
AsmetaSMV: a way to link high-level ASM
models to low-level NuSMV specifications?

Paolo Arcaini1 ??, Angelo Gargantini2, and Elvinia Riccobene1

1 Dip. di Tecnologie dell’Informazione, Università degli Studi di Milano, Italy
parcaini@gmail.com, elvinia.riccobene@dti.unimi.it

2 Dip. di Ing. Gestionale e dell’Informazione, Università di Bergamo, Italy
angelo.gargantini@unibg.it

Abstract. This paper presents AsmetaSMV, a model checker for Ab-
stract State Machines (ASMs). It has been developed with the aim of
enriching the ASMETA (ASM mETAmodeling) toolset – a set of tools
for ASMs – with the capabilities of the model checker NuSMV to verify
properties of ASM models written in the AsmetaL language. We describe
the general architecture of AsmetaSMV and the process of automatically
mapping ASM models into NuSMV programs. As a proof of concepts,
we report the results of using AsmetaSMV to verify temporal properties
of various case studies of different characteristics and complexity.

Key words: Abstract State Machines, Model Checking, NuSMV, AS-
META

1 Introduction

To tackle the growing complexity of developing modern software systems that
usually have embedded and distributed nature, and more and more involve safety
critical aspects, formal methods have been affirmed as an efficient approach to
ensure the quality and correctness of the design. Formal methods provide several
advantages when involved in software system engineering. They allow producing
unambiguous specifications about the features and behavior of a system; they
allow catching and fixing design errors and inconsistencies early in the design
process; they allow applying formal analyses methods (validation and verifica-
tion) that assure correctness w.r.t. the system requirements and guarantee the
required system properties.

The Abstract State Machines (ASMs) [7] are nowadays acknowledged as a
formal method successfully employed as systems engineering method that guides
the development of complex systems seamlessly from requirements capture to
their implementation. To be used in an efficient manner during the system de-
velopment process, ASMs should be endowed with tools supporting the major
? This work is supported in part by the PRIN project D-ASAP (Dependable Adaptable

Software Architecture for Pervasive computing).
?? The author was partially supported by the STMicroelectronics project on Model-

driven methodologies and techniques for the design and analyses of embedded systems

software life cycle activities: editing, simulation, testing, verification, model ex-
changing, etc. It is also mandatory that these tools have to be strongly integrated
in order to permit reusing information about models.

The goal of the ASMETA (ASM mETAmodeling) project [3] was to engineer
a standard metamodel-based modeling language for the ASMs, and to build a
general framework suitable for developing new ASM tools and integrate exist-
ing ones. Up to now, the ASMETA tool-set [14, 3, 12] allows creation, storage,
interchange, Java representation, simulation, testing, scenario-based validation
of ASM models.

In this work, we present a new component, AsmetaSMV, that enriches the
ASMETA framework with the capabilities of the model checker NuSMV [2] to
verify properties of ASM models.

As discussed in Sect. 5, it is relatively clear that a higher level specification
formalism as that provided in terms of ASMs enables a more convenient model-
ing than that provided by the language of a model checker as NuSMV. On the
other hand, it is undoubted that a lower-level formalism will lead to more effi-
cient model checking. However, we believe that a developing environment where
several tools can be used for different purposes on the base of the same speci-
fication model can be much more convenient than having different tools, even
if more efficient, working on input models with their own different languages.
On the base of our experience on some case studies (as the Mondex or the
Flash Protocol, see Sect. 5), having a model checker integrated with a powerful
simulator provides great advantages for model analyses, especially in order to
perform model and property validation. Indeed, verification of properties should
be applied when a designer has enough confidence that the specification and
the properties themselves capture all the informal requirements. By simulation
(interactive or scenario driven [8]), it is possible to ensure that the specification
really reflects the intended system behavior. Otherwise there is the risk that
proving properties becomes useless, for example in case of property vacuously
true [16]. Moreover, a simulator can help to reproduce counter examples provided
by a model checker, which are sometimes hermetic to understand.

The paper is organized as follows. Sect. 2 presents related results. In Sect. 3,
we briefly introduce the ASMETA framework and the NuSMV model checker.
Sect. 4 describes the general architecture of AsmetaSMV and the process of
automatically mapping ASM models into NuSMV programs. In Sect. 5, we report
the results of using AsmetaSMV to verify temporal properties of various case
studies of different characteristics and complexity. Sect. 6 concludes the paper.

2 Related Work

There are several attempts to translate ASM specifications to the languages
of different model checkers. For explicit state model checkers as Spin, we can
cite [11] and [10]. In [11], the authors show how to obtain Promela programs
from simple ASMs in order to use Spin for test generation. The approach was

significantly improved in [10] where the authors reported their experience in
using Spin for verifying properties of CoreAsm specifications.

Regarding NuSMV, which is a symbolic model checker, a preliminary work
was done by Spielmann [19]. It represents ASMs by means of a logic for com-
putational graphs that can be combined with a Computation Tree Logic (CTL)
property and together they can be checked for validity. This approach severely
limits the ASMs that can be model checked. That work was overtaken by the
research of Winter and Del Castillo, which is very similar to ours. In [20], the
author discusses the use of the model checker SMV (Symbolic Model Verifier)
in combination with the specification method of ASMs. A scheme is introduced
for transforming ASM models into the language of SMV from ASM workbench
specifications. These schema are very similar to the scheme we present later
in this paper. The approach was later improved in [9] and applied to a com-
plex case study in [21]. A comparison with their work is presented in Sect. 5.
Our approach is very similar to theirs, although the starting notation is differ-
ent. Moreover, their tools (both the ASM workbench and the translator) are no
longer maintained and we were unable to use them.

Other approaches to model checking ASMs include works which perform a
quasi-native model checking without the need of a translation to a different
notation. For example, [15] presents a model checking algorithm for AsmL spec-
ifications. The advantages is that the input language is very rich and expressive,
but the price is that the model checking is very inefficient and unable to deal
with complex specifications, and it is not able to perform all the optimizations
available for a well established technique as that of Spin or NuSMV. A mixed
approach is taken by [5], which presents a way for model checking ASMs with-
out the need of translating ASM specifications into the modeling language of an
existing model checker. Indeed, they combine the model checker [mc]square with
the CoreASM simulator which is used to build the state space.

3 Background

3.1 ASMETA toolset

The ASMETA (ASM mETAmodeling) toolset [14, 3, 13] is a set of tools for the
ASMs developed by exploiting the Model-driven development (MDD) approach.

We started by defining a metamodel, the Abstract State Machine Meta-
model (AsmM), as abstract syntax description of a language for ASMs. From
the AsmM, by exploiting the MDD approach and its facilities (derivative arti-
facts, APIs, transformation libraries, etc.), we obtained in a generative manner
(i.e. semi-automatically) several artifacts (an interchange format, APIs, etc.) for
the creation, storage, interchange, access and manipulation of ASM models [12].
The AsmM and the combination of these language artifacts have led to an in-
stantiation of the Eclipse Modeling Framework (EMF) for the ASM application
domain. The resulting ASMETA framework provides a global infrastructure for
the interoperability of ASM tools (new and existing ones) [13].

Fig. 1. The ASMETA tool set

The ASMETA tool set (see Fig. 1) includes (among other things) a textual
concrete syntax, AsmetaL, to write ASM models (conforming to the AsmM) in
a textual and human-comprehensible form; a text-to-model compiler, Asmet-
aLc, to parse AsmetaL models and check for their consistency w.r.t. the AsmM
OCL constraints; a simulator, AsmetaS, to execute ASM models; the Avalla lan-
guage for scenario-based validation of ASM models, with its supporting tool, the
AsmetaV validator; the ATGT tool that is an ASM-based test case generator
based upon the SPIN model checker; a graphical front-end called ASMEE (ASM
Eclipse Environment) which acts as integrated development environment (IDE)
and it is an Eclipse plug-in.

All the above artifacts/tools are classified in: generated, based, and integrated.
Generated artifacts/tools are derivatives obtained (semi-)automatically by ap-
plying appropriate Ecore (i.e. the EMF metalanguage) projections to the tech-
nical spaces Javaware, XMLware, and grammarware. Based artifacts/tools are
those developed exploiting the ASMETA environment and related derivatives;
an example of such a tool is the simulator AsmetaS. Integrated artifacts/tools
are external and existing tools that are connected to the ASMETA environment.

3.2 NuSMV

The NuSMV model checker [2], derived from the CMU SMV [17], allows for the
representation of synchronous and asynchronous finite state systems, and for
the analysis of specifications expressed in Computation Tree Logic (CTL) and
Linear Temporal Logic (LTL), using Binary Decision Diagrams (BDD)-based
and SAT-based model checking techniques. Heuristics are available for achieving
efficiency and partially controlling the state explosion.

NuSMV is a transactional system in which the states are determined by
the values of variables; transactions between the states are determined by the
updates of the variables. A NuSMV model is made of three principal sections:

– VAR that contains variables declaration. A variable type can be boolean,
Integer defined over intervals or sets, enumeration of symbolic constants.

– ASSIGN that contains the initialization (by the instruction init) and the
update mechanism (by the instruction next) of variables. A variable can be
not initialized and in this case, at the beginning NuSMV creates as many

Fig. 2. Architecture of AsmetaSMV

states as the number of values of the variable type; in each state the variable
assumes a different value. The next value can be determined in a straight
way, or in a conditional way through the case expression.

– SPEC (resp. LTLSPEC) that contains the CTL (resp. LTL) properties to be
verified.

In NuSMV it is possible to model non deterministic behaviours by (a) do not
assigning any value to a variable that, in this case, can assume any value; (b)
assigning to a variable a value randomly chosen from a set. It is also possible to
specify invariant conditions by the command INVAR.

4 AsmetaSMV

AsmetaSMV has been developed as based tool of the ASMETA toolset, since
it exploits some derivatives of the ASMETA environment. In particular, As-
metaSMV does not define its own input language, neither introduces a parser
for a textual syntax. It reuses the parser defined for AsmetaL and reads the
models as Java objects as defined by the ASMETA Java API. The aim of As-
metaSMV is that of enriching the ASMETA toolset with the capabilities of the
model checker NuSMV. No knowledge of the NuSMV syntax is required to the
user in order to use AsmetaSMV. To perform model checking over ASM models
written in AsmetaL, a user must know, besides the AsmetaL language, only the
syntax of the temporal operators.

Fig. 2 shows the general architecture of the tool. AsmetaSMV takes in input
ASM models written in AsmetaL and checks if the input model is adequate to
be mapped into NuSMV. Limitations are due to the model checker restriction
over finite domains and data types. If this test fails, an exception is risen; other-
wise, signature and transitions rules are translated as described in Sect. 4.1 and
4.2. The user can define temporal properties directly into the AsmetaL code as
described in Sec. 4.3. We assume that the user provides the models in AsmetaL,
but any other concrete syntax (like Asmeta XMI) could be used instead.

asm arity1_2
import ./ StandardLibrary

signature:
domain SubDom subsetof Integer
enum domain EnumDom = {AA | BB}
dynamic controlled foo1: Boolean -> EnumDom
dynamic controlled foo2: Prod(SubDom ,

EnumDom) -> SubDom
definitions:

domain SubDom = {1..2}

MODULE main
VAR

foo1_FALSE: {AA,BB};
foo1_TRUE: {AA,BB};
foo2_1_AA: 1..2;
foo2_1_BB: 1..2;
foo2_2_AA: 1..2;
foo2_2_BB: 1..2;

Fig. 3. AsmetaL model and NuSMV translation

4.1 Mapping of States

Domains. AsmetaL domains are mapped into their corresponding types in
NuSMV. The only supported domains are: Boolean, Enum domains and Con-
crete domains whose type domains are Integer or Natural. Boolean and Enum
domains are straightforwardly mapped into boolean and symbolic enum types
of NuSMV. Concrete domains of Integer and Natural, instead, become integer
enums in NuSMV, on the base of the concrete domain definitions.

Functions. For each AsmetaL dynamic nullary function (i.e. variable) a NuSMV
variable is created. ASM n-ary functions must be decomposed into function lo-
cations; each location is mapped into a NuSMV variable. So, the cardinality of
the domain of a function determines the number of the corresponding variables
in NuSMV. The codomain of a function, instead, determines the type of the vari-
able. Therefore, given an n-ary function func with domain Prod(D1, . . . , Dn), in
NuSMV we introduce

∏n
i=1 |Di| variables with names func elDom1 . . . elDomn,

where elDom1 ∈ D1, . . . , elDomn ∈ Dn.
Fig. 3 reports an example of two functions foo1 of arity 1 and foo2 of arity

2 and the result of the translation in NuSMV.

Controlled functions. They are updated by transitions rules. The initialization
and the update of a dynamic location are mapped in the ASSIGN section through
the init and next instructions. In Fig. 4, see the function foo as an example of
a controlled function.

Monitored functions. Since their value is set by the environment, when mapped
to NuSMV, monitored variables are declared but they are neither initialized nor
updated. When NuSMV meets a monitored variable, it creates a state for each
value of the variable. Values of monitored locations are set at the beginning of
the transaction, that is before the execution of the transition rules; this means
that transition rules deal with the monitored location values of the current state
and not of the previous one. Therefore, when a monitored variable is used in
the ASSIGN section (this means that, in AsmetaL, the corresponding monitored
location occurs on the right side of a transition rule), its correct value is obtained
through the next expression.

asm contrMon
import ./ StandardLibrary
import ./ CTLLibrary
signature:

dynamic monitored mon: Boolean
dynamic controlled foo: Boolean

definitions:
//axiom for simulation
axiom over foo: foo = mon
// property to translate into NuSMV
axiom over ctl: ag(foo = mon)

main rule r_Main = foo := mon
default init s0:

function foo = mon

MODULE main
VAR

foo: boolean;
mon: boolean;

ASSIGN
init(foo) := mon;
next(foo) := next(mon);

SPEC AG(foo = mon);

Fig. 4. Controlled and monitored functions

This is shown by an example reported in Fig. 4 where the axiom checks that
the controlled function foo is always equal to the monitored function mon. The
correct NuSMV translation reports a CTL property, equivalent to the axiom,
which checks that the NuSMV model keeps the same behaviour of the AsmetaL
model.

Static and derived functions. Their value is set in the definitions section of
the AsmetaL model and never changes during the execution of the machine.
AsmetaSMV does not distinguish between static and derived functions, that, in
NuSMV, are expressed through the DEFINE statement, as shown in Fig. 5. To
obtain a correct NuSMV code, static and derived functions must be fully specified
(i.e. specified in all the states of the machine), otherwise, NuSMV signals that
the conditions of these function definitions are not exhaustive.

asm staticDerived
import ./ StandardLibrary
signature:

domain MyDomain subsetof Integer
dynamic monitored mon1: Boolean
dynamic monitored mon2: Boolean
static stat: MyDomain
derived der: Boolean

definitions:
domain MyDomain = {1..4}
function stat = 2
function der = mon1 and mon2

MODULE main
VAR

mon1: boolean;
mon2: boolean;

DEFINE
stat:= 2;
der:= (mon1 & mon2);

Fig. 5. Static/derived functions

4.2 Mapping of Transition Rules

ASMs and NuSMV differ in the way they compute the next state of a transition,
and such difference is reflected in their syntaxes as well.

In ASM, at each state, every enabled rule is evaluated and the update set
is built by collecting all the locations and next values to which locations must
be updated. The same location can be assigned to different values in several
points of the specifications and the typical syntax of a single guarded update is
if cond then var′ := val.

In NuSMV, at each step, for every variable, the next value is computed by
considering all its possible guarded assignments. The form of a guarded update
is var′ := case cond1 then val1 case cond2 then val2... which lists all the
possible next values for the location.

In order to translate from AsmetaL to NuSMV, our translation algorithm
visits the ASM specification. It starts from the main rule and by executing a
depth visit of all the rules it encounters, it builds a conditional update map,
which maps every location to its update value together with its guard. A global
stack Conds (initialized to true) is used to store the conditions of all the outer
rules visited. For each rule constructor, a suitable visit procedure is defined.

Update rule The update rule syntax is l := t, where l is a location and t a term.
The visit algorithm builds c as the conjunction of all the conditions on the

Conds stack and adds to the conditional update map the element l→ (c, t)

Conditional Rule The conditional rule syntax is:

if cond then Rthen else Relse endif

where cond is a boolean condition and Rthen and Relse are transition rules. If
cond is true Rthen is executed, otherwise Relse is executed.
The visit algorithm works as follows:

– cond is put on stack Conds and rule Rthen is visited; in such a way all the
updates contained in Rthen are executed only if cond is true;

– cond is removed from stack Conds.
– If else branch is not null:
• condition ¬cond is put on stack Conds and rule Relse is visited; in such a

way all the updates contained in Relse are executed only if cond is false;
• ¬cond is removed from stack Conds.

For example, the conditional update map of AsmetaL code shown in Fig. 6
is the following:

Location Condition Value

foo mon ∧ ¬ mon2 AA
mon ∧ mon2 BB

foo1 true AA

asm condRule
import ./ StandardLibrary

signature:
enum domain EnumDom = {AA| BB| CC}
dynamic monitored mon: Boolean
dynamic monitored mon2: Boolean
dynamic controlled foo: EnumDom
dynamic controlled foo1: EnumDom

definitions:
main rule r_Main =

par
foo1 := AA
if(mon) then

if(mon2) then
foo := BB

else
foo := AA

endif
endif

endpar

MODULE main
VAR

foo: {AA , BB , CC};
foo1: {AA, BB , CC};
mon: boolean;
mon2: boolean;

ASSIGN
next(foo) :=

case
next(mon) & !(next(mon2)): AA;
next(mon) & next(mon2): BB;
TRUE: foo;

esac;
next(foo1) := AA;

Fig. 6. Conditional Rule mapping

Choose rule The choose rule syntax is:

choose v1 in D1, . . . , vn in Dn with Gv1,...,vn
do

Rv1,...,vn

[ifnone Rifnone]

where v1, . . . , vn are logical variables and D1, . . . , Dn their domains. Gv1,...,vn is
a boolean condition over v1, . . . , vn. Rv1,...,vn is a rule that contains occurrences
of v1, . . . , vn. Optional branch ifnone contains the rule Rifnone that must be
executed if there are not values for variables v1, . . . , vn that satisfy Gv1,...,vn

In NuSMV the logical variables become variables whose value is determined
through an INVAR specification that reproduces the nondeterministic behavior
of the choose rule. For each values tuple dj1

1 , . . . , djn
n with dj1

1 ∈ D1, . . . , d
jn
n ∈

Dn, the algorithm adds to the stack the condition G
d

j1
1 , ..., djn

n
and visits rule

R
d

j1
1 , ..., djn

n

3.

Other rules In addition to the update, conditional and choose rules, the other
rules that are supported by AsmetaSMV are: macrocall rule, block rule, case
rule, let rule and forall rule. They are not reported here. Details can be found
in [4].

3 G
d

j1
1 , ..., d

jn
n

and R
d

j1
1 , ..., d

jn
n

are the condition and the rule where the variables

v1, . . . , vn have been replaced with the current values dj1
1 , . . . , djn

n .

4.3 Property Specification

AsmetaSMV allows the user to declare CTL/LTL properties directly in the ax-
iom section of an AsmetaL model.

In AsmetaL, the syntax of an axiom is:

axiom over id1, . . . , idn : axid1,...,idn

where id1, . . . , idn are names of domains, functions or rules; axid1,...,idn
is a

boolean expression containing occurrences of id1, . . . , idn.
In NuSMV, CTL [resp. LTL] properties are declared through the keyword

SPEC [resp. LTLSPEC]:

SPEC pCTL [resp. LTLSPEC pLTL]

where pCTL [resp. pLTL] is a CTL [resp. LTL] formula.
The syntax of a CTL/LTL property in AsmetaL is:

axiom over [ctl | ltl] : p

where the over section specifies if p is a CTL or a LTL formula.
In order to write CTL/LTL formulas in AsmetaL, we have created the libraries
CTLlibrary.asm and LTLlibrary.asm where, for each CTL/LTL operator, an
equivalent function is declared. The following table shows, as example, all the
CTL functions.

NuSMV CTL operator AsmetaL CTL function
EG p static eg: Boolean → Boolean
EX p static ex: Boolean → Boolean
EF p static ef: Boolean → Boolean
AG p static ag: Boolean → Boolean
AX p static ax: Boolean → Boolean
AF p static af: Boolean → Boolean
E[p U q] static e: Prod(Boolean, Boolean) → Boolean
A[p U q] static a: Prod(Boolean, Boolean) → Boolean

AsmetaL code in Fig. 7 contains three CTL properties and their translation
into NuSMV.

4.4 Property Verification

AsmetaSMV allows model checking an AsmetaL specification by translating it
to the NuSMV language and directly run the NuSMV tool on this translation
to verify the properties. The output produced by NuSMV is pretty-printed,
replacing the NuSMV variables with the corresponding AsmetaL locations: it is
our desire, in fact, to hide as much as possible the NuSMV syntax to the user.

The output produced by model checking the AsmetaL model shown in Fig.7
is reported below. The first two properties are proved true: location foo(AA),

asm ctlExample
import ./ StandardLibrary
import ./ CTLlibrary

signature:
enum domain EnumDom = {AA | BB}
controlled foo: EnumDom -> Boolean
monitored mon: Boolean

definitions:
//true
axiom over ctl: ag(foo(AA) iff

ax(not(foo(AA))))
//true
axiom over ctl: ag(not(foo(AA)) iff

ax(foo(AA)))
//false. Gives counterexample.
axiom over ctl: not(ef(foo(AA) !=

foo(BB)))

main rule r_Main =
par

foo(AA) := not(foo(AA))
if(mon) then

foo(BB) := not(foo(BB))
endif

endpar

default init s0:
function foo($x in EnumDom) = true

MODULE main
VAR

foo_AA: boolean;
foo_BB: boolean;
mon: boolean;

ASSIGN
init(foo_AA) := TRUE;
init(foo_BB) := TRUE;
next(foo_AA) := !(foo_AA);
next(foo_BB) :=

case
next(mon): !(foo_BB);
TRUE: foo_BB;

esac;
SPEC AG(foo_AA <-> AX(!(foo_AA)));
SPEC AG(!(foo_AA) <-> AX(foo_AA));
SPEC !(EF(foo_AA != foo_BB));

Fig. 7. CTL property translation

in fact, changes its value at each step. The third property, instead, is proved
false as shown by the counterexample: a state exists where locations foo(AA)
and foo(BB) are different (State: 1.2). Note that the pretty printer substitutes
foo AA with foo(AA).

> AsmetaSMV ctlExample.asm

Checking the AsmetaL spec: OK

Translating to ctlExample.smv: OK

Executing NuSMV -dynamic -coi ctlExample.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (foo(AA) <-> AX !foo(AA)) is true

-- specification AG (!foo(AA) <-> AX foo(AA)) is true

-- specification !(EF foo(AA) != foo(BB)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

foo(AA) = 1

foo(BB) = 1

mon = 0

-> Input: 1.2 <-

-> State: 1.2 <-

foo(AA) = 0

5 Case studies

AsmetaSMV has been tested on five case studies; the complete description of
our tests can be found in [4] and are available at [3]. The first two case studies
we have analyzed are two problems described in [6]:

1. A system made of two traffic lights placed at the beginning and at the end of
an alternated one-way street; both traffic lights are controlled by a computer.

2. An irrigation system composed by a small sluice, with a rising and a falling
gate, and a computer that controls the sluice gate.

For both problems we have written ground and refined model; in each model we
have declared safety and liveness properties to test the correctness of the model.

Another case study we have analyzed is the Mondex protocol ([1]). The Mon-
dex protocol implements electronic cash transfer between two purses; the transfer
of money is implemented through the sending of messages over a lossy medium
that can be, for example, a device with two slots or an Internet connection. We
have written the AsmetaL model for one of the refinement steps described in
[18]; a liveness property has helped us to discover that the model can enter in a
deadlock state. Two different solutions are proposed in [4].

We have also analyzed the taxi booking problem: in a city some clients can
request one or more taxis to a central that must satisfy all the requests. The
taxis must bring the clients where they want to go. For this problem we had
previously developed a NuSMV model (let’s call it originalNuSMV); now we
have developed an AsmetaL model containing the same properties that we wrote
in the originalNuSMV. We have been able to compare the originalNuSMV code
with the code obtained from the translation of the AsmetaL model (let us call it
mappedNuSMV). We have seen that, for the same problem, it is easier to write an
AsmetaL code rather than a NuSMV one: the ASMs in fact, thanks to a wide set
of transition rules, are much more expressive than NuSMV. The verification of
the properties in originalNuSMV and in mappedNuSMV gave the same results.
Obviously this cannot be considered as a demonstration of the correctness of the
mapping, but shows that, for a problem, there are different equivalent models.
Generally, the code obtained from a mapping is more computational onerous
than a code written directly in NuSMV; the mapping, in fact, introduces some
elements that can be avoided in the direct encoding.

Finally, we have applied our tool to the flash cache coherence protocol, which
integrates support for cache coherent shared memory for a large number of inter-
connected processing nodes. Starting from the specifications published by Winter
[21] and by Farahbod at alt. [10], we have written the AsmetaL specification for
the protocol together with its safety properties. This model is available in the

ASMETA repository. By means of the ASMETA simulator and the validator we
were able to correct some defects in our specifications even before trying to prove
the properties. A problem of vacuity detection also has been arisen. At the end,
we were able to prove the three properties in less than 1 second for both the
protocol versions with 2 nodes and 1 and 2 lines. A detailed comparison with
[21] and [10] is however difficult since we were unable to run neither Asm2SMV
which is no longer maintained, nor the Coreasm to Spin plug-in which is not
published yet. With respect to [21], our running times are much lower, but we
ran the experiments on a faster machine. In terms of the BDD size of the re-
sulting NuSMV model, we found that the specification with 1 line has similar
size while our specification with 2 lines had a much smaller BDD size. Our ex-
periments were much faster than that in [10], too, but only for one property we
can actually compare our results with theirs, since they used the model checker
Spin mainly to find faults in the original specification but we were unable to
reproduce the same faults.

6 Conclusions

This work is part of our ongoing effort in developing a set of tools around ASMs
for model validation and verification. We here describe how the ASMETA toolset
has been enriched with model checking facilities to verify temporal properties
of ASM models encoded in the AsmetaL language. By means of case studies of
different complexity, we provide evidence of the importance of having simula-
tion and model checking capabilities integrated within a unique environment.
Indeed, the combined use of both tools can facilitate the verification process,
since it may be sometimes useful to discover which system behavior is hidden
behind a property to verify in order to better formulate it and easily prove it.
As future plan, we intend to improve AsmetaSMV to handle turbo ASMs. More-
over, we plan to extend AsmetaSMV in order to allow the translation of counter
examples produced by NuSMV to Avalla [8], the language we use to perform sce-
nario driven validation of ASMs. The counter examples would constitute a set of
wrong scenarios representing incorrect behaviors of the system, and they could
be replayed later to check that corrected models do not exhibit those incorrect
behaviors.

Acknowledgments R. Farahbod sent us the CoreAsm specification of the flash
coherence protocol, while K. Winter helped us in trying to make Asm2SMV [21]
work on our computers.

References

1. Mastercard international inc.: Mondex. http://www.mondex.com/.

2. The NuSMV website. http://nusmv.itc.it/.

3. The ASMETA website. http://asmeta.sourceforge.net/, 2006.

4. P. Arcaini, A. Gargantini, and E. Riccobene. AsmetaSMV: a model checker for
AsmetaL models. tutorial. TR 120, DTI Dept., Univ. of Milan, 2009.

5. J. Beckers, D. Klünder, S. Kowalewski, and B. Schlich. Direct support for model
checking abstract state machines by utilizing simulation. In E. Börger, M. J. Butler,
J. P. Bowen, and P. Boca, editors, ABZ ’08, volume 5238 of LNCS, pages 112–124.
Springer, 2008.

6. E. Börger. The Abstract State Machines Method for High-Level System Design
and Analysis. Technical report, BCS Facs Seminar Series Book, 2007.

7. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

8. A. Carioni, A. Gargantini, E. Riccobene, and P. Scandurra. A scenario-based
validation language for ASMs. In E. Börger, M. Butler, J. P. Bowen, and P. Boca,
editors, ABZ ’08, volume 5238 of LNCS, pages 71–84. Springer, 2008.

9. G. D. Castillo and K. Winter. Model checking support for the ASM high-level
language. In S. Graf and M. Schwartzbach, editors, Tools and Algorithms for
Construction and Analysis of Systems, 6th International Conference, TACAS 2000,
volume 1785 of LNCS, pages 331–346. Springer, 2000.

10. R. Farahbod, U. Glässer, and G. Ma. Model checking coreasm specifications. In
A. Prinz, editor, Proceedings of the ASM’07, The 14th International ASM Work-
shop, 2007.

11. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to generate tests from
ASM specifications. In Abstract State Machines, Advances in Theory and Practice,
number 2589 in LNCS, pages 263–277. Springer, 2003.

12. A. Gargantini, E. Riccobene, and P. Scandurra. A metamodel-based language and
a simulation engine for abstract state machines. J. UCS, 14(12):1949–1983, 2008.

13. A. Gargantini, E. Riccobene, and P. Scandurra. Model-driven language engineer-
ing: The ASMETA case study. In International Conference on Software Engineer-
ing Advances, ICSEA, pages 373–378, 2008.

14. A. Gargantini, E. Riccobene, and P. Scandurra. Ten reasons to metamodel ASMs.
In Jean-Raymond and U. Glässer, editors, Rigorous Methods for Software Con-
struction and Analysis, number 5115 in LNCS. Springer, 2009.

15. M. Kardos. An approach to model checking asml specifications. In Abstract State
Machines, pages 289–304, 2005.

16. O. Kupferman and M. Vardi. Vacuity detection in temporal model checking. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 4(2):224–233,
2003.

17. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell,
MA, USA, 1993.

18. G. Schellhorn and R. Banach. A concept-driven construction of the mondex pro-
tocol using three refinements. In E. Börger, M. Butler, J. P. Bowen, and P. Boca,
editors, ABZ ’08, volume 5238, pages 57–70, Berlin, 2008. Springer.

19. M. Spielmann. Automatic verification of abstract state machines. In N. Halbwachs
and D. Peled, editors, CAV, volume 1633 of Lecture Notes in Computer Science,
pages 431–442. Springer, 1999.

20. K. Winter. Model Checking for Abstract State Machines. Journal of Universal
Computer Science (J.UCS), 3(5):689–701, 1997.

21. K. Winter. Towards a methodology for model checking ASM: Lessons learned from
the FLASH case study. In Y. Gurevich, P. W. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines, volume 1912 of Lecture Notes in Computer Sci-
ence, pages 341–360. Springer, 2000.

