
Online testing of LTL properties for Java code?

Paolo Arcaini1, Angelo Gargantini2, and Elvinia Riccobene1

1 Dipartimento di Informatica, Università degli Studi di Milano, Italy
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Abstract. LTL specifications are commonly used in runtime verification
to describe the requirements about the system behavior. Efficient tech-
niques derive, from LTL specifications, monitors that can check if system
executions respect these properties. In this paper we present an online
testing approach which is based on LTL properties of Java programs. We
present an algorithm able to derive and execute test cases from monitors
for LTL specifications. Our technique actively tests a Java class, avoids
false failures, and it is able to check the correctness of the outputs also
in the presence of nondeterminism. We devise several coverage criteria
and strategies for visiting the monitors, providing different qualities in
terms of test size, testing time, and fault detection capability.

1 Introduction

In the software system life cycle, program requirements are often given as proper-
ties using a declarative approach. In this paper we assume that these properties
are formally specified in Linear Temporal Logic (LTL) [19], which often provides
an intuitive and compact means to specify system requirements, especially in
the presence of nondeterminism due, for instance, to underspecification. In this
context, LTL declarative specifications can be easier to write than operational
ones, such as finite state machines (FSM) and labeled transition systems (LTS).

The use of declarative specifications and nondeterminism poses several chal-
lenges to testing. For instance, it is well known that derivation of tests from
nondeterministic models is computationally more difficult than from determin-
istic models, or even impossible [1]. In most cases, developers limit the use of LTL
properties to runtime verification or passive testing, where a monitor observes
the execution of the system to check that the behavior conforms to the specifi-
cation. The use of LTL for runtime monitoring is well known, see for instance
JavaMOP [5], LTL3 [4], and LIME [13].

In this paper we focus on active online testing of Java programs starting
from their LTL properties. In online (on-the-fly) testing, test generation and test
execution are performed at the same time: a test is applied to the implementation
under test (IUT) while it is generated. We propose to re-use the LTL properties
of the program, not only for runtime verification but also for test generation and
we are able to address the following issues.
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Oracle problem: Our methodology is able to assess if the outputs produced during
testing by the program under test, given in terms of return values of certain
methods, are the expected ones.

Nondeterminism: Specification nondeterminism can be due to i) the restricted
predictability of the systems, ii) underspecification because some implementa-
tion choices are left abstract, iii) abstractions used to reduce complexity or to
remove aspects which can be (initially) ignored (e.g., time metrics aspects).
Our methodology deals with both external and internal nondeterminism. Exter-
nal nondeterminism is limited to monitored (external) quantities (e.g., which
method has been called or what values have been used as actual parameters).
Internal nondeterminism refers to the fact that the same method call can pro-
duce different outputs at different times. In this case, techniques based on the
“capture and replay” approach, like [20], or off-line testing approaches which
produce test sequences together with oracles [10], generate tests which may fail
because of the nondeterministic behavior of the implementation. Online test-
ing approaches, like ours, which combine test generation and test execution, are
more suitable [26].

No separate behavioral model: Our approach does not require the tester to write a
separate operational model (e.g., a Kripke structure) besides the LTL properties
which are directly linked to the code. This assumption is similar to the “Single
Product Principle” of the design by contract [15].

Method call ordering: Our methodology deals with requirements about the order
in which methods must be called. Sometimes a specific order among methods
is required. For instance, the subject-view pattern is characterized by required
calls from the subject to the view, and potential callbacks from the view to
the subject, with a required order among the calls. In these cases, the tradi-
tional design-by-contract concepts of pre- and post-conditions [15], which refer
to single methods, are not enough, while (P)LTL properties can describe correct
sequences of method calls with ease. The problem of monitoring sequences of
Java method calls is tackled also in [16]. Methodologies that ignore the require-
ment about method call may generate many tests that fail only because they do
not respect the ordering, and such false positives are a burden for testers which
must manually discard tests that falsely fail [12].

Coverage: Our methodology is able to give feedback on how much properties
are covered (as in LTL3). This can be useful also in the case of passive testing,
since it gives a measure of the adequacy of the testing activity.

Our online testing approach tackles all the issues mentioned above by in-
troducing methodologies and techniques: a) to specify the behavior of Java
programs by means of LTL properties, b) to translate all the LTL properties
into one monitor (similar to a Büchi automata), c) to monitor if the program
behaves correctly, and d) to generate online the test sequences by visiting the
monitor with several policies.



Points a-c have been addressed in the past using several approaches. The
original contribution of this paper consists in devising a technique for online
test generation (point d), and an annotation-based technique for linking method
calls and their return values (if any) to LTL properties (point a). A further
contribution is the integration of these techniques into one single process.

Sect. 2 introduces the necessary background. The following sections present
the proposed approach: Sect. 3 introduces some formal definitions, Sect. 4 presents
a case study we use throughout the paper, Sect. 5 describes how a monitor is
derived from an LTL specification, Sect. 6 introduces some coverage criteria for
LTL monitors, and Sect. 7 describes how to perform the online testing. Sect. 8
presents the experiments we made to validate the approach. Sect. 9 relates our
work with similar contributions, and Sect. 10 concludes the paper.

2 Background

For the sake of brevity, we assume that the reader is familiar with the use of
Linear Temporal Logic (LTL) [19]. There is an extended literature on how an
LTL specification can be converted to a Büchi automaton and this automaton
to a monitor. Typically, a monitor is an automaton used to check system runs:
in each state the monitor can show that (i) the corresponding LTL specification
has been violated (a bad prefix is found [14]), (ii) any continuation of the run
can not violate the specification (a never violate state is reached [6]), (iii) there
exist continuations of the run that may or may not violate the specification.

In our approach we use minimal deterministic monitors as proposed by
Tabakov and Vardi [22] and implemented in SPOT [7]. The monitors are ob-
tained by determinizing and minimizing a Büchi automaton using several tech-
niques like state minimization and alphabet minimization. The final monitor
guarantees to reject minimal bad prefixes, i.e., to detect wrong behaviors as
early as possible.

3 Formal definitions

Given a Java class C, let M be the set of methods of C the user wants to monitor.
For each method mi ∈M , let Di be the set of all its possible return values (for
void methods Di = {void}). We consider only Boolean and enumerative types for
the return value, but the approach can be extended to other types (see below).

We need to introduce suitable labels (atomic propositions) each univocally
identifying a method call and its return value. To this purpose we define the
finite set MD =

⋃n
i=1{mi} ×Di, and we introduce a set of atomic propositions

AP = {ap1, . . . , apr}, r = |MD |, such that there exists a bijective function
id : MD → AP identifying each monitored method and its return value by a
unique atomic proposition. AP is built as follows: for void methods, the atomic
proposition is the name of the method (i.e., id(mi, void) = mi); for non-void
methods, an atomic proposition is built for each return value dji ∈ Di and it is



obtained by concatenating the name of the method with the return value (i.e.,
id(mi, d

j
i ) = mid

j
i ).

Inverting the function id leads to the definition of the function met : AP →M
and the function eo : AP →

⋃n
i=1Di associating an atomic proposition with,

respectively, the method and its return value representing the expected output.

Dealing with large domains. The suggested construction method for AP is
not feasible when types of return values contain many values (e.g., integers) or
are infinite (e.g., some reference types). In this case we should relax the condition
that the function id is injective, so different return values can be represented by
the same proposition, and/or assume that the function could be partial, so some
return values are not considered – e.g., an atomic proposition getValueGT0 can
be used to indicate that a method getValue returns a value greater than 0.

Trace Semantics The semantics of the labels is the following: ap (with m =
met(ap) and v = eo(ap)) means that the method m has been called and returns
the value v (if it is not void). On the contrary, the label ¬ap means:
– for void methods: “the method m is not called”;
– for non-void methods: “the method m either is not called or it is called but

it returns a value different from v”.
Since we assume that at every instant only one method is called, we have to add
an assumption on traces. Usually [19], a trace is a word ω = σ(0)σ(1) . . . over
the alphabet 2AP where a letter σ(i) is a set of atomic propositions representing
their truth evaluations (i.e., σ(i) ∈ 2AP). However, since we assume that only
one method is called in each time instant, we consider a trace valid only if one
proposition in AP is true in every letter, so that a trace is a sequence of atomic
propositions in AP .

A test is a finite sequence of methods calls and their expected values, so
formally a test is a valid trace.

4 Running case study

Fig. 1: Battery

As a running example we use the simple case
study of a battery (class), whose schema is
shown in Fig. 1: the method init initialises
the battery; charge and discharge are called
to charge/discharge the battery; isC checks if the battery is charged or not. All
methods are void, except isC that returns a boolean.

The set of monitored methods and the set of atomic propositions (computed
as suggested in Sect. 3) are M = {init, charge, discharge, isC} and AP =
{init , charge, discharge, isCfalse, isCtrue}.

The requirements on the correct usage and behavior of the battery can be
captured by LTL properties exploiting classical patterns as those in [8].

The following requirements regard the correct methods invocation:
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Fig. 2: Monitors for Pa (left) and for Pd init (right)

a) charge and discharge can not be executed before executing init;
b) init must be called only once.

They can be easily specified in LTL as follows.

Pa) (¬ discharge ∧ ¬ charge) W init and Pb) G(init → X(G(¬ init)))

The following requirements concern the correct battery behavior.
c) After executing discharge, any invocation of isC can not return true until

charge is called:

Pc) G(discharge → (¬ isCtrue W charge))

d) Anytime the battery is uncharged, it stays that way until it is charged.
To model requirement (d), let us introduce the temporal formula f equal to
(¬ charge W isCtrue) → (¬ isCfalse W isCtrue). f means that if no charge
is issued before the battery is observed charged, it cannot happen that the
battery is uncharged and charged again thereafter. This formula f must be
true initially and always after the battery has been observed charged:

Pd init) f and Pd G) G(isCtrue → X(f))

e) The charging operation (after the execution of the charge method) is not
instantaneous and, when the battery becomes charged, it can spontaneously
loose the charge over time. So, repeatedly calling method isC after method
charge can either return true or false, but it will eventually return true.

Pe) G((charge ∧ X(G(isCfalse ∨ isCtrue)))→ F(isCtrue))

5 Monitor construction

Given a Java class C, the user selects some methods M = {m1, . . . ,mn} rep-
resenting the behavior of C to be tested. Then, the set of atomic propositions
AP = {ap1, . . . , apr} is derived as described in Sect. 3. Using AP , the user can
write several LTL properties of the expected behavior of the class methods and,
if necessary, of the correct method invocation order.

The first step of our approach consists in automatically deriving a monitor
from every property by using the technique proposed in [7,22]. Two monitors for
the battery properties are shown in Fig. 2.

We then add to these monitors the trace assumption that at every step only
one atomic proposition in AP is true, and then we use SPOT [7] to build the
product monitor PM among all the single monitors. Although computing the
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Fig. 3: Product monitor PMbatt for the battery case study

product can be time-consuming, PM is built only once and it provides a useful
global view of the system behavior. Every trace that is accepted by PM is also
accepted by all the monitors and respects the trace semantics. In PM, every
transition is labeled with a list of atomic propositions, each representing one
possible action (method call and return value) causing the state transition.

Fig. 3 shows the product monitor derived from the monitors for the LTL
battery specifications.

Note that obtaining the PM from LTL properties offers several advantages
w.r.t. directly writing it as an automaton (e.g., FSM or LTS). First, the user can
adopt a declarative notation like LTL. Writing the complete monitor from scratch
may be more difficult than writing single LTL properties and then automatically
deriving the PM. Moreover, the user can proceed incrementally adding new LTL
properties and enriching the behavior, while being always sure that the PM still
formalizes all the requirements given so far.

6 Coverage criteria over the monitor

In the literature, monitors have been used for runtime verification purposes:
while the monitored program is running, the monitor checks that the program
is used and behaves correctly. The monitor, at each step, observes the invoked
method and the returned value, and changes its current state accordingly.

In this paper we extend the use of the monitor to testing. We devise the
following coverage criteria over the product monitor for measuring the testing
activity. These criteria work regardless the way the monitor is built.
– State Coverage (SC): each state of the monitor must be visited.
– Method Coverage (MC): for each state of the monitor, each exiting

method must be visited. It means that, for each atomic proposition ap of
each exiting transition, the corresponding method mi (i.e., met(ap) = mi)
must be executed.

– Transition Coverage (TC): each transition of the monitor must be taken.
TC does not imply MC because a transition could be labeled by more than
one atomic proposition (identifying different methods), and MC does not
imply TC because the same method could appear on different transitions
outgoing from the same state (but only one transition is taken).

– Atomic Proposition Coverage (APC): each atomic proposition ap on
each transition of the monitor must be covered. Covering ap requires to



Fig. 5: Proposed approach – Online testing of LTL properties

execute the related method mi (i.e., met(ap) = mi) and that the returned
value v is the expected one (i.e., eo(ap) = v). It implies both method and
transition coverage.

– n−Transition Coverage (TCn): every transition of the monitor must be
covered at least n times.

– n−Atomic Proposition Coverage (APCn): every atomic proposition on
each transition of the monitor must be covered at least n times.

Given a monitor, a criterion identifies a set of goals. For instance, the state
coverage identifies the set of states to be covered.

Fig. 4: Criteria hierarchy

Criteria hierarchy A partial order exists among
the coverage criteria, as shown in Fig. 4. p-atomic
proposition coverage implies q-transition coverage
when p ≥ q.

Coverage criteria for runtime monitoring The
aim of runtime verification techniques is to ob-
serve a system while it runs and determine if it
assures some properties expressed, for example,
in LTL. Empirically, the more the system is executed and monitored, the higher
is the confidence that the system is correct. But, how to measure such degree of
confidence? To do this we can use the coverage criteria previously defined. The
percentage of covered goals is as an indicator of how much the system has been
monitored; the user could decide, when coverage reaches a threshold K, to stop
monitoring, because (s)he is confident enough that the system is correct. Using
Büchi automata or LTL properties for measuring the coverage has been already
proposed in several works [24,23].

7 Online testing of LTL properties

We now describe the approach we propose for online testing Java code starting
from its LTL properties. The coverage criteria defined in Sect. 6 are used to
measure the testing activity and to address the generation of tests.

The overall process is depicted in Fig. 5. Given a Java class, the user selects
the set of methods to be monitored, derives the atomic propositions, writes the
LTL specifications and automatically obtains the product monitor from them.



Algorithm 1 Visiting algorithm of the monitor using the guided walk

Require: coverage criterion CRIT , class C
1: while existsNotCoveredGoal(CRIT ) do . check if CRIT is achieved
2: currS ← initState
3: currObject ← new C() . create a new object of class C
4: while existsReachableGoal(currS,CRIT ) do
5: path← computePath(currS,CRIT ) . compute the path to the next goal
6: for all (ap, s) ∈ path do
7: v ← currObject .met(ap) . execute the method associated with the ap
8: if v = eo(ap) then . check if the result is the expected one
9: currS ← s

10: updateCoverage(CRIT , currS , ap)
11: else . check if the returned output is still correct
12: if ∃(ap′, s′) ∈ out(currS) : met(ap) = met(ap′) ∧ v = eo(ap′) then
13: currS ← s′

14: updateCoverage(CRIT , currS , ap′)
15: if s 6= s′ then . check if there is a deviation from the path
16: break
17: end if
18: else
19: throwException . the LTL specification has been violated
20: end if
21: end if
22: end for
23: end while
24: end while

The test sequences are built by visiting the monitor with the aim of achieving
the full coverage of a given criterion CRIT. We identify two kind of visits:

– Random walk: the criterion CRIT is only used as stopping rule, but it is
not considered to drive the monitor visit, since each step is randomly chosen.

– Guided walk: the criterion CRIT is also considered when computing the
paths to execute.

The visiting procedure in case of guided walk is shown in Alg. 1. Until all
the goals of the selected criterion CRIT are covered:

1. It starts the visit from the initial state of the monitor (the initial state is the
current state currS ), and creates the object currObject of the Java class C;

2. Until no goals are reachable from the current state, it computes the shortest
path to the nearest uncovered goal (line 5). A path is a sequence of couples
(ap, s), being ap an atomic proposition and s the target state. For each
(ap, s):
(a) It executes the corresponding method (i.e., met(ap), line 7);
(b) If the returned result v is the expected one (i.e., v = eo(ap), line 8), it

updates the current state to s and the coverage information;
(c) If not, it checks if there exists an exiting transition of the current state,

labeled with an atomic proposition ap′ that identifies the same method



and the returned result (i.e., met(ap) = met(ap′)∧v = eo(ap′), line 12).
To check the existence of ap′ we make use of the set out(s) containing
all the couples (api , si), where api is an atomic proposition occurring
in a label of an exiting transition of s, and si the target state of the
transition.

i. If a label ap′ is detected, it takes the corresponding transition and it
updates the coverage info. Then, it checks if the expected path has
not been followed, i.e., if the reached state is different from the ex-
pected one. Note that ap′ could indeed belong to the same transition
of ap. If the path is not followed, its execution is interrupted.

ii. Otherwise, it throws an exception stating that the LTL specification
has been violated.

A single test is the sequence of the atomic propositions selected along the
paths built for the object currObject.

In case of random walk, computePath (line 5) randomly chooses a transition
exiting from the current state and the check at line 15 is not executed since any
transition taken is acceptable.

Example 1. Let us consider the visit of the monitor in Fig. 3 following the state
coverage and using the guided walk. (1) In s0 the path [(init , s4)] is produced
to cover s4. Since the method is void, the method execution surely brings to
s4. (2) From s4, the path [(isCfalse, s2)] is produced to reach s2. The method
execution returns true that is not the expected output, but it is correct. So,
the loop transition is taken and s4 remains the current state. (3) From s4, the
path [(charge, s3)] is produced to reach s3. Since the method is void, s3 is surely
reached. (4) In the same way, s2 is reached from s3 with the path [(discharge, s2)].
(5) Since there are no more uncovered states reachable from s2 but there are
still uncovered states, the visit restarts from the initial state. (6) For covering
s1, the path [(isCfalse, s1)] is produced. The method execution returns the ex-
pected output, so reaching s1. (7) Since there are no more uncovered states, the
visits terminates, achieving the full state coverage with the test suite T={[init,
isCfalse, charge, discharge], [isCfalse]}.

Limiting the unsuccessful retries. Covering a test goal could be very difficult
because the expected output of a given atomic proposition is seldom produced.
Indeed, if a method is nondeterministic, one given value may be returned with
very low probability or, if the implementation is faulty, it may never be returned.
In order to avoid to continuously try to cover a difficult or unreachable goal, in
Alg. 1 we can impose a limit to the number of unsuccessful attempts. For the
guided walk, the limit is the maximum number of times k that the algorithm,
for each goal, can build a path for it; when the limit k is reached, the goal is
discarded. For the random walk, instead, the limit is given by the couple (m, t):

– m is the maximum number of consecutive steps during which any goal is not
covered; when, during a test, m is reached, the test execution is terminated;

– t is the maximum number of tests that can be executed.



Fault detection capability Our monitors guarantee to catch a wrong behavior
(called bad prefix [14]), i.e., a violation of an LTL specification, as soon as it
occurs. However, if no violation occurs, we cannot exclude the presence of faults
since there exist properties for which a finite observation is not sufficient to draw
an affirmative verdict. For instance, non-monitorable [4] properties can never be
violated by a finite trace. Moreover, even for monitorable properties, it is always
possible to build a program that behaves correctly until the monitoring is finished
and it starts a wrong behavior only afterwards. However, for some properties, we
can stop the testing activity at some point and exclude that continuing testing
would find any fault. For instance, for the property Pa and its monitor given in
Fig. 2, if the visit reaches state S1, further testing would be useless. That state
is also called never violate [6] and we can affirm that, if the monitor stops in
a never violate state, no further activity from that state would find any fault.
We suspect that unfortunately, states of this kind are quite rare (for instance,
PMbatt does not have never violate states), especially for reactive systems, but
we plan to perform further experiments in this direction.

8 Experiments

We have implemented a prototype based on the use of Java annotations for
specifying the set of monitored methods M and the LTL properties. The tool
exploits SPOT for monitor generation and composition. We have run all the
experiments on a Linux machine, Intel(R) Core(TM) i7, 4 GB RAM. All the
reported experiments data are the average of 2000 runs.

8.1 Coverage criteria evaluation

We here want to experiment the coverage criteria described in Sect. 6.

Criteria and walk comparison We apply our approach using all the criteria
over a correct implementation of the battery case study, always obtaining the
full coverage of the goals. Table 1 reports, for each coverage criterion, the results
of the experiment in terms of number of goals it requires to cover, time taken
to cover all the goals, number of tests executed, and total number of methods
executed. We experiment the two kind of visits that can be used in Alg. 1, i.e.,
guided (G. in the table) or random (R. in the table).

As expected, the time, the number of tests, and the number of methods grow
with the number of goals to achieve (with both kind of visits).

Since we want to compare the two kind of visits, we also report the percentage
change between the data in the two visits (being the guided visit the basis of
the comparison). The random walk always obtains worse results for the three
indicators. This means that computing the shortest path for achieving a given
goal is more successful than visiting the monitor randomly. In the experiments
regarding the fault detection we use the guided walk.



Criterion # goals Time (ms) # tests executed # methods executed

G. R. ± % G. R. ± % G. R. ± %

SC 5 0.007 0.013 86 1.87 2.02 8.2 6.3 15.4 143

MC 13 0.052 0.101 92 2.5 4.68 87 25.9 92.1 256

TC 13 0.058 0.094 61 3.48 6.05 74 26.9 76.2 183

APC 16 0.098 0.182 85 3.89 6.03 55 35.3 146.8 316

TC2 26 0.113 0.159 41 5.41 9.04 67 50.6 129.0 155

TC3 39 0.164 0.24 47 7.49 11.71 57 74.4 184.5 148

TC10 130 0.52 0.604 16 21.54 29.17 35 234.9 528.2 125

TC50 650 2.571 2.829 10 101.17 119 18 1155.3 2481.4 115

TC100 1300 5.138 5.692 11 201.02 227.36 13 2313.3 4892.1 112

APC2 32 0.193 0.373 93 5.93 9.21 55 69.8 263.2 277

APC3 48 0.28 0.532 90 7.88 11.83 50 104.8 395.0 277

APC10 160 0.926 1.664 80 21.59 29.45 36 348.9 1221.8 250

APC50 800 4.593 10.292 124 101.08 118.89 18 1746.6 6062.7 247

APC100 1600 9.11 19.221 111 201 226.96 13 3496 12021 244

Table 1: Criteria comparison (achieved full coverage with minimum limit) –The

acronyms of the criteria have been introduced in Sect. 6.
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Fig. 6: Limit of unsuccessful retries – Guided walk

Limiting the unsuccessful retries In the experiment above, we have not
limited the number of attempts to achieve a goal: so, testing a correct imple-
mentation, we have always been able to obtain the full coverage. To investigate
how limiting the number of attempts in achieving a goal influences the obtained
coverage, we apply our approach to the correct implementation of the battery,
using an increasing limit to the number of attempts. Fig. 6 shows the relation,
for the different criteria, between the coverage and the limit of attempts using
the guided walk. Weak criteria (e.g., state coverage) require a low limit to obtain
the full coverage, since they are easy to achieve. Strong criteria (e.g., 100-atomic
proposition coverage), instead, require a higher limit, since they are difficult to
achieve and so several attempts must be made.

Subsumption relation Experiments confirm the expected hierarchy among
the coverage criteria (Fig. 4). Moreover, they reveal that, in practice, there exists
a relation of subsumption between some criteria: n-transition coverage subsumes



Fault Description

F1 The battery is always discharged and isC always returns false.

F2 isC returns a random value, not related with the actual status of the battery.

F3 Sometimes it is charged even if no charge method has been called.

F4 Not charging battery: the charge method does nothing.

F5 Not discharging battery: the discharge method does nothing.

F6 The discharge method charges the battery (like charge method were called).

F7 Before the init method execution, the battery is always charged.

Table 2: Faulty implementations of the battery case study

Fault Coverage Criteria
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F1 − F4 − F7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F2 0 75.1 63 75.5 86.1 95 100 100 100 93.1 98.7 100 100 100

F3 0 38.8 29.5 38 49.9 64.2 96.1 100 100 61.6 75.9 99.1 100 100

F5 0 23.8 21.1 41.2 30.9 42 85.9 99.9 100 48.5 60.5 94.8 100 100

F6 0 18.1 8.3 19.3 17 25.2 62.1 99.6 100 35.3 48 89.9 100 100

Avg. 0 22.3 17.4 24.9 26.3 32.3 48.5 57.1 57.1 33.9 40.4 54.8 57.1 57.1

Table 3: Fault detection capability (% of failing tests over 2000 test executions)

both method and atomic proposition coverage if n is sufficiently large. In our
experiments, this happens with n ≥ 50.

8.2 Fault detection capability

To measure the fault detection capability of our approach, we produce seven
possible faulty implementations (described in Table 2) of the battery case study,
and apply the approach to each faulty implementation with all the criteria.

Table 3 shows, for each faulty implementation, how the different criteria are
able to detect the fault, and their average fault detection.

We found that three faults (F1, F4, and F7) can not be detected: their result-
ing behavior is still acceptable by the given specification. These faults can not
be detected by finite monitoring by any specification. In fault F4, for example,
the charge method never charges the battery, instead of charging it eventually
in the future. The specification Pe describing the behavior of charge is non-
monitorable and it can never be violated by a finite trace.

Note that, also when no fault is found, one can suspect that the implemen-
tation is faulty by observing the coverage obtained by the criteria. Indeed, if
a coverage remains low, it may mean that some parts of the monitor can not
be reached because the behavior of the faulty implementation does not exercise
them. For the three faulty implementations we are not able to discover (F1, F4,



and F7), we achieved lower coverage than that obtained for the correct version;
in particular, the stronger the criterion is, the lower the achieved coverage is.

Among the faults that can be detected, some are easier to catch than others.
In fault F2, when the method isC is called, it returns a random value. This fault
can be detected in all the states of the monitor in which method isC can be
called and it is expected to return only a given value (states s1 and s2 where it
can only return false). Such kind of faults are quite easily detected also by weak
criteria as transition coverage (63 % in the table).

Some faults are more difficult to detect. In fault F6, the method discharge

behaves as the method charge. A necessary (but not sufficient) condition to de-
tect such a fault is that the method discharge is called (from state s3, s4 or s2),
and then (from state s2) the method isC is called: the fault is actually detected
only if isC returns true. However, since the charging is not immediate, isC could
return false without revealing the fault. Only strong criteria (n-transition and
n-atomic proposition coverage with n ≥ 10) have a good fault detection.

8.3 Comparison with LTS

We initially compared our approach with classical off-line test generation tech-
niques. We chose two tools, namely EvoSuite [9] and Randoop [17], which gen-
erate test cases with oracles for Java classes. However, since both frameworks
build test suites recording the current behavior, they produced many falsely
failing tests (tests that may fail when replayed) because of the nondetermin-
ism of the case study, leading to an unfair comparison. Therefore, we focus on
techniques able to explicitly deal with nondeterministic systems. Among them,
one of the most used is the Labelled Transition Systems (LTS) [25] (that are
sometimes also called I/O automata).

In order to test a Java class, the user has to write an LTS specifying the
program behavior and connect methods with LTS inputs and outputs. Inputs
could be method calls while outputs the return values (if any). Tests check if the
implementation satisfies a conformance relation (e.g., ioco) w.r.t. its LTS spec-
ification. In the LTS approach, a test case is a particular tree-like deterministic
LTS with finite behavior leading to a verdict.

The LTS approach is suitable for online testing and for this reason we com-
pare our approach with LTS and its supporting tool JTorX. We have run JTorX
over the correct and faulty batteries implementations for 2000 runs. Since JTorX
does not use coverage criteria for stopping testing, we have to fix the number of
tests to execute and the length of such tests (couple of values (# tests, # steps)).
Selected experiments data are reported in Table 4, including the experiment that
obtained the best fault detection in the minimum time (in grey in the table).

Fault detection capability is the same as ours (see Table 3), while the testing
time is several orders of magnitude greater than the time needed by our tests (see
Table 1). Moreover, while we exploit coverage criteria also for testing guidance,
JTorX randomly traverses the LTS representing the tests (also called synthesis),
possibly leading to longer tests.



Stopping criteria (# tests - # steps)
1-5 1-30 1-50 8-25 10-5 10-30 10-50 20-5 20-30 20-50

Fault Detection (%) 2.1 25 37.1 57.1 15.7 56.4 57.1 19.3 57.1 57.1

Testing Time (ms) 2017 7790 13541 53723 15620 82813 132957 29152 162276 272652

Table 4: JTorX experiments

9 Related work

Although monitoring of programs can be performed by means of behavioral spec-
ifications, like Abstract State Machines in [2], the use of temporal properties is
more widespread. In order to link the Java program with the LTL specifica-
tion, several approaches as J-LO [21], JavaMOP [5], and LIME [13] use Aspect
Oriented Programming (AOP): the atomic propositions are pointcuts that can
represent complex events related to method calls and fields accesses. In terms of
JavaMOP, for example, the proposition isCtrue would be
event isCtrue after(Battery batt) returning(boolean b):

call(∗ Battery.isC()) && target(batt) && condition(b) {}
Thanks to AOP, these approaches can monitor a wider set of events than ours
since we target only method calls. However, it would be very difficult to generate
tests from AOP pointcuts, although we plan to investigate this possibility.

The use of requirements given as LTL properties for test generation has been
proposed by several approaches, especially in the model-based testing. In [24]
the authors propose a property coverage metric which measures the quality of
test sequences in terms of the coverage they provide over the LTL properties of
the model; in [18] the notion of MCDC has been extended to temporal formulas.
They both use a classical approach based on model checking for test generation.
However, the tests they generate are abstract test sequences, i.e., sequences
of values for atomic propositions, leaving unresolved the use of such tests to
test implementations. Indeed, in case of nondeterminism, implementations can
diverge from the test sequences generated in advance [10].

Another difference of our technique with classical model-based testing as [24,18]
is that we do not need the operational description of the system (e.g., in terms of
Kripke structures), since we derive the test sequences directly from the monitor
of the LTL specifications. A further difference is that they derive tests according
to some criteria on the syntactical/semantic structure of the LTL specification,
whereas our coverage criteria are defined over the monitor of the specification.

The idea of reusing runtime verification techniques for testing purposes has
been proposed also in [3]. A test case generator produces in advance input se-
quences for the application starting from a model of the input domain by using
the Java PathFinder model checker. Together with the inputs, it also produces
temporal properties that must be guaranteed during the execution. The runtime
verification framework Eagle checks that the properties are satisfied during the
execution of the application over the generated inputs.

An online testing approach has been also proposed in [26], where testing
of reactive systems is seen as a game between the tester and the IUT. The



conformance between a IUT and its operational specification is given in terms
of alternating simulation.

10 Conclusion and future work

We presented an online testing approach in which system requirements are spec-
ified in LTL. We identified some coverage criteria for LTL monitors, i.e., au-
tomata used to check the conformance of system runs with their LTL formal
specifications. The procedure we propose builds test sequences by visiting an
LTL monitor with the aim of achieving the full coverage of a given criterion.
The approach is online since tests are executed as they are built.

In the future we plan to devise other criteria addressing the interaction of
methods calls; for example, we could introduce a criterion that requires that
each couple of consecutive transitions are executed in sequence.

Our approach could have the disadvantage that, since non-monitorable be-
haviors are not considered in the monitor, we may not test some behaviors that,
although they can not influence the evaluation of the specification, could how-
ever produce some faults (e.g., NullPointerException). As future work we plan
to derive the test sequences using some criteria over the specification, and use
the monitor only as oracle during testing.

Another future work is to ascertain which LTL property is violated when an
error occurs. In order to do this, we should monitor the program execution using
also each individual monitor of each LTL property. A weakness of our approach
is that creation of LTL formal specifications may be difficult, also because little
tool support exists. We plan to combine our approach with assisting LTL creation
tools like Prospec [11], pattern based techniques [8], or tools for finding software
properties automatically like Daikon.

In our approach, monitored methods can have parameters, which, however,
are currently ignored. We plan to deal with them in the future.
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C. Pasareanu, G. Roşu, K. Sen, W. Visser, and R. Washington. Combining test
case generation and runtime verification. Theoretical Computer Science, 336(2-
3):209–234, May 2005.

4. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Transactions on Software and Methodology (TOSEM), 20, 2011.
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