:
http://cs.unibg.it/gargantini/projects/atgt.

also let the user interactively guide the on-going test case se-
lection process, step by step. Moreover the user may require
the inclusion or exclusion of sets of test cases which refer
to a particular critical scenario or combination of inputs. In
this case the set is better described symbolically, for example
by a predicate expression over the inputs. Note that instant
[20] strategies, like algebraic constructions of orthogonal ar-
rays and/or covering arrays, and parameter-based, iterative
strategies, like IPO, do not allow this kind of interaction.

B. Integration with other testing techniques. Combi-
natorial testing is just one testing technique. The user may
be interest to integrate results from many testing techniques,
including those requiring very complex formalisms (as in [19,
18, 17, 16]). This shall not be limited to having a common
user-interface for many tools. Instead, it should go in the
direction of generating a unique test-suite which simultane-
ously accounts for multiple kinds of coverages (e.g., com-
binatorial, state, branch, faults, and so on). Our method,
supported by a prototype tool, aims at bridging the gap be-
tween the need to formally prove any specific properties of
a system, relying on a formal model for its description, and
the need to also perform functional testing of its usage con-
figurations, with a more accessible black-box approach based
on efficient combinatorial test design. Integrating the use of
a convenient model checker within a framework for pairwise
interaction testing, our approach gives to the user the easy
of having just one convenient and powerful formal approach
for both uses.

C. Constraints support. A third desired requirement of
a combinatorial testing strategy is the ability to deal with
complex constraints. This issue has been recently investi-
gated by Cohen et al. [9] and recognized as a highly de-
sirable feature of a testing method. Note that the general
problem of finding a minimal set of test cases that satisfies
t-wise coverage can be NP-complete [34, 30]. If constraints
on the input domain are to be taken into account, even the
generation of a single test can be NP-complete, since it can
be reduced in the most general case to a satisfiability prob-
lem.

Although no one has considered constraints over the evo-
lution of monitored variables during the time, there are al-
ready few approaches to deal with the non temporal (or
propositional) constraints over the inputs.

In order to deal with constraints, some methods require to
remodel the original specification. For instance, AETG [8,
28] requires to separate the inputs in a way they become
unconstrained, and only simple constraints of type if then
else (or requires in [9]) can be directly modeled in the
specification. Other methods [21] require to explicitly list all
the forbidden combinations. As the number of input grows,
the explicit list may explode. In [3] the authors introduce
the concept of soft constraints: they use a method to avoid
tuples if possible. In this paper we consider only hard con-
straints: a test is valid only if it satisfies the constraints.
Cohen et al. [9] found that just one tool, PICT [11], was
able to handle full constraints specification, that is, without
requiring remodeling of inputs or explicit expansion of each

forbidden test cases. However, there is no detail on how the
constraints are actually implemented in PICT, limiting the
reuse of its technique.

Cohen et al. [9] propose a framework to incorporating con-
straints into established greedy and simulating annealing
combinatorial testing algorithm. Their framework is gen-
eral and fully supports the presence of constraints, even if
they can be modeled only as forbidden tuples.

Recently, several papers investigated the use of verification
methods for combinatorial testing. Hnich et al. [24] trans-
lates the problem of building covering arrays to a Boolean
satisfiability problem and then they use a SAT solver to gen-
erate their solution. In their paper, they leave the treatment
of auxiliary constraints over the inputs as future work. Con-
versely, Cohen et al. Kuhn and Okun [25] try to integrate
combinatorial testing with model checking (SMV) to pro-
vide automated specification based testing, with no support
for constraints.

In our previous work [7] we have investigated the integration
of model checkers with combinatorial testing in the presence
of (propositional) constraints while supporting all of the ad-
ditional features listed above. In [7], not only we address
the use of full constraints as suggested in [9] but we feature
the use of predicates to express constraints over the inputs
(see section 3 for details). Furthermore, while Cohen’s gen-
eral constraints representation strategy has to be integrated
with an external tool for combinatorial testing, our approach
tackles every aspect of the test suite generation process.

In this paper we extend and integrate our previous work with
some modifications by considering t-wise coverage, dealing
with temporal constraints over the dynamics of inputs, which
has not yet been investigated, to the best of our knowledge,
and evaluating combinatorial tests against structural and
fault-based test suites (cross coverage evaluation).

3. LOGIC-BASED APPROACH
In this section we present the logic-based approach presented
in [7] with some integrations and extensions, like the n-wise
coverage. The technique is supported by the ASM Test Gen-
eration Tool (ATGT). ATGT was originally developed to
support structural [19] and fault based testing [16] of Ab-
stract State Machines (ASMs), and it has been extended to
support also combinatorial testing.

Since pairwise testing aims at validating each possible pair of
input values for a given system under test, we then formally
express each pair as a corresponding logical expression, a
test predicate (or test goal), e.g.:

p1 = v1 ∧ p2 = v2

where p1 and p2 are two inputs or monitored variables of
enumerative or boolean domain and v1 and v2 are two pos-
sible values of p1 and p2 respectively. Similarly, the n-wise
coverage can be modeled by a set of test predicates, each of
the type:

p1 = v1 ∧ p2 = v2 ∧ · · · ∧ pn = vn

where p1, p2 . . . pn are n inputs and v1, v2 . . . vn are their
values, such that every possible combination of the n input
variables with their values is taken into account. Please note
that to reach complete n-wise coverage this has to be true for
each n-tuple of input parameters of the considered system.

The easiest way to enumerate the test predicates required
for the n-wise coverage of an ASM model is to employ a
combinatorial enumeration algorithm, which simply loops
over the variables and their values to build all the possible
test predicates.

In order to correctly generate the test predicates required
by the coverage we assume the availability of a formal de-
scription of the system under test. This description should
include at least the input parameter domains2. The descrip-
tion has to be entered in the tool as an ASM specification in
the AsmetaL language [33]. We use as case study the well
known example Cruise Control (CC) [1], whose AsmetaL
specification in shown in Listing 1. The CC has 4 boolean
monitored variables, one monitored variable with 3 possible
values, and, for instance, the collection of test predicate for
the pairwise coverage count 48 predicates. These are the
combinatorial explosion of all assignments for each of the
five possible subsets of two distinct parameters of CC. The
the four-wise coverage set for the same example count 112
test predicates. They can be obtained by enumerating all
the possible assignments for the following parameter subsets:

fast igOn brake engRun
fast igOn brake lever
fast igOn engRun lever
fast brake engRun lever
igOn brake engRun lever

Table 1: parameters combinations

This activity (step 1) is carried out by the test predicate
generator of Fig. 1 showing the process proposed by our
method and implemented in ATGT.

By formalizing the n-wise testing by means of logical predi-
cates, finding a test that satisfies a given predicate reduces
to a logical problem of finding a complete 3 model for a log-
ical formula. To this aim, many techniques like constraint
solvers, can be applied. Our approach exploits a well known
model checker tool, namely the bounded and symbolic model
checker tool SAL [14]. Given a test predicate tp, SAL is
asked to verify a trap property [17] which states that tp is
never true, or never(tp), which in LTL, the language of SAL,
becomes G(¬tp). The trap property is not a real system
property, but enforces the generation of a counter exam-
ple, that is a set of assignments falsifying the trap property
and satisfying our test predicate. The counter example will
contain bindings for all monitored inputs, including those
parameters missing (free) in the predicate, thus defining the
test we were looking for.

2Currently, only finite, discrete enumerable domains are
supported.
3We say that a model is complete if it assigns a value to every
input variable. We informally call this model assignment

Figure 1: the process of test suite generation based on SAL MC

asm cruiseControl
import StandardLibrary
//UNIVERSES and FUNCTIONS
signature:

enum domain CCMode =
{OFF| INACTIVE|CRUISE|OVERRIDE}

enum domain CCLever =
{DEACTIVATE| ACTIVATE|RESUME}

dynamic controlled mode : CCMode
dynamic monitored lever : CCLever
dynamic monitored igOn : Boolean
dynamic monitored engRun : Boolean
dynamic monitored brake : Boolean
dynamic monitored fast : Boolean

definitions:
// AXIOMS: ADDED LATER
// RULES:
main rule r CruiseControl =
if not igOn then mode := OFF
else if not engRun then mode:= INACTIVE
// igOn and engRun
else par
if mode = OFF then mode := INACTIVE endif
if mode = INACTIVE and not brake and not fast

and lever = ACTIVATE then
mode := CRUISE

endif
if mode = CRUISE then

if fast then mode := INACTIVE
else if brake or lever = DEACTIVATE then

mode := OVERRIDE endif endif
endif
if mode = OVERRIDE and not fast and not brake

and (lever = ACTIVATE or lever = RESUME) then
mode := CRUISE

endif endpar
endif endif

default init s1:
// INITIAL STATE: ADDED LATER

Listing 1: AsmetaL specification of Cruise Control

cruiseControl: CONTEXT = BEGIN

CCLever : TYPE = {DEACTIVATE, ACTIVATE, RESUME};

monitored : MODULE = BEGIN

OUTPUT igOn, fast, engRun, brake: BOOLEAN,
lever: CCLever

TRANSITION igOn’ IN {true, false};
fast’ IN {true, false};
engRun’ IN {true, false};
brake’ IN {true, false};
lever’ IN {DEACTIVATE, ACTIVATE, RESUME};

END;

% trap property
tc 92668c : THEOREM monitored |− G(NOT <tp>);

END

Listing 2: SAL specification of Cruise Control

The steps we actually perform to generate a suitable test
suite are depicted in Fig. 1. We randomly extract a test
predicate tp (step 2) from the set of all the test predicates
previously generated. The user may select only a subset of
the test predicates for generation or include some extra tps
(as explained in [7]): we call candidates all the test pred-
icates to be considered. Then (step 3) we build the SAL
specification by considering the inputs of the original model
and the trap property. The SAL translation of CC is shown
in Listing 2.

We run SAL to obtain a counter example, i.e. an assignment
of every input which satisfies tp. Without constraints such
counter example always exists, it represents the test, and it
is called test data (step 4). The test data produced by SAL
is then completed to compute the expected values for the
controlled variables to obtain a real test. Indeed, since the
SAL model ignores the rules and the controlled variables and
it considers only the inputs and their domains, the counter
example does not contain the expected values for the con-
trolled variables. The test is also evaluated to check if it
covers other candidates, i.e. if it satisfies other test predi-

T = test suite to be optimized
Op = optimized test suite
Tp = set of test predicates which are not covered by tests in Op

0. set Op to the empty set and add to Tp all the test predicates
1. take the test t in T which covers most test predicates in Tp
and add t to Op
2. remove all the test predicates covered by t from Tp
3. if Tp is empty then return Op else goto 1

Figure 2: Test suite reduction algorithm

cates (step 5). Finally the test is added to the test suite and
the test predicates covered are removed from the candidates
until the set becomes empty. This approach, according to
[20], can be classified as iterative, since the test suite is built
one test at the time.

Even if one skips the test predicates already covered, the
final test suite may still contain some test cases which are
redundant. We say that a test case is required if contains
at least a test predicate not already covered by other test
cases in the test suite. We than try to reduce the test suite
by deleting all the test cases which are not required in order
to obtain a final test suite with fewer test cases. Note, how-
ever, that an unnecessary test case may become necessary
after deleting another test case from the test suite, hence we
cannot simply remove all the unnecessary test predicates at
once. We have implemented a greedy algorithm, reported in
Fig. 2, which finds a test suite with the minimum number
of required test cases by simply looking at which test predi-
cates are covered by each test in the original test suite. This
reduction technique is applied in step 6 of the Fig. 1.

3.1 Propositional constraints
Support for constraints over the inputs is given by expressing
them as axioms in the specification. In the CC example, the
assumptions that the engine is running only if the ignition
is on and that the car is driving too fast only if the engine is
running, are modeled in AsmetaL by the following axioms:

axiom inv ignition over engRun : (engRun implies igOn)
axiom inv toofast over fast : (fast implies engRun)

To express constraints we adopt the language of proposi-
tional logic with equality4. Note that most methods and
tools admit only few templates for constraints: the transla-
tion of those templates in equality logic is straightforward.
For example the require constraint is translated to an im-
plication; the not supported to a not, and so on. Even the
method proposed in [9] which adopt a similar approach to
ours prefer to allow constraints only in a form of forbidden
configurations [22], since it relies for the actual tests gener-
ation on external tools. Our approach allows the designer
to state the constraint of a forbidden combination as a not
statement. Moreover, we support constraint that not only
relate two variable values (to exclude a pair), but can contain
generic bindings among variables. Note that any constraint

4To be more precise, we use propositional calculus, boolean
and enumerative types for variables, and equality

models an explicit binding, but their combination may give
rise to complex implicit constraints.

In our approach, the axioms must be satisfied by any test
case we obtain from the specification, i.e. a test case is valid
only if it does not contradict any axiom in the specification.
While others [4] distinguish between forbidden combinations
and combinations to be avoided, we consider only forbidden
combinations, i.e. combinations which do not satisfy the
axioms. Since we allow the specification to contain also con-
trolled variables and rules that assign value to them, error
conditions can be modeled by an error controlled variable,
and rules that detect erroneous conditions and assign suit-
able values to error in order to signal the occurrence of such
conditions. The specification can be used then as oracle to
know whether a combination causes an error in the system.

In the presence of constraints, finding a valid test case be-
comes a challenge similar to finding a counter example for a
theorem or proving it. Verification techniques like SAT algo-
rithms, or model checkers algorithms are particularly effec-
tive in this case, so we investigated the use of the bounded
and symbolic model checkers in SAL to this aim. To in-
clude constraints in SAL they must be translated in order
to embed the axioms directly in the trap property, since SAL
does not support assumptions directly. Simply put, the trap
property must be modified to take into account the axioms
a1, a2, ...an. The general schema for it becomes:

G(a1 ∧ a2 ∧ .. ∧ an)⇒ G(¬tp) (1)

A counter example of the trap property 1 is still a valid test
data. In fact, if the model checker finds an assignment to
the variables that makes the trap property false, it finds a
case in which both the axioms are true and the implied part
of the trap property is false. This test case covers the test
predicate and satisfies the constraints.

Without constraints, we were sure that a trap property de-
rived from a consistent test predicate had always a counter
example. Now, due to the constraints, the trap property
(1) may not have a counter example, i.e. it could be true
and hence provable by the model checker. We can distin-
guish two cases. The simplest case is when the axioms are
inconsistent, i.e. there is no assignment that can satisfy
all the constraints. In this case each trap property is triv-
ially true since the first part of the implication (1) is always
false. The inconsistency may be not easily discovered by
hand, since the axioms give rise to some implicit constraints,
whose consequences are not immediately detected by human
inspection. For example a constraint may require a 6= x, an-
other b 6= y while another requires a 6= x → b = y; these
constraints are inconsistent since there is no test case that
can satisfy them. Note that also input domains must be
taken into account when checking axioms consistency. In-
consistent axioms must be considered as a fault in the spec-
ification and this must be detected and eliminated. For this
reason when we start the generation of tests, if the specifi-
cations has axioms, we check that the axioms are consistent
by trying to prove:

G(¬(a1 ∧ a2 ∧ .. ∧ an)) (2)

If this is proved by the model checker, then we warn the user,
who can ignore this warning and proceed to generate tests,
but no test will be generated, since no valid test case can be
found. We assume now that the axioms are consistent. Even
with consistent axioms, some (but not all) trap properties
can be true: there is no test case that can satisfy the test
predicate and the constraints. In this case we define the test
predicate as infeasible.

Definition 1. Let tp a test predicate, M the specification,
and C the conjunction of all the axioms. If the axioms are
consistent and the trap property for tp is true, i.e. M ∧C |=
¬tp, then we say that tp is infeasible. Let tp be the n-wise
test predicate p1 = v1 ∧ p2 = v2 . . . pn = vn, we say that this
combination of assignments is infeasible.

An infeasible combination of assignments represents a set of
invalid test cases: all the test cases which contain this com-
bination are invalid. Our method is able to detect infeasible
assignments, since it can actually prove the trap property
derived from it. The tool finds and marks the infeasible
combinations, and the user may derive from them invalid
tests to test the fault tolerance of the system. For exam-
ple, the following test predicate results infeasible for the CC
example, since the engine cannot run when the ignition is
off:

engRun = true AND igOn = false −−−> unfeasible

Note that since the BMC is in general not able to prove a
theorem, but only to find counter examples, it would be not
suitable to prove infeasibility of test predicates. However,
since we know that if the counter example exists then it has
length (i.e. the number of system states) equal to 1, if the
BMC does not find it then we can infer that the test predi-
cate is infeasible. Note that a test specifies the exact value
of all the input variables, while a test predicate specifies a
generic scenario. ATGT allows the tester to load an exter-
nal file containing user defined tests and test goals. When
an external file is loaded, ATGT adds the user defined test
in the set of test predicates to be covered. Then it adds the
user defined tests and it checks which test predicates are
satisfied by these tests. In this way the tester can decide to
skip the test predicates covered by tests he/she has written
ad hoc.

4. TEMPORAL CONSTRAINTS
Until now, we have considered only constraints which bind
the input values at the same time, e.g. a variable cannot
have a value if another has another value. Now we consider
systems which evolve during their operations in a discrete
way, step by step. At every step every variable can have
a different value from the value it had before. In particu-
lar, the monitored variables are free to non deterministically
change from one step to the next one. However, some axioms
may limit how inputs evolves due some external constraints
of the environment. For these systems, a test is no longer a

Figure 3: the lever of a Cruise Control

simple assignment to every input variable to one of its possi-
ble values, but it becomes a sequence of assignments, where
every assignment denotes a state. In this case we refer to a
test as test sequence. We consider in this paper three kinds
of temporal constraints: initial value, next value, and one
input assumption (OIA). These three kinds of constraints
are the typical types of assumptions most formal notation
for reactive systems permit about the models under test.
The OIA is useful to model asynchronous systems, which
process an input event at the time.

Initial and next value. The first two constraints state
how a single input can evolve during the normal operation
of the system. Consider for example the lever for a cruise
control system depicted in Fig. 3. The lever is initially in
the DEACTIVATE position and from that position it can
only become ACTIVATE. From the ACTIVATE position it
may become RESUME or DEACTIVATE again.

If the tester wants to use the test generated by our method
to test the actual system for conformance with the require-
ments, he/she must use the actual interface to enter the
input values of the test cases. For example, if a test case re-
quires that lever = RESUME, the user must start with lever
= DEACTIVATE, than lever = ACTIVATE and finally lever
= RESUME. The application of one test case has required
three steps, but the testing method considered so far is not
aware of this and it cannot take advantage: if another test
requires the user to switch lever = ACTIVATE, the tester
must go back to the initial state and start again the appli-
cation of the new test case, although this kind of combina-
tion of inputs has already been tested. To consider this kind
of constraints we extend our method as follows. First, the
tester will add the constraints in the specification. Initial
values are set by the following initialization in the AsmetaL
specification.

default init s1:
function mode = OFF
function lever = DEACTIVATE
function igOn = false
function engRun= false
function brake = false
function fast = false

The next value constraint can be specified by using the spe-
cial library function next. For example, for CC a constraint
is:

axiom lever deact : lever = DEACTIVATE implies
next(lever = DEACTIVATE) or next(lever = ACTIVATE)

While the initial values are translated into SAL by the INI-
TIALIZATION clause, the next value constraints are trans-
lated in SAL in Linear Temporal Logic (LTL)5. The trap
5The SAL model checkers use LTL (Linear Temporal Logic)

property 1 will contain in a1 . . . an not only the proposi-
tional axioms, but also the temporal axioms. For example,
to express the constraint when the lever is in the DEACTI-
VATE position, the trap property will contain the following
axiom:

G(... AND lever = DEACTIVATE =>
(X(lever = DEACTIVATE) OR X(lever = ACTIVATE)))

One Input Assumption. The One Input Assumption con-
straint, taken form [23], allows at most one monitored vari-
able to change from one state to the next. The expression in
AsmetaL of such constraint in terms of next values is very
complex and it can be error prone. We decided to allow
the user to simply set this constraint as a preference of the
generation method. The translation in SAL differs from the
next constraints too: instead adding a complex axiom, we
modify the TRANSITION clause in the SAL specification as
follows, thus allowing only one input to change at the time:

TRANSITION
[true −−> igOn’ IN {true, false};
[] true −−> fast’ IN {true, false};

...
]

In the presence of temporal constraints, the counter example
produced by SAL will contain several states. We extend the
definition of test: a test data sequence is a sequence of
assignments, whose first assignment is compatible with the
initial value constraint and every pair of consecutive assign-
ments is compatible with the temporal constraints.

We have now to take the whole counter example produced
by the model checker as a test sequence: a test case is now a
test data sequence with a possible number of states greater
than 1. Furthermore, adding this kind of constraints lim-
its (but it does not exclude) the use of the Bounded Model
Checker (and any other constraint solver or SAT based tech-
nique). Indeed the BMC is no longer able to prove that a
test predicate is infeasible, since not finding a counter exam-
ple of a given finite length does not necessarily imply that
the trap property is true: it can be the case that the counter
example is longer than the BMC depth. We are investigating
the use of induction and a conservative use of the bound for
counter examples to be able to induce infeasibility from the
non existence of a counter example by using BMC. Mean-
while, if the BMC does not find a counter example for a test
predicate, we do not mark that test predicate as unfeasible,
we warn the user, and we invite to run the SMC.

5. EXPERIMENTS
We have applied our technique to two case studies: the
Cruise Control (CC) , the Safety Injection System (SIS),
a simplified version of the system described in [10]. Table
2 reports some significant data about them. The input size
is the product of the input domain sizes. The notation nm

means that the specification contains m variables each with
n possible values. The table reports the number of controlled

as their assertion language but they also accept CTL syntax
on the common fragment

input # # # #tp n-wise
size C R axs 2 3 4 5

CC 24 · 3 1 6 5 48 104 112 48

unfeasible 3 19 38 24

SIS 22 · 3 3 4 4 16 12 - -

Table 2: Case Studies

variables (# C), the number of rules (# R), the number
of axioms (#axs: propositional and temporal constraints,
which include for SIS the OIA), and the number of the test
predicates obtained from the n-wise combinatorial coverage.
For CC some test predicates were proved unfeasible.

The first goal of our experiments has been the validation of
our technique by generating the test suites for the combina-
torial testing of the two case studies. We have used the two
different model checkers SAL provides: the symbolic model
checker (smc) and the bounded model checker (bmc). We
wanted also to study the effects of the constraints over the
test suites. We have modified the original specifications in
order to obtain two versions: one with the constraints (de-
noted by +) and one without (temporal and propositional)
constraints (denoted by -). Table 3 reports the total time
required to generate the test suite (A) for each n-wise cov-
ering test suite, the total number of tests in the suite, the
total number of states (as sum of the number of states in all
the test sequences - #sts) before and after the reduction al-
gorithm is applied (if the reduction has actually reduced the
size of the test suite). The column (B) shows also the aver-
age time taken for every test in the test suite and it is equal
to (A)/#tests. Note that the number of tests and the num-
ber of states are equal for specifications without constraints
since each test has only one state.

Observing the data in Table 3 we can make the following
preliminary observations. The BMC proved to be faster
than the SMC, especially in the presence of constraints. The
total time to generate the test suite (column A) is always
lower for the BMC than for the SMC, while the average time
taken per every single generated test (column B) is always
lower for the BMC in the presence of constraints, while it is
comparable without constraints. The number of tests and
the total length is again lower for the BMC than for the
SMC (without constraints the sizes are comparable again).
This suggests that the BMC is more suitable to deal with
constraints than the SMC: it is faster and produces smaller
test suites. This is particularly true in case of short tests
as in our case studies. However, the average length of the
tests (not reported in Table) produced by the SMC is lower:
since the counter example produced by the SMC is as short
as possible, the SMC produces very short tests, which cover
only few test predicates. This, on the other hand, causes
the SMC to run more times than the BMC and the start-up
time for SMC is longer than the BMC since it must build the
complete BDD representation of the problem. SMC works
better when one needs very short tests while the number of
tests is not so important. The reduction technique reduced
the test suite only in a few cases (column after red.).

The constraints caused the number of tests to decrease, but
the total number of states to increase. We never found a test

(A) no red. after red. (B)
mc time # # # # time

n-wise secs tests sts tests sts x test

CC + (with constraints)

pair smc 10.4 6 27 5 22 1.73
bmc 5.2 4 27 - - 1.3

3 smc 30.9 14 58 13 53 2.21
bmc 6.3 5 46 4 39 1.26

4 smc 50.2 19 77 - - 2.64
bmc 10.5 8 72 - - 1.31

5 smc 45.2 21 83 20 81 2.15
bmc 10.4 8 81 - - 1.3

CC - (without constraints)

pair smc 18.8 21 21 - - 0.9
bmc 18.9 21 21 - - 0.9

3 smc 34.8 37 37 - - 0.94
bmc 33.7 37 37 - - 0.91

4 smc 41.9 46 46 - - 0.91
bmc 41.9 46 46 - - 0.91

5 smc 44.5 48 48 - - 0.93
bmc 45.3 48 48 - - 0.94

SIS + (with constraints)

pair smc 5.5 6 29 - - 0.92
bmc 2.5 3 19 - - 0.83

3 smc 4.4 5 28 - - 0.88
bmc 3.3 4 33 - - 0.83

SIS - (without constraints)

pair smc 4.8 10 10 - - 0.48
bmc 5.5 10 10 - - 0.55

3 smc 6.0 12 12 - - 0.5
bmc 6.2 12 12 - - 0.52

Table 3: Test suite with and without constraints

suite complaint with the constraints able to cover all the test
predicates in a total number of states equal to the number
of states of the test suite without constraints. Although
considering the temporal constraints notably increases the
total length of the test suite, we believe that it augments
the usability and applicability of the test suite, as observed
in Sect. 4.

5.1 Cross coverage evaluation
We have compared the coverage obtained by the combinato-
rial n-wise testing with the coverage obtained by the struc-
tural criteria presented in [18] and the fault based criteria
presented in [16]. The results for the CC and SIS examples
are reported in Tables 4 and 5, where BR is the basic rule
coverage (similar to the branch coverage), CR is the com-
plete rule coverage, UR is the update rule coverage, MCDC
is the modified condition decision coverage, ASF is the as-
sociative shift fault, ENF is the expression negation fault,
LNF is the literal negation fault, ORF is the (logical) op-
erator reference fault, ST0 is stuck at false, ST1 is stuck at
true, and ROF is the relational operator fault.

Table 4 shows the number of (feasible) test predicates for all
the structural and fault based coverage criteria (row #tp)
and the number of these test predicates covered by each n-
wise combinatorial test suite.

The table shows that the pairwise coverage implied a very
low coverage of structural and fault based criteria for the CC
example. Small improvements were obtained by increasing n
of the the n-wise coverage. However, combinatorial testing
was not even able to cover all the rules (BR), although the
number of combinatorial test predicates is much higher than
the number of test predicates for BR. We have investigated
and found that the rules contain guards like the following
one (see Listing 1):

if mode = INACTIVE and not brake and
not fast and lever = ACTIVATE then ...

which requires to be covered a particular value of the con-
trolled variable mode and a particular combination of inputs.
The desired input combination is covered in at least a test
in the test suite, but since combinatorial testing ignores the
outputs, such combination may not activate that particu-
lar rule because the controlled variable has a different value
from that desired. By ignoring the controlled variables, com-
binatorial testing may be not able to drive the system to a
critical state where a controlled variable takes a particular
value. These results prove that the combinatorial testing
does not always imply good structural coverage, contrary to
the experiments presented in [6, 15], where, however, the
structural coverage was computed against the implementa-
tions and not against the specifications as in our approach.
Our experiments would confirm the results presented in [5],
where the interaction test suites provided little benefit over
the randomly generated tests and did not improve coverage
of the requirements-based tests. On the contrary, we ob-
tained that the combinatorial coverage implies a very high
structural and fault based coverage for the SIS, as reported
again in Table 4. We observed that the rules in SIS were not
so dependent on controlled variables as those in CC, and this
is the reason why we obtained better structural coverage for
SIS than for CC. These results raise concerns on the appli-
cation of combinatorial testing in the model-based domain
for embedded and reactive systems, where the information
about the system state is needed to build test suites achiev-
ing good structural coverage. However, the combinatorial
testing may be the only model-based testing technique ap-
plicable in case the model contains only the specification of
the inputs together with their domains and constraints.

On the other hand, structural and fault based criteria do
not imply combinatorial testing either, as reported in Table
5, which shows the number of combinatorial test predicates
covered by structural and fault based testing. For this reason
we believe that combinatorial, structural and fault based
criteria are complementary each other.

6. CONCLUSION AND FUTURE WORK
In this paper we have described an integrated approach to
use formal analysis in conjunction with traditional testing in
order to improve the efficiency of the verification&validation
process. We presented an approach which is tightly inte-
grated with formal logic, since it uses a formal notation to
specify the system under test, test predicates to formalize
combinatorial testing as a logic problem, and applies a model
checker to solve it. We developed and presented a technique
for the construction of n-wise combinatorial test suites, fea-
turing not just simple constraints over the set of inputs but

Structural Coverage Fault Based

BR CR UR MCDC ASF ENF LNF MLF ORF ST0 ST1 ROF
CC #tp 7 7 9 0 22 29 28 22 49 49 29

pairwise 3 4 5 19 11 9 19 10 28 5
3-wise 3 3 5 19 12 10 19 10 29 5
4-wise 3 3 5 19 13 11 19 10 30 6
5-wise 4 4 6 19 15 11 19 20 31 6

SIS #tp 7 2 11 7 1 9 16 16 9 24 24 16
pairwise 7 2 9 7 1 9 16 15 9 24 21 15
3-wise 7 2 10 7 1 9 16 16 9 24 24 15

Table 4: Cross coverage of n-wise combinatorial testing

Structural Coverage Fault Based

#tp BR CR UR MCDC ASF ENF LNF MLF ORF ST0 ST1 ROF
CC pairwise 45 26 - 26 26 14 31 40 40 40 40 40

3-wise 85 34 - 34 34 16 48 64 64 64 64 64
4-wise 74 21 - 21 21 9 32 47 47 47 47 47
5-wise 24 5 - 5 5 2 7 13 13 13 13 13

SIS pairwise 16 9 5 10 9 6 3 9 10 10 10 10 10
3-wise 12 4 2 5 4 2 1 4 5 5 5 5 5

Table 5: Combinatorial test predicates covered by structural and fault based testing

also over the evolution of inputs, which is the major and orig-
inal contribution. Moreover, we were able to evaluate the
cross coverage between combinatorial, structural and fault
based coverage criteria, with very limited effort. Early re-
sults of experimental assessment have also been presented,
supported by a prototype tool implementation. We found
some interesting and unexpected results, since in one case
combinatorial testing did not imply structural testing, in
spite of different results in the literature suggest the con-
trary. We believe the whole proposed approach can be very
successful since it still allows the tester/developer to inter-
face to an easy black-box test tool - where only combinatorial
testing can be used - and, at the same time, advantage of
the (available) formal specification in order to implement a
more effective test process - where structural and fault based
testing can be applied.

Since our approach is based on the use of model checkers,
it suffers from the state explosion problem. However, for
the combinatorial testing, we consider only the inputs to-
gether with their constraints and this should keep the prob-
lem tractable. Other approaches may take advantage of a
limited expressiveness of the constraints language, but with
a loss of usability. We plan to investigate the combined use
of the model checker for the constrained part of the model
with classical algorithms for combinatorial testing for the
unconstrained part to minimize the total complexity of the
method.

7. REFERENCES
[1] J. M. Atlee and M. A. Buckley. A logic-model

semantics for SCR software requirements. In
International Symposium on Software Testing and
Analysis. ACM, 1996.

[2] R. Brownlie, J.Prowse, and M. Phadke. Robust testing
of AT&T PMX/starMAIL using OATS. AT&T
Technical Journal, 71(3):41–47, 1992.

[3] R. C. Bryce and C. J. Colbourn. Prioritized
interaction testing for pair-wise coverage with seeding
and constraints. Information & Software Technology,
48(10):960–970, 2006.

[4] R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A
framework of greedy methods for constructing
interaction test suites. In ICSE ’05: Proceedings of the
27th international conference on Software engineering,
pages 146–155, New York, NY, USA, 2005. ACM.

[5] R. C. Bryce, A. Rajan, and M. P. E. Heimdahl.
Interaction testing in model-based development: Effect
on model-coverage. In APSEC ’06: Proceedings of the
XIII Asia Pacific Software Engineering Conference,
pages 259–268. IEEE Computer Society, 2006.

[6] K. Burr and W. Young. Combinatorial test
techniques: Table-based automation, test generation,
and code coverage. In Proceedings of the Intl. Conf. on
Software Testing Analysis and Review, pages 503–513,
October 1998.

[7] A. Calvagna and A. Gargantini. A logic-based
approach to combinatorial testing with constraints. In
B. Beckert and R. Hähnle, editors, Tests and Proofs,
Second International Conference, TAP 2008, Prato,
Italy, April 9-11, 2008. Proceedings, volume 4966 of
Lecture Notes in Computer Science, pages 66–83.
Springer, 2008.

[8] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: An approach to testing
based on combinatorial design. IEEE Transactions On
Software Engineering, 23(7), 1997.

[9] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction
testing of highly-configurable systems in the presence
of constraints. In ISSTA International symposium on
Software testing and analysis, pages 129–139, New
York, NY, USA, 2007. ACM Press.

[10] P.-J. Courtois and D. L. Parnas. Documentation for

safety critical software. In Proceedings of the Fifteenth
International Conference on Software Engineering,
pages 315–323. IEEE Computer Society Press, May
1993.

[11] J. Czerwonka. Pairwise testing in real world. In 24th
Pacific Northwest Software Quality Conference, 2006.

[12] S. Dalal, A. Jain, N. Karunanithi, J. Leaton, and
C. Lott. Model-based testing of a highly
programmable system. issre, 00:174, 1998.

[13] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. C. Patton, and B. M. Horowitz.
Model-based testing in practice. In International
Conference on Software Engineering ICSE, pages
285–295, New York, May 1999. Association for
Computing Machinery.

[14] L. de Moura, S. Owre, H. Rueß, J. R. N. Shankar,
M. Sorea, and A. Tiwari. SAL 2. In R. Alur and
D. Peled, editors, Computer-Aided Verification, CAV
2004, volume 3114 of Lecture Notes in Computer
Science, pages 496–500, Boston, MA, July 2004.
Springer-Verlag.

[15] I. S. Dunietz, W. K. Ehrlich, B. Szablak, C. Mallows,
and A. Iannino. Applying design of experiments to
software testing. In I. Society, editor, Proc. Int’l Conf.
Software Eng. (ICSE), pages 205–215, 1997.

[16] A. Gargantini. Using model checking to generate fault
detecting tests. In International Conference on Tests
And Proofs (TAP), number 4454 in Lecture Notes in
Computer Science (LNCS), pages 189–206. Springer,
2007.

[17] A. Gargantini and C. Heitmeyer. Using model
checking to generate tests from requirements
specifications. In O. Nierstrasz and M. Lemoine,
editors, Software Engineering - ESEC/FSE’99,
number 1687 in LNCS, 1999.

[18] A. Gargantini and E. Riccobene. Asm-based testing:
Coverage criteria and automatic test sequence
generation. JUCS, Volume 10 Number 8 (Nov 2001),
2001.

[19] A. Gargantini, E. Riccobene, and S. Rinzivillo. Using
spin to generate tests from ASM specifications. In
ASM 2003 - Taormina, Italy, March 2003.
Proceedings, LNCS 2589, 2003.

[20] M. Grindal, J. Offutt, and S. F. Andler. Combination
testing strategies: a survey. Softw. Test, Verif. Reliab,
15(3):167–199, 2005.

[21] A. Hartman. Ibm intelligent test case handler:
Whitch,
http://www.alphaworks.ibm.com/tech/whitch.

[22] A. Hartman. Graph Theory, Combinatorics and
Algorithms Interdisciplinary Applications, chapter
Software and Hardware Testing Using Combinatorial
Covering Suites, pages 237–266. Springer, 2005.

[23] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw.
Automated consistency checking of requirements
specifications. ACM Trans. Softw. Eng. Methodol.,
5(3):231–261, 1996.

[24] B. Hnich, S. D. Prestwich, E. Selensky, and B. M.
Smith. Constraint models for the covering test
problem. Constraints, 11(2-3):199–219, 2006.

[25] D. R. Kuhn and V. Okum. Pseudo-exhaustive testing
for software. In SEW ’06: IEEE/NASA Software

Engineering Workshop, volume 0, pages 153–158, Los
Alamitos, CA, USA, 2006. IEEE Computer Society.

[26] D. R. Kuhn and M. J. Reilly. An investigation of the
applicability of design of experiments to software
testing. In I. Society, editor, 27th NASA/IEEE
Software Engineering workshop, pages 91–95, 2002.

[27] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing.
IEEE Trans. Software Eng, 30(6):418–421, 2004.

[28] C. Lott, A. Jain, and S. Dalal. Modeling requirements
for combinatorial software testing. In A-MOST ’05:
Proceedings of the 1st international workshop on
Advances in model-based testing, pages 1–7, New York,
NY, USA, 2005. ACM Press.

[29] Pairwise web site. http://www.pairwise.org/.

[30] G. Seroussi and N. H. Bshouty. Vector sets for
exhaustive testing of logic circuits. IEEE Transactions
on Information Theory, 34(3):513–522, 1988.

[31] B. D. Smith, M. S. Feather, and N. Muscettola.
Challenges and methods in validating the remote
agent planner. In C. Breckenridge, editor, Proceedings
of the Fifth International conference on Artificial
Intelligence Planning Systems (AIPS), 2000.

[32] K. C. Tai and Y. Lie. A test generation strategy for
pairwise testing. IEEE Trans. Softw. Eng.,
28(1):109–111, 2002.

[33] The ASMETA project. http://asmeta.sourceforge.net.

[34] A. W. Williams and R. L. Probert. Formulation of the
interaction test coverage problem as an integer
program. In Proceedings of the 14th International
Conference on the Testing of Communicating Systems
(TestCom) Berlin, Germany, pages 283–298, march
2002.

[35] C. Yilmaz, M. B. Cohen, and A. A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Trans. Software Eng,
32(1):20–34, 2006.

	Introduction
	Related work
	Logic-based approach
	Propositional constraints

	Temporal constraints
	Experiments
	Cross coverage evaluation

	Conclusion and future work
	References

