
Addressing Usability in a Formal Development
Environment?

Paolo Arcaini1[0000−0002−6253−4062], Silvia Bonfanti2[0000−0001−9679−4551],
Angelo Gargantini2[0000−0002−4035−0131], Elvinia

Riccobene3[0000−0002−1400−1026], and Patrizia Scandurra2[0000−0002−9209−3624]

1 National Institute of Informatics, Tokyo, Japan
arcaini@nii.ac.jp

2 University of Bergamo, Bergamo, Italy
{silvia.bonfanti,angelo.gargantini,patrizia.scandurra}@unibg.it

3 Università degli Studi di Milano, Milan, Italy
elvinia.riccobene@unimi.it

Abstract. Even though the formal method community tends to over-
look the problem, formal methods are sometimes difficult to use and not
accessible to average users. On one hand, this is due to the intrinsic com-
plexity of the methods and, therefore, some level of required expertise
is unavoidable. On the other hand, however, the methods are sometimes
hard to use because of lack of a user-friendly tool support. In this pa-
per, we present our experience in addressing usability when developing a
framework for the Abstract State Machines (ASMs) formal method. In
particular, we discuss how we enhanced modeling, validation, and verifi-
cation activities of an ASM-based development process. We also provide
a critical review of which of our efforts have been more successful as well
as those that have not obtained the results we were expecting. Finally, we
outline other directions that we believe could further lower the adoption
barrier of the method.

Keywords: Abstract State Machines · ASMETA· Usability · Formal
Methods.

1 Introduction

One of the seven myths that Hall listed in his well-known paper [27] is that
“formal methods are unacceptable to users’. Bowen and Hinchey discussed seven
more myths [19] and, among these, they reported the lack of tool support as
another myth. However, as formal method community, we have to admit that
there is a part of truth in each myth: formal methods can be sometimes difficult
to use and not accessible to average users. On one hand, this is due to the intrinsic
complexity of the methods and, therefore, some level of required expertise is

? P. Arcaini is supported by ERATO HASUO Metamathematics for Sys-
tems Design Project (No. JPMJER1603), JST. Funding Reference number:
10.13039/501100009024 ERATO.

unavoidable. On the other hand, however, the methods are hard to use because
of lack of a user-friendly support. Hall himself, while dispelling the method,
recognized that designers should “make the specification comprehensible to the
user” [27], and Bowen and Hinchey recognized that more effort must be spent
on tool support [19].

The Abstract State Machines (ASMs) formal method [18] is a state-based
formal method that is usually claimed to be usable, since a practitioner can
understand ASMs as pseudo-code or virtual machines working over abstract
data structures. However, from our long time experience in using the method
and in teaching it, we realized that there are some aspects of the method that
can prevent from using it in the most fruitful way.

In 2006, we started developing the ASMETA framework, with the aim of
building a set of tools around the ASM method. While developing validation
and verification techniques for the method, we kept usability as one of our lead-
ing principles. This was also motivated by the fact that, in addition to us, the
primary users of the framework are our students to which we teach ASMs. As
most of them are not naturally attracted by formal methods, we wanted to build
a framework that could assist them in using the ASM method and would lower
the adoption barriers of the method. In particular, we declined usability in three
more concrete driving principles:
– smoothness: the framework should be usable with as less effort as possible.

The user should not care about technical details that can be hidden and
automatized;

– understandability: the framework should help in understanding the model
itself and the results of its validation and verification;

– interoperability: the different tools of the framework should be integrated as
much as possible, such that the user can inspect the results of one tool with
another tool without any effort. As an example, the counterexamples of a
model checker should be re-executable by the simulator.

In this paper, we describe how the different tools/techniques of ASMETA
try to fulfil these principles.

The paper is structured as follows. Sect. 2 briefly introduces the ASM method,
and Sect. 3 gives a general overview of the ASMETA framework. Sect. 4 describes
how we addressed usability at the modeling, validation, and verification levels.
Then, Sect. 5 critically reviews our efforts and outlines other directions that
could further increase the usability of the framework. Finally, Sect. 6 reviews
some related work, and Sect. 7 concludes the paper.

2 Abstract State Machines

Abstract State Machines (ASMs) [18] are an extension of FSMs, where unstruc-
tured control states are replaced by states with arbitrary complex data.

ASM states are algebraic structures, i.e., domains of objects with functions
and predicates defined on them. An ASM location, defined as the pair (function-
name, list-of-parameter-values), represents the ASM concept of basic object con-

asm HemodialysisGround

signature:
enum domain Phases = {PREPARATION | INITIATION | ENDING}
controlled phase: Phases

definitions:
macro rule r run preparation =

phase := INITIATION

macro rule r run initiation =
phase := ENDING

macro rule r run ending =
skip

’

macro rule r run dialysis =
par

if phase = PREPARATION then
r run preparation[]

endif
if phase = INITIATION then

r run initiation[]
endif
if phase = ENDING then

r run ending[]
endif

endpar

main rule r Main = r run dialysis[]

default init s0: function phase = PREPARATION

Fig. 1: Example of ASM model

tainer. The couple (location, value) represents a memory unit. Therefore, ASM
states can be viewed as abstract memories.

Location values are changed by firing transition rules. They express the mod-
ification of functions interpretation from one state to the next one. Note that the
algebra signature is fixed and that functions are total (by interpreting undefined
locations f(x) with value undef). Location updates are given as assignments of
the form loc := v, where loc is a location and v its new value. They are the basic
units of rules construction. There is a limited but powerful set of rule construc-
tors to express: guarded actions (if-then, switch-case), simultaneous parallel
actions (par), sequential actions (seq), nondeterminism (existential quantifica-
tion choose), and unrestricted synchronous parallelism (universal quantification
forall).

An ASM computation (or run) is, therefore, defined as a finite or infinite
sequence S0, S1, . . . , Sn, . . . of states of the machine, where S0 is an initial state
and each Sn+1 is obtained from Sn by firing the unique main rule which in turn
could fire other transitions rules. An ASM can have more than one initial state.
It is also possible to specify state invariants.

During a machine computation, not all the locations can be updated. Indeed,
functions are classified as static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment) and controlled (read and written by the machine).
A further classification is between basic and derived functions, i.e., those coming
with a specification or computation mechanism given in terms of other functions.

ASMs allow modeling any kind of computational paradigm, from a single
agent executing parallel actions, to distributed multiple agents interacting in a
synchronous or asynchronous way. Moreover, an ASM can be nondeterministic
due to the presence of monitored functions (external nondeterminism) and of
choose rules (internal nondeterminism). Fig. 1 shows a simple example of an
ASM model (the ground model of the haemodialysis case study [4]).

Modelling

Editor AsmetaL - AsmEE

Visualizer AsmetaVis

Refinement prover
AsmRefProver

ASM 0 ASM 1
ASM
final

Validation and verification A
t

a
n

y
le

ve
l

Code Generator

Asm2C++ C++ Code

Abstract unit tests generator

Model-Based Testing
ATGT

Validation Property Verification

Model Checking
AsmetaSMV

Model Review
AsmetaMA

Simulation
AsmetaS

Scenarios
AsmetaV

C++ Unit test

Animator
AsmetaA

Fig. 2: The ASM development process powered by the ASMETA framework

3 ASMETA

The ASM method is applied along the entire life cycle of software development,
i.e., from modeling to code generation. Fig. 2 shows the development process
based on ASMs. The process is supported by the ASMETA (ASM mETAmod-
eling) framework4 [11] which provides a set of tools to help the developer in
various activities:
– Modeling: the system is modeled using the language AsmetaL. The user

is supported by the editor AsmEE and by AsmetaVis, the ASMs visualizer
which transforms the textual model into a graphical representation. The
refinement process can be adopted in case the model is complex: the designer
can start from the first model (also called the ground model) and can refine it
through the refinement steps by adding details to the behavior of the ASM.
The AsmRefProver tool checks whether the current ASM model is a correct
refinement of the previous ASM model.

– Validation: the process is supported by the model simulator AsmetaS, the
animator AsmetaA, the scenarios executor AsmetaV, and the model reviewer
AsmetaMA. The simulator AsmetaS allows to perform two types of simulation:
interactive simulation and random simulation. The difference between the
two types of simulation is the way in which the monitored functions are cho-
sen. During interactive simulation the user provides the value of functions,
while in random simulation the tool randomly chooses the value of functions
among those available. AsmetaA allows the same operation of AsmetaS, but
the states are shown using tables. AsmetaV executes scenarios written using
the Avalla language. Each scenario contains the expected system behavior
and the tool checks whether the machine runs correctly. The model reviewer
AsmetaMA performs static analysis in order to check model quality attributes
like minimality, completeness, and consistency.

– Verification: properties are verified to check whether the behavior of the
model complies with the intended behavior. The AsmetaSMV tool supports
this process in terms of model checking.

4 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/

– Testing: the tool ATGT generates abstract unit tests starting from the ASM
specification by exploiting the counterexamples generation of a model checker.

– Code generation: given the final ASM specification, the Asm2C++ automat-
ically translates it into C++ code. Moreover, the abstract tests, generated
by the ATGT tool, are translated to C++ unit tests.

The framework has been applied to the formal analysis of different kinds
of systems: a landing gear system [9], a haemodialysis device [4], self-adaptive
systems [14], cloud systems [12], etc.

4 How we have addressed usability in ASMETA

In this section, we describe how we have targeted usability when developing the
ASMETA framework. First of all, in order to obtain an integrated framework
in which the different tools can be used together, we developed all the tools as
eclipse plugins5.

In the following, we overview the techniques of the framework that have
improved it according to the three driving principles (i.e., smoothness, under-
standability, and interoperability), rather than purely improvements in terms of
functionality of the framework. In the following sections, we focus on the three
main phases of a formal development process: modeling, validation, and verifi-
cation.

4.1 Modeling

The first step of the development process is model definition. On the top of
the original parser and editor [26], we introduced a technique that provides
a better visualization of the model (so improving the understandability), and
another technique that automatically checks for common errors (so improving
the smoothness of use).

Visualization When a model is particularly complex, exploring it can become
difficult, and so the developer does not have a proper understanding of the whole
structure. In order to improve the exploration of the structure of an ASM model,
in [5], we introduced the graphical visualizer AsmetaVis. The basic visualization
permits to show the syntactical structure of the ASM in terms of a tree (similar
to an AST); the notation is inspired by the classical flowchart notation, using
green rhombuses for guards and grey rectangles for rules. The leaves of the tree
are the update rules and the macro call rules. For each macro rule in the model,
there is a tree representing the definition of the rule; double-clicking on a macro
call rule shows the tree of the corresponding macro rule. Fig. 3a shows the basic
visualization with AsmetaVis (starting from rule r run dialysis) of the ASM
model shown in Fig. 1. In this case, all the macro rules are shown (i.e., the user

5 The update site is http://svn.code.sf.net/p/asmeta/code/code/stable/asmeta_
update/.

http://svn.code.sf.net/p/asmeta/code/code/stable/asmeta_update/
http://svn.code.sf.net/p/asmeta/code/code/stable/asmeta_update/

(a) Basic visualization (b) Semantic visualization

Fig. 3: Visualizer AsmetaA – Visualization of the ASM model shown in Fig. 1

has selected all the call rules). Note that the visualization is particularly useful
when the model is big, as the user can decide which rules to visualize.

Control states ASMs [18] are a particular class of ASMs in which there is a
function (called phase function) that identifies the current control state; this can
be understood as a mode of the system. A control state is an abstraction of a set
of ASM states having the same value for the phase function. The main rule of a
control state ASM is a parallel of conditional rules checking the value of the phase
function: in this way, the evolution of the machine depends on the current mode.
The model in Fig. 1 is an example of control state ASM. A control state ASM
naturally induces an FSM-like representation, where each state corresponds to
one value of the phase function. Since such class of ASMs occur quite frequently,
we implemented in AsmetaVis also a semantic visualizer that is able to visualize
the FSM-like representation of a control state ASM. The visualization consists
in a graph where control states are shown using orange ellipses. The semantic
visualization of the ground model is shown in Fig. 3b. The initial control state
is identified by the PREPARATION phase; from there, the system moves to the
INITIATION phase by executing rule r run preparation; then, it moves to the
ENDING phase by executing rule r run initiation. In the ENDING phase, rule
r run ending is executed, but this does not modify the phase. Note that this
visualization turned out to be quite useful, as it allows to get an understanding
of the system evolution without the need of simulating the model.

Automatic model review Due to a low familiarity of the formal method,
during the development of a formal model, the developer can introduce different
types of errors: domain specific ones (i.e., a wrong implementation of the system
requirements), and non-domain specific ones that depend on the wrong usage
of the method. In order to capture the former category of errors, domain spe-
cific properties derived from the requirements need to be verified; for the latter
category, instead, automatic techniques can be devised.

Based on our experience in modeling with the ASM method and in teaching
it to students, we noticed that one of the main modelling (i.e., non-domain
specific) errors is related to the computational model of the ASMs, which is
based on parallel execution of function updates. If not properly guarded, they
could lead to inconsistent results by simultaneously updating the same location

(a) Selection of the desired meta-properties

if gears != RETRACTED then
switch doors

...
case OPEN:

switch gears
//ERROR: It should be ”gears := RETRACTED”
case RETRACTING: gears := EXTENDED
...

MP6: Every controlled location can take
any value in its codomain
Function gears does not take the values
{RETRACTED} of its domain.

(b) Example of error found by MP6

Fig. 4: Model reviewer AsmetaMA

to two different values (this is know as inconsistent update [18]). Such problem
is usually difficult to observe by a manual review of the code, and it is usually
only discovered during simulation.

Another problem that we observed frequently with our students is that, due
to wrong rule guards, some transition rules can never be executed.

As a minor problem, we also observed that our students tend to write over-
specified models containing unnecessary functions (that are never used); these
could be either really unnecessary, and so removed, or they should be used in
some rule that has not been implemented yet.

On the base of the previously described experience, in [7], we proposed the
AsmetaMA tool that performs automatic review of ASMs. The tool checks whether
the model contains typical errors that are usually done during the modeling ac-
tivity using ASMs (suitable meta-properties specified in CTL are checked with
the model checker AsmetaSMV [6]). Fig. 4a shows the selection of the available
meta-properties in the tool. For example, MP1 checks that no inconsistent up-
date ever happens, and MP7 that all the model locations are used somewhere
in the model. Model reviewer has been extremely helpful also in our model-
ing of complex case studies. For example, Fig. 4b shows an error that we were
able to automatically find when developing the model of a landing gear sys-
tem [17]: function gears should become RETRACTED when it is RETRACTING, but
we wrongly updated it to EXTENDED. The meta-property MP6, that checks that
each location assumes any possible value, allowed to (indirectly) spot this error.

4.2 Validation

One of the first analysis activities that is performed while writing a formal model
is validation to check that the model reflects the intended requirements. The
main validation technique of the ASMETA framework is simulation, in which
inputs are interactively provided to the model by the user who can then check
the produced state. Fig. 5a shows two steps of the textual simulation (using
the simulator AsmetaS [26]) of the second refined model of the haemodialy-
sis case study [4]. In this case, the user sets the value of monitored functions

Insert a boolean constant for auto_test_end:

true

<State 0 (monitored)>

auto_test_end=true

</State 0 (monitored)>

<State 1 (controlled)>

alarm(DF_PREP)=false

alarm(SAD_ERR)=false

alarm(TEMP_HIGH)=false

dialyzer_connected_contr=false

error(DF_PREP)=false

error(SAD_ERR)=false

error(TEMP_HIGH)=false

phase=PREPARATION

prepPhase=CONNECT_CONCENTRATE

preparing_DF=false

signal_lamp=GREEN

</State 1 (controlled)>

Insert a boolean constant for conn_concentrate:

true

<State 1 (monitored)>

conn_concentrate=true

</State 1 (monitored)>

<State 2 (controlled)>

alarm(DF_PREP)=false

alarm(SAD_ERR)=false

alarm(TEMP_HIGH)=false

dialyzer_connected_contr=false

error(DF_PREP)=false

error(SAD_ERR)=false

error(TEMP_HIGH)=false

phase=PREPARATION

prepPhase=SET_RINSING_PARAM

preparing_DF=true

signal_lamp=GREEN

</State 2 (controlled)>

(a) Textual (b) With AsmetaA

Fig. 5: Simulation

auto test end and conn concentrate; the main functions of interest that the
user wants to observe are phase and prepPhase. However, as shown by this
small example, at every step, the whole state is printed, and checking that the
simulation is as expected may become difficult as the state size grows. In order
to tackle this issue and improve the understandability of the simulation traces,
we developed the graphical animator AsmetaA that allows to select which func-
tions to show, provides dialog boxes to select the values of monitored functions,
and highlights the functions that have changed value in the new state. Fig. 5b
shows the visual simulation of the previous example, in which only the functions
of interest have been selected (in the top half of the window).

4.3 Verification

The framework supports verification by model checking with the AsmetaSMV

tool [6]. The tool translates an AsmetaL model to a model of the model checker
NuSMV6, performs the verification with NuSMV, and translates the output back
in terms of AsmetaL locations. We tried to improve the usability of this tool in
different directions.

Smoothness of use First of all, the model checker is transparent to the user
who interacts with only one tool: (i) (s)he can specify the properties directly in

6 http://nusmv.fbk.eu/

http://nusmv.fbk.eu/

−− specification AG ((gears = RETRACTING & handle = DOWN) −>
AX gears = EXTENDING) is false

−− as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
−> State: 1.1 <−

gears = EXTENDED
handle = DOWN
doors = CLOSED
−> State: 1.2 <−

handle = UP
−> State: 1.3 <−

doors = OPENING
−> State: 1.4 <−

doors = OPEN
−> State: 1.5 <−

gears = RETRACTING
handle = DOWN
−> State: 1.6 <−

gears = EXTENDED

(a) Original counterexample

scenario lgsGMfromCex.test

load LGS GM.asm

set handle := UP;
step
check doors=OPENING;

set handle := UP;
step
check doors=OPEN;

set handle := UP;
step
check doors=OPEN;
check gears=RETRACTING;

set handle := DOWN;
step
check doors=OPEN; check gears=EXTENDED;

(b) Counterexample in Avalla

Fig. 6: Reproduction of AsmetaSMV counterexamples

the AsmetaL model using the AsmetaL syntax, (ii) the invocation of NuSMV
is done directly only with the framework, (iii) and the output is captured and
pretty-printed in terms of AsmetaL locations.

Reproducibility of counterexamples In model checking, when a property that
should hold is falsified, the model must be fixed in order to satisfy the property
(unless the property itself is wrong). To assist the developer in this activity,
we developed a translator from the model checker counterexamples to Avalla

scenarios. Avalla scenarios allow to describe simulation sequences by providing
commands to set the values of monitored functions, to perform a step of simu-
lation, and to check that the output is as expected; the AsmetaV tool is able to
read Avalla scenarios and execute them using the simulator AsmetaS. By trans-
lating a counterexample in an Avalla scenario, the developer, while debugging
the model, can rerun it as many times as needed, till the wrong behaviour is re-
moved from the model. In this way, we achieved interoperability of the tools, and
a better understandability of the verification results. Fig. 6 shows the counterex-
ample of a property for the landing gear system checking that when the gears
are retracting and the handle is pushed down, the gears must start extending.
The violation occurred in a preliminary version of the model (as explained in
Sect. 4.1). Fig. 6b shows the Avalla translation of the counterexample.

Supporting a large class of ASMs ASMs can describe infinite state systems;
however, for model checking, only finite state ASMs having finite domains are
admissible. While this limitation is unavoidable, when we originally proposed
the tool, we had to impose further restrictions on the class of ASMs that could
be translated. Indeed, the AsmetaL language provides a powerful language that
allows to describe complex systems in a concise way. While this is advantageous
from a modeling point of view, it complicates the mapping to target languages
such as NuSMV that have much simpler notations. Some constructs of the ASM

macro rule r changeOrganization($c in Camera) =
par

let ($getMasterCameraOCself = getMaster($c)) in
let ($prevGetMasterCameraOCself = prev($getMasterCameraOCself)) in

par
r setMaster[$prevGetMasterCameraOCself]
if not newSlave($prevGetMasterCameraOCself, $c) then

newSlave($prevGetMasterCameraOCself, $c) := true
endif

endpar
endlet

endlet
change master($c) := false

endpar

(a) Without flattener

macro rule r changeOrganization($c in Camera) =
par

r setMaster[prev(getMaster($c))]
if not newSlave(prev(getMaster($c)), $c) then

newSlave(prev(getMaster($c)), $c) := true
endif
change master($c) := false

endpar

(b) With flattener

Fig. 7: AsmetaSMV– Models suitable for model checking

formalism are indeed difficult to translate in the target notation, and, although
possible, we did not implement such translations because too complex. For ex-
ample, originally we did not support variable arguments in functions; if the user
wanted to use them, (s)he had to write the model as shown in Fig. 7a (taken
from [14] where we made the formalization of a self-adaptive system), where the
function arguments are made explicit by means of a let rule. This turned out
to be a quite strong limitation; indeed, we noticed that our students were used
to write quite compact and elegant models at first, but then this constituted a
problem when they had to do model checking, as they had to refactor the ASM
model in unnatural ways. Therefore, in [13] we introduced a tool that flattens the
ASM before being translated to NuSMV; the flattened ASM is a kind of normal
form that only contains parallel, update, and choose rules. Such kind of ASM is
supported by AsmetaSMV; in this way, we have been able to enlarge the class of
models supported by the tool, so allowing a smoother use of the model checker.
Fig. 7b shows a model equivalent to the one in Fig. 7a, in which functions are
freely used as function arguments: this can be supported by the new version
of AsmetaSMV extended with the flattener. Note that we could have achieved
this also trying to modify directly the translation from ASM to NuSMV; how-
ever, not only this would have been difficult, but it would have improved only
AsmetaSMV. The introduction of the flattener, instead, improved the capabilities
of different other tools of the ASMETA framework that perform translations
to other languages, namely a mapping to SPIN for test case generation [25], to
SMT for proof of refinement correctness [8,10], and to C++ code [16].

5 Lessons learned

We here provide a more critical overview of our efforts in targeting usability in
the ASMETA framework. Before, we discuss which tools turned out to be useful
and those that, instead, were not successful as expected. Then, we outline some
of the ongoing and future efforts that should further increase the usability of the
framework.

5.1 Critical review of previous efforts

We should say that not all the techniques we applied for improving the usability
of ASMETA have been equally successful. We started developing the visualizer
AsmetaVis while we were developing the formal specification of a haemodialysis
device [4]; indeed, the model was so big that we needed a better way to visualize
its structure than the textual model. Although this was extremely helpful for us,
it is not used very frequently by our students. The reasons could be different.
First of all, the models they develop are not usually too big, and usually they
can already have an overview of the model by scrolling once or twice the textual
representation. Moreover, students are already used to code and it could be that
they do not feel the need of such visualization facilities. We still believe that the
visualizer has some potentials for communicating the model structure; however,
we need further investigation with different stakeholders (other than students)
less accustomed to code.

Among the tools that we introduced to improve the method usability, the
animator AsmetaA has been one of the most successful. Indeed, reading long sim-
ulation traces has always been annoying both for us and our students; first, small
models can already have tens of locations and their listing can be long; second,
if the listing of a state is long, understanding what has changed between two
states is not trivial. The animator solved these issues by allowing to customize
which locations to show, and by highlighting those that have been changed.

As we discussed in Sect. 4.3, the introduction of the flattener allowed to
enlarge the class of ASMs that could be model checked; the users can now write
the ASM model as they wish, with any degree of nesting and compactness.
While this is a clear improvement, it also introduced an unexpected drawback.
Since the users have a lot of freedom in writing the model, they do not consider
anymore that this will be translated for model checking and, therefore, often they
write models so complicated that then their verification does not scale. From the
experience with our students, we noticed that, when they were constrained by
the limitation of the tool (e.g., they could not use functions as argument of
other functions), they tended to write simpler models that scaled better. Our
observation is that a too high-level notation could detach the user from the
computational complexity of verification tasks; therefore, there is the need for
some approaches that give the idea of the model complexity: these could be
inspired by code metrics as cyclomatic complexity, cohesion, etc.

Being ASMETA an academic tool developed for research, most of the tools
have been originally developed as complement of some research work. As such,
the implementation usually reached the point in which the research result was
evident and could be published; due to deadline pressure, the usability of the tool
was sometimes sacrificed. This was the case for the AsmetaSMV tool for which
we originally restricted the class of ASMs that could be translated. We believe
that, as research community, we have to promote initiatives that incentive the
production of tools not only innovative from the research point of view, but also
usable. Artefacts evaluations, now applied by major conferences as CAV and
TACAS, are good initiatives going in this direction.

5.2 Ongoing efforts and future work

As explained before, the visualizer AsmetaVis is not used too much because
some users (as our students) are accustomed to code. However, there are still
problems in managing large models. One solution could be to improve the textual
editor by allowing folding/unfolding facilities as those available in main IDEs for
programming languages.

CoreASM is the other major framework for ASMs [24]; ASMETA and Core-
ASM are somehow complementary, as CoreASM mainly provides support for
model debugging, while ASMETA more focuses on simulation-based validation,
and automated verification. Being able to write models that are compatible with
both frameworks would highly increase the usability of the ASM method, as a
user could use all the available tools. As an attempt in this direction, in [3] we
proposed a uniform syntax that should be accepted by both frameworks, so that
a designer can use all the available tools for ASMs. However, such integration
(that is still ongoing) is not trivial, as there are different aspects that need to
be merged (e.g., AsmetaL is typed, while CoreASM is not). We believe that the
effort spent for this integration is worthy, as standard notations are usually ben-
eficial for the tools that adopt them, as demonstrated by the DIMACS notation
for SAT solvers and by SMT-LIB for SMT solvers.

Model refinement [1] is one of the principles of the ASM method [18], as of
other methods as B [2] and Z [21]. It consists in developing models incrementally,
from a high-level description of the system to more detailed ones, by adding, at
each refinement step, design decisions and implementation details. The ASM
notion of correct refinement is based on the correspondence of abstract and
refined runs; in the framework, we provide an SMT-based tool [8] that is able to
prove a particular kind of refinement correctness. However, the framework does
not help the designer in deciding what to refine and does not provide support
for documenting the refinement decisions; although doing a good refinement
depends on the modelling skills of the developer, we believe that a proper tool
support could help in obtaining more meaningful refinement steps. For example,
we could allow the user to specify which abstract rule is refined in which refined
rule(s); this would also help in performing more tailored refinement proofs, as we
would exactly know what needs to be related in the SMT-based proof. Moreover,
this would also improve incremental test generation techniques that combine
refinement and conformance testing [15].

6 Related work

Due to the lack of space, a complete survey on usability in formal methods is not
possible. We only refer to some approaches that have achieved usability using
approaches similar to those we proposed.

The formal method community seems to recognize the importance of having
visualization techniques (similar to our visualizer AsmetaVis) [35,41,23], and
there are positive success stories showing that the use of these visualization

techniques makes the use of formal methods feasible also for non-experts [35],
and also helps in teaching formal methods [34].

Some approaches perform model visualization [29,22] (similar to our basic
visualization in AsmetaVis), while others provide a visual representation of the
model execution (or model animation) [32,33]. Among these, ProB [32] is one of
the most successful tools; it performs animation of B models, and can also be
used for error and deadlock checking (similar to our model reviewer AsmetaMA),
and test-case generation.

Other approaches use UML-like notation as modeling front-end. UML-B [39]
uses the B notation as an action and constraint language for UML, and defines
the semantics of UML entities via a translation into B. In a similar way, in [36],
transforming rules are given from UML models to Object-Z constructs. In the
method SPACE and its supporting tool Arctis [31], services are composed of
collaborative building blocks that encapsulate behavioral patterns expressed as
UML 2.0 collaborations and activities.

Regarding model review, different approaches have been proposed for differ-
ent formal methods. They all automatize some checks that are usually performed
manually by human reviewers; Parnas, in a report about the certification of a
nuclear plant, observed that “reviewers spent too much of their time and en-
ergy checking for simple, application-independent properties which distracted
them from the more difficult, safety-relevant issues” [37]. Approaches for auto-
matic model review have been proposed, e.g., for Software Cost Reduction (SCR)
models [28], software requirements specifications (SRS) [30], and UML [38].

7 Conclusions

The paper presented our efforts in addressing usability in the ASMETA frame-
work, and a critical review of what has been more successful and what less.

Note that all our conclusions are only based on our experience; properly as-
sessing the usability of a method/technique would need user studies that, how-
ever, are difficult and costly to conduct. Moreover, we defined usability according
to our understanding, and not relying on notions of usability provided by the
Human-Computer Interaction community [20,40]; as future work, it would be
interesting to investigate which of those concepts also apply to our framework
and which, instead, we are not targeting.

Moreover, all our observations come from the use of the framework by us
and by our students; we do not know what would work and what wouldn’t in an
industrial context.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (May 1991). https://doi.org/10.1016/0304-3975(91)90224-P

2. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to Event-B. Fundam. Inform. 77(1), 1–28 (2007)

https://doi.org/10.1016/0304-3975(91)90224-P

3. Arcaini, P., Bonfanti, S., Dausend, M., Gargantini, A., Mashkoor, A., Raschke,
A., Riccobene, E., Scandurra, P., Stegmaier, M.: Unified syntax for Abstract State
Machines. In: Butler, M., Schewe, K.D., Mashkoor, A., Biro, M. (eds.) Abstract
State Machines, Alloy, B, TLA, VDM, and Z: 5th International Conference, ABZ
2016, Linz, Austria, May 23-27, 2016, Proceedings. vol. 9675, pp. 231–236. Cham
(2016). https://doi.org/10.1007/978-3-319-33600-8 14

4. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.:
Integrating formal methods into medical software development: The
ASM approach. Science of Computer Programming 158, 148–167 (2018).
https://doi.org/10.1016/j.scico.2017.07.003

5. Arcaini, P., Bonfanti, S., Gargantini, A., Riccobene, E.: Visual notation and pat-
terns for Abstract State Machines. In: Milazzo, P., Varró, D., Wimmer, M. (eds.)
Software Technologies: Applications and Foundations. pp. 163–178. Springer In-
ternational Publishing, Cham (2016)

6. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: A Way to Link High-Level
ASM Models to Low-Level NuSMV Specifications. In: Frappier, M., Glässer, U.,
Khurshid, S., Laleau, R., Reeves, S. (eds.) Abstract State Machines, Alloy, B and
Z. pp. 61–74. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

7. Arcaini, P., Gargantini, A., Riccobene, E.: Automatic review of Abstract State
Machines by meta property verification. In: Muñoz, C. (ed.) Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010), NASA/CP-2010-216215.
pp. 4–13. NASA, Langley Research Center, Hampton VA 23681-2199, USA (April
2010)

8. Arcaini, P., Gargantini, A., Riccobene, E.: SMT-based automatic proof of ASM
model refinement. In: De Nicola, R., Kühn, E. (eds.) Software Engineering and
Formal Methods. pp. 253–269. Springer International Publishing, Cham (2016)

9. Arcaini, P., Gargantini, A., Riccobene, E.: Rigorous development process
of a safety-critical system: from ASM models to Java code. International
Journal on Software Tools for Technology Transfer 19(2), 247–269 (2017).
https://doi.org/10.1007/s10009-015-0394-x

10. Arcaini, P., Gargantini, A., Riccobene, E.: SMT for state-based formal methods:
the ASM case study. In: Shankar, N., Dutertre, B. (eds.) Automated Formal Meth-
ods. Kalpa Publications in Computing, vol. 5, pp. 1–18. EasyChair (2018)

11. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience
41, 155–166 (2011). https://doi.org/10.1002/spe.1019

12. Arcaini, P., Holom, R.M., Riccobene, E.: ASM-based formal design of an adaptiv-
ity component for a cloud system. Formal Aspects of Computing 28(4), 567–595
(2016). https://doi.org/10.1007/s00165-016-0371-5

13. Arcaini, P., Melioli, R., Riccobene, E.: AsmetaF: A Flattener for the ASMETA
Framework. In: Masci, P., Monahan, R., Prevosto, V. (eds.) Proceedings 4th Work-
shop on Formal Integrated Development Environment, Oxford, England, 14 July
2018. Electronic Proceedings in Theoretical Computer Science, vol. 284, pp. 26–36.
Open Publishing Association (2018). https://doi.org/10.4204/EPTCS.284.3

14. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-
adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst.
11(4), 25:1–25:35 (Jan 2017). https://doi.org/10.1145/3019598

15. Bombarda, A., Bonfanti, S., Gargantini, A., Radavelli, M., Duan, F., Lei, Y.:
Combining model refinement and test generation for conformance testing of the
IEEE PHD protocol using Abstract State Machines. In: Gaston, C., Kosmatov, N.,

https://doi.org/10.1007/978-3-319-33600-8_14
https://doi.org/10.1016/j.scico.2017.07.003
https://doi.org/10.1007/s10009-015-0394-x
https://doi.org/10.1002/spe.1019
https://doi.org/10.1007/s00165-016-0371-5
https://doi.org/10.4204/EPTCS.284.3
https://doi.org/10.1145/3019598

Le Gall, P. (eds.) Testing Software and Systems. pp. 67–85. Springer International
Publishing, Cham (2019)

16. Bonfanti, S., Carissoni, M., Gargantini, A., Mashkoor, A.: Asm2C++: A tool for
code generation from Abstract State Machines to Arduino. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NASA Formal Methods. pp. 295–301. Springer International
Publishing, Cham (2017)

17. Boniol, F., Wiels, V., Aı̈t-Ameur, Y., Schewe, K.D.: The landing gear case study:
challenges and experiments. International Journal on Software Tools for Technol-
ogy Transfer 19(2), 133–140 (2017). https://doi.org/10.1007/s10009-016-0431-4

18. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Berlin, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

19. Bowen, J.P., Hinchey, M.G.: Seven more myths of formal methods: Dispelling in-
dustrial prejudices. In: Naftalin, M., Denvir, T., Bertran, M. (eds.) FME ’94: Indus-
trial Benefit of Formal Methods. pp. 105–117. Springer Berlin Heidelberg, Berlin,
Heidelberg (1994)

20. Brooke, J.: SUS: A retrospective. J. Usability Studies 8(2), 29–40 (Feb 2013)
21. Derrick, J., Boiten, E.: Refinement in Z and object-Z: Foundations and Advanced

Applications. Springer-Verlag, London, UK, UK (2001)
22. Dick, J., Loubersac, J.: Integrating structured and formal methods: A visual ap-

proach to VDM. In: Proceedings of the 3rd European Software Engineering Con-
ference. pp. 37–59. ESEC ’91, Springer-Verlag, London, UK, UK (1991)

23. Dulac, N., Viguier, T., Leveson, N., Storey, M.A.: On the use of visualization in for-
mal requirements specification. In: Requirements Engineering, 2002. Proceedings.
IEEE Joint International Conference on. pp. 71–80. IEEE (2002)

24. Farahbod, R., Glässer, U.: The CoreASM modeling framework. Software: Practice
and Experience 41(2), 167–178 (2011). https://doi.org/10.1002/spe.1029

25. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to generate tests from
ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) Abstract
State Machines 2003. pp. 263–277. Springer Berlin Heidelberg, Berlin, Heidelberg
(2003)

26. Gargantini, A., Riccobene, E., Scandurra, P.: A Metamodel-based Language and a
Simulation Engine for Abstract State Machines. J. UCS 14(12), 1949–1983 (2008).
https://doi.org/10.3217/jucs-014-12-1949

27. Hall, A.: Seven myths of formal methods. IEEE Software 7(5), 11–19 (Sep 1990).
https://doi.org/10.1109/52.57887

28. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of
requirements specifications. ACM Trans. Softw. Eng. Methodol. 5(3), 231–261 (Jul
1996). https://doi.org/10.1145/234426.234431

29. Kim, S.K., Carrington, D.: Visualization of formal specifications. In: Pro-
ceedings of the Sixth Asia Pacific Software Engineering Conference. pp.
102–. APSEC ’99, IEEE Computer Society, Washington, DC, USA (1999).
https://doi.org/10.1109/APSEC.1999.809590

30. Kim, T., Cha, S.: Automated structural analysis of SCR-style software require-
ments specifications using PVS. Software Testing, Verification and Reliability
11(3), 143–163 (2001). https://doi.org/10.1002/stvr.218

31. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Tool support for the rapid composition,
analysis and implementation of reactive services. Journal of Systems and Software
82(12), 2068–2080 (2009). https://doi.org/10.1016/j.jss.2009.06.057

32. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B Models with
B-Motion Studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) Formal Methods

https://doi.org/10.1007/s10009-016-0431-4
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1002/spe.1029
https://doi.org/10.3217/jucs-014-12-1949
https://doi.org/10.1109/52.57887
https://doi.org/10.1145/234426.234431
https://doi.org/10.1109/APSEC.1999.809590
https://doi.org/10.1002/stvr.218
https://doi.org/10.1016/j.jss.2009.06.057

for Industrial Critical Systems, LNCS, vol. 5825, pp. 202–204. Springer Berlin
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 17

33. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From Animation
to Data Validation: The ProB Constraint Solver 10 Years On, pp. 427–446. John
Wiley & Sons, Inc. (2014). https://doi.org/10.1002/9781119002727.ch14

34. Leuschel, M., Samia, M., Bendisposto, J.: Easy graphical animation and formula
visualisation for teaching B. In: The B Method: From Research to Teaching (2008)

35. Margaria, T., Braun, V.: Formal methods and customized visualization: A fruitful
symbiosis. In: Margaria, T., Steffen, B., Rückert, R., Posegga, J. (eds.) Services and
Visualization Towards User-Friendly Design, Lecture Notes in Computer Science,
vol. 1385, pp. 190–207. Springer (1998). https://doi.org/10.1007/BFb0053506

36. Miao, H., Liu, L., Li, L.: Formalizing UML models with Object-Z. In: George,
C., Miao, H. (eds.) Formal Methods and Software Engineering, Lecture Notes
in Computer Science, vol. 2495, pp. 523–534. Springer Berlin Heidelberg (2002).
https://doi.org/10.1007/3-540-36103-0 53

37. Parnas, D.L.: Some theorems we should prove. In: HUG ’93: 6th International
Workshop on Higher Order Logic Theorem Proving and its Applications. pp. 155–
162. Springer-Verlag, London, UK (1994)

38. Prochnow, S., Schaefer, G., Bell, K., von Hanxleden, R.: Analyzing robustness of
UML state machines. In: Workshop on Modeling and Analysis of Real-Time and
Embedded Systems (MARTES 06) (2006)

39. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by
UML. ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (Jan 2006).
https://doi.org/10.1145/1125808.1125811

40. Speicher, M.: What is usability? A characterization based on ISO 9241-11 and
ISO/IEC 25010. CoRR abs/1502.06792 (2015)

41. Spichkova, M.: Human factors of formal methods. CoRR abs/1404.7247 (2014)

https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1002/9781119002727.ch14
https://doi.org/10.1007/BFb0053506
https://doi.org/10.1007/3-540-36103-0_53
https://doi.org/10.1145/1125808.1125811

	Addressing Usability in a Formal Development Environment

