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Abstract—It has been widely observed that there is no a single
best CIT generation algorithm; instead, different algorithms
perform best in terms of test suite size and time, also depending
on different combinatorial models. Rather than following the
traditional approach of leaving the choice of the best generator
for a given class of models and for given testing requirements
to the user, we want to automate the algorithm selection process
among a given set of techniques (called portfolio). The proposed
approach takes as input a distribution of combinatorial models
and their test suites generated using several tools, then, using
data-mining techniques, it permits to predict the algorithm that
performs better given the cost estimated to execute a single test
and the model characteristics. As predictors, we decide to use
decision trees because they have been one of the most widely
used decision support tool for many years. Their attraction
lies in the simplicity of the resulting model, where a decision
tree (at least one that is not too large) is quite easy to view,
understand, and, importantly, explain even if it may not always
deliver the best performances. We demonstrate the effectiveness
of our approach to automated algorithm selection in extensive
experimental results on data sets including models commonly
presented in literature.

I. INTRODUCTION

During the last years, the combinatorial interaction testing
(CIT) community has proposed many approaches for solving
combinatorial testing problems. New techniques, tools, and al-
gorithms are continuously proposed, benchmarked, and proved
to improve over the state of the art in many cases. It remains
unclear which approach must be considered as the best: it
seems even impossible to state that a certain tool/technique
clearly outperforms the others. In fact, even if we consider
only the two main families of generation algorithms, namely
greedy techniques and meta-heuristic approaches, we cannot
say that one is surely better than the other. It is well known
that greedy techniques are faster because they perform every
decision only once while meta-heuristic ones may revisit their
choices. It is reasonable to postulate that greedy algorithms
run faster but meta-heuristic searches produce smaller samples
size. Although recent works focus their attention to the im-
provement of both these techniques in order to fill their gaps in
terms of performance, the contrast, between the size reduction
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of samples and the generation time reduction, is sharp. The
reason lies in the nature of the problem: CIT is clearly a multi-
objective problem where optimal decisions need to be taken in
the presence of two conflicting objectives: namely generation
time versus test suite size. Depending on how much the tester
is willing to wait and on the cost of executing a single test,
one tool or another may be the best choice. Moreover, also the
features of the model under test may influence the choice of the
tool: a tool may perform very well for small models but have
problems of scalability. In this paper, we use a mathematical
model that formalizes the goal of minimizing the testing costs.

It would be good that the tester could choose the right
algorithm among many. With this intent, we originally devised
CITLAB, an open framework for combinatorial testing [1], [2].
It allows CIT researchers to share their models and to run the
major CIT tools (if supported) into a common environment
for a scrupulous performance comparison. CITLAB supports
already several test generation tools and new one may be added
in the future. However, the choice of the right algorithm to use
is still left to the testers. In this paper, we try to introduce an
automatic component that can suggest the user the right choice
depending on several inputs (cost of executing a single test,
characteristics of the model, and so on).

Our approach tries to solve a classical selection problem
of one algorithm in an algorithm portfolio. This idea was
originally presented by Huberman et al. [3] to describe the
strategy of running several algorithms in parallel, potentially
with different algorithms being assigned different amounts of
CPU time. Several authors have since used the term in a
broader way that encompasses any strategy that leverages mul-
tiple black-box algorithms to solve a single problem instance.

In this paper, we use the term portfolio to describe a set of
algorithms from which to choose the one or ones best for
the model under test. Namely, the algorithms for CIT test
generations supported in CITLAB are ACTS [4], [5], CASA
[6], [7], and MEDICI [8].

We propose to use as tool for supporting the user in the
decision of the technique to be used for test generation,
decision trees, which can guide in a simple way the users
in the best choice. We present the process of building such
decision trees by using a data mining process that starts from
the analysis of the performance of CASA, ACTS and MEDICI
over a selection of 114 models. The ideal solution to the



algorithm selection problem would be to consult an oracle
that knows exactly the amount of time that each algorithm
would take to solve a given problem instance and the size of
the test suite that would be generated, and then to select the
algorithm with the best performance. In the context of the CIT,
knowing the exact time and the exact test suite size is almost
impossible without actually executing the tool itself. Moreover,
in general, there is no need to know the size of and the time
since the tester suffices to know which tool to execute in order
to achieve a certain goal (for example a very small test suite
size). For these reasons, our decision trees will learn which
tool to select for a particular model under test. Experiments
show that using decision trees can significantly reduce the cost
of testing w.r.t. using a fixed tool for all the testing generation
tasks.

The paper is organized as follows. In Section II, we present
some background: the cost model, the decision trees, and
CITLAB. The process of building a decision tree is presented
in Section III. The experimental results that prove the efficacy
of our approach (together with some threats to validity) are
reported in Section IV. Section VI presents some related work
and Sect. VII gives some future directions of our work. Sect.
VIII concludes the paper.

II. BACKGROUND

A. Defining the best combinatorial generation algorithm

There are many algorithms and tools for combinatorial test
generation. In a recent book [9], Zhang et al. have counted
12 tools/framework actively maintained for CIT testing, while
the pairwise web site1 lists around 39 tools. Another recent
survey lists around 50 papers dealing with test generation [10].
The research community and some commercial activities con-
tinuously propose new algorithms (or improved version of
existing techniques) and software for CIT test generation. It
is apparent that the choice of the right tool for test generator
can be difficult. Even if one wants to focus on one single
tool, it may have several options that make even its usage
not an easy task. To simplify the problem we can limit our
attention to free tools, consider models containing constraints,
ignore other aspects like usability, interoperability and so on,
and focus only on the test generation time and test suite size.
Even in this case the identification of the best test generator is
not easy because the test generation for CIT is a typical multi
objective problem in which test suite size and test generation
time are two conflicting objectives: a tool can be very fast but
produce enormous test suites, while another may guarantee
to find very small complete test suite but require hours of
computation.

In order to allow a fair comparison among tools, to guide
the choice of the best suitable one, and to devise a technique to
extract the decision tree that can help the user in the choice, we
first borrow the model proposed in [6] for roughly estimating
the cost of testing (cost) as the total time for test generation
(timegen ) plus test execution time, which depends on the size

1http://www.pairwise.org

of the test suite (size) and on the time necessary to execute
every single test (timetest ):

cost = timetotal = timegen + size × timetest (1)

In this model, we assume that the cost of testing (both test
generation and execution) is equal to the time required for
the activity. In case the cost is linearly bound to the time,
for instance, because testing requires the use of a dedicated
server that has an hourly cost, or because tests are manually
executed by a person with a temporal cost, our model still
holds (provided that a constant is introduced). We leave as
future work the study of other models of costs. The cost of
executing one single test is also called unitary execution cost
(UEC).

B. CITLAB

In order to enable a real choice between several algorithms
and to avoid a vendor lock-in, the tester should have a simple
syntax for combinatorial problems and a framework in which
several generation techniques can be inserted as plug-ins.
This has been the main idea behind our framework called
CITLAB [1], [2]. The CITLAB allows importing/exporting
models of combinatorial problems from/to different applica-
tion domains, by means of a common interchange syntax
notation and a corresponding inter-operable semantic meta-
model. Moreover, the tool is a framework allowing embedding
and transparent invocation of multiple, different implementa-
tions of combinatorial algorithms. CITLAB has been designed
tightly integrated with the Eclipse IDE framework, by means
of its plug-in extension mechanism. CITLAB already supports
three main generation techniques: ACTS [4], [5], CASA [6],
[7], and MEDICI [8]. ACTS is a tool developed by the NIST
and implements several variants of the In Parameter Order
(IPO) strategy. CASA is a tool developed at the University
of Nebraska and it is based on simulated annealing, a well-
studied meta-heuristic algorithm. MEDICI is a tool based
on the use of Multivalued Decision Diagrams (MDDs) and
it includes a novel variation of the classical greedy pol-
icy weighting the compatibility among the tuples. All three
support constraints and they are freely available. ACTS and
CASA have a large user base and they are very often used in
comparison studies. Using CITLAB allows us to perform all
the experiments in a very controlled environment on the same
computer and using exactly the same examples. We assume
in this paper that the CIT portfolio is constituted by the three
tools mentioned above. New ones could be added in the future.

C. Decision Tree

We propose the use of decision trees for the suggestion
of right tool for test generator. Decision trees (also referred
to as classification and regression trees) are the traditional
building blocks of data mining and the classic machine learn-
ing algorithm. Since their development in the 1980s, decision
trees have been the most widely deployed machine-learning
based data mining model builder. Their attraction lies in the
simplicity of the resulting model, where a decision tree (at
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Figure 1: A decision tree representing the exit selection in a
crowded parking area.

least one that is not too large) is quite easy to view, understand,
and, importantly, explain. Classification tree structure is used
in many different fields, such as medicine, logic, problem
solving, and management science. It is also a traditional
computer science structure for organizing data.

Fig. 1 shows a simple decision tree that can be used to
decide the exit in a parking area depending on the number of
people in it.

D. Tools for Data Mining

For data mining, we use the free and open source software
Rattle [11], built on top of the R statistical software package
[12]. Rattle has been developed using the Gnome toolkit
with the Glade graphical user interface (GUI) builder. Rattle
provides considerable data mining functionality by exposing
the power of the R Statistical Software through a graphical
user interface. There is a Log Code tab, which replicates the
R code for any activity undertaken in the GUI, which can be
copied and pasted. Rattle can be used for statistical analysis,
or model generation and it allows the partition of the dataset
into training, validation, and testing subsets.

We consider R one of the most comprehensive statistical
analysis package available. It incorporates all of the standard
statistical tests, models, and analyses, as well as providing a
comprehensive language for managing and manipulating data.
New technologies and ideas often appear first in R. Rattle
(the R Analytical Tool To Learn Easily) provides a simple
and logical interface for data mining. The application runs
under GNU/Linux and Windows. We choose Rattle because
it provides an intuitive interface that takes the practitioner
through the basic steps of data mining.

III. PROCESS OF BUILDING THE DECISION TREE

In this section, we explain the process of building a decision
maker for the selection of the best algorithm for combinatorial
test generation. With decision maker, we mean a statistical
predictor that is able to forecast which generator produces the
minimum total test cost for a specific model. The predictor
will need some data as inputs, like the cost of execution of
a single test and some of the features of the model, and will
produce as suggestion an algorithm.

The process of finding such decision maker is a typical data-
mining problem. The CRISP-DM (Cross Industry Standard

Process for Data Mining) [13] identifies five steps within a
typical datamining project:

1) Problem Understanding
2) Data Understanding and Preparation
3) Modeling
4) Evaluation
5) Deployment

A. Problem Understanding

During this phase, we try to understand the project objec-
tives and requirements, and then identify the data that define
the problem.

The main objective of this project is to find a decision
tree that can help the user to choose the right CIT generator
that minimizes the cost defined in Equation 1. We want to
devise a predictor that given an estimated cost for each single
test (timetest ) and a certain model, is able to suggest a test
generator that minimizes the final cost. Note that the time
required for each test generation (timegen ) and the size of the
produced test suite depend on both the chosen test generator
and on the attributes of the combinatorial model. The cost for a
single test timetest plays a very important role in the selection
of a test generator, because for small values of timetest the cost
is mainly due to the timegen , while for big values of timetest ,
the size is more important. Since timegen and size depend on
the generator and they are generally negatively correlated, the
timetest greatly influences the choice of the best test generator.
So the first data that influence our problem is:

• UEC: the unitary execution cost. This is given by the
tester as an average of the expected time required to
execute a single test.

Regarding the model attributes that influence the test gen-
eration; we can identify the following possible candidates:

• N.var: number of variables.
• N.constraints: number of constraints. In this case, we can

normalize the number of constraints by converting them
to CNF and then by counting the number of clauses.

• DomainSize: number of possible configurations ignoring
any kind of constraint of the model.

• N.valid: number of valid configurations (considering also
the constraint).

All these variables are known to have some impact on the
total cost of the test.

B. Data Understanding and Preparation

During this phase, we collect all the data (models and test
generation data), we compute the model attributes, and we
select the relevant features that can be used as input variables
for the prediction model.

Collecting benchmarks: As training instances for CIT
problems we have gathered a wide set of 114 models with
constraints taken from the literature (Casa [7], [6], [14],
FoCuS [15], ACTS [4], and IPO-S [16]) and from SPLOT
SPLs repository, and used (in subsets) also by many other
papers. The benchmarks can be found on the CITLAB web
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Figure 2: Training set attributes and characteristics

site and they can be used for further comparisons. Fig. 2
shows the distribution of the characteristics we are interested
and that could influence the test generation process for the
models under observation. The data in Fig. 2 prove that
our benchmarks cover a rather wide range for every model
attribute.

Test generation data: We performed 50 runs over these
114 models for 4 different generators: all the 3 tools with
two configurations of MEDICI. MEDICI, as many other tools,
can be fine tuned by using options: we use a fast variant
(MEDICI_1_1_1) and a more slow one (MEDICI_10_30_5)
which should produce fewer tests [8]. We use the same tool
with two different configurations in order to prove that our
approach could be used to decide the parameters for a single
given tool.

Using an R script we have calculated the total cost for
each couple, generator-model, varying the cost of a single test
execution UEC in the set {0.01, 0.1, 1, 10, 50, 100, 500, 1000,
5000} seconds.

Model features: In order to gather the data about the
models, we use the CITLAB APIs that allow querying the
model and obtain structural data like number of variables
and so on. Obtaining the number of valid configurations,
however, is more complex: one could easily enumerate all
the configurations and count those valid. This is very time
consuming. Instead, we use the capability of Multi-Valued
Decision Diagrams embedded in MEDICI of counting the
number of valid paths in a very efficient way.

Correlation features selection (CFS): We select the fea-
tures that will constitute the inputs of the decision trees. Good
candidates should be uncorrelated with each other but highly

Figure 3: Pearson chart

correlated with the prediction outcome [17]. In our case,the
generator portfolio represents the prediction class. We start our
feature selection process by the observation of the correlation
test of Pearson. Its results are shown in Fig. 3. Pearson’s
correlation coefficient between two variables is defined as the
covariance of the two variables divided by the product of their
standard deviations as described by the eq. 2:

ρ =
cov(X,Y )

σXσY
(2)

Fig. 3 shows that UEC is uncorrelated to other variables
(as expected) and it must be considered. Regarding the model
features, we note that N.var is correlated to all the other
variables under test so it is the first candidate to be ex-
cluded from our subset of features. Analyzing the Pearson
chart, we can also notice that N.valid and DomainSize are
strongly correlated with each other so one of them is the next
candidate for the exclusion. Performing an accurate analysis
of correlation between the two candidates, we can estimate
that they are interchangeable in terms of correlation with the
predictive class. This condition led us to exclude N.valid
because it requires a good amount of time to be computed. Our
features subset is composed by: DomainSize, N.Constraints,
and UEC.

C. Modeling

In this phase, we use Rattle to produce two predictive mod-
els based on decision trees. Exploring some data mining and
machine learning techniques we have obtained two different
automatic decision makers:

1) CBT cost-based decision tree: this classifier is able to
select “the best” generator evaluating only the test exe-
cution cost (UEC), ignoring all the features of the model
under test.

2) FBT feature-based decision tree: this classifier receives
as inputs also the domain size of the model, numbers of
constraints and the cost for a single test execution and
predicts the best generator.
Building the training/validate/test datasets: Using the

functionalities of Rattle we have divided the dataset into
three different subsets: training, validation, and test. The



training subset is used during the modeling process as base
of knowledge for our predictive model (the decision tree), the
other two sets are used during the evaluation process.

The R script produced by Rattle and used to build the three
subsets follows.

# Randomly allocate 70% of the dataset to training,
# 15% to validation, and the remaining 15%
# to testing
set.seed(crv$seed)
crs$nobs <- nrow(crs$dataset)
# Splitting the dataset in Training set (70%)
crs$sample <- crs$train

<- sample(nrow(crs$dataset), 0.7*crs$nobs)
# Validation set (15%)
crs$validate <- sample(setdiff(seq_len(nrow(crs$

dataset)), crs$train), 0.15*crs$nobs)
# Test Set (15%)
crs$test <- setdiff(setdiff(seq_len(nrow(crs$dataset

)), crs$train), crs$validate)

Variable selection: After the sub-setting process, we have
selected the input features of the decision according to the CFS
previously performed, and we have set the total cost (TC)
as the risk variable and the generator classes as target. The
decision tree is in fact used as classifier for the selection of
an optimal generator that minimizes the TC of testing. In the
following paragraphs, we describe the modeling process used
to produce FBT. CBT and FBT belong to the same modeling
process but CBT takes as input variables only UEC.

The R script used to select the input variables and the target
follows.

# The following variable selections have been noted.
# Selecting the three numeric input variable
crs$input <- c("N.constraints", "DomainSize", "UEC")
crs$numeric<-c("N.constraints", "DomainSize", "UEC")
crs$categoric <- NULL
#Imposing the generator classes as target
crs$target <- "generator"
crs$risk <- "TC"
crs$ident <- NULL
# Ignoring the other features
# of the base of knwoledge
crs$ignore <- c("model", "N.var", "N.valid", "run",

"size", "time")
crs$weights <- NULL

Modeling: We have obtained a compact decision tree
using Rattle. Its decision tree functionalities are based on the
library rpart. Rattle allows the user to set 4 configuration
parameters:

• Min split = argument specifies the minimum number of
observations that must exist at a node in the tree before
it is considered for splitting.

• Max depth = argument limits the depth of a tree.
• Min bucket = argument is the minimum number of

observations in any terminal leaf node (conventionally
minsplit=3*minbucket).

• Cost complexity (cp) = argument is used to control the
size of the decision tree and to select an optimal tree size.
The complexity parameter controls the process of pruning
a decision tree.

The following extract of code shows that we required that
the minimum number of observations in a node is 50 before
attempting a split and that a split must decrease the overall lack
of fit by a factor of 0.015 (cost complexity factor), we have
also limited tree depth to 10. As parameters tuning process
performed, we have substantially performed a "backward
tuning", where we have obtained the final configuration by
generating iteratively a new model by varying one parameter
at a time and discarding the model and the change in the
configuration parameter if the accuracy of the new model
decreased with respect to the previous one. We have pruned
back the tree to avoid over-fitting the data. We wanted to
select a tree size that minimizes the cross-validated error.
Specifically we have iteratively examined the cross-validated
error results varying the complexity parameter, and we have
selected the cp associated with minimum cross-validation
error. Rattle uses an information gain measure for deciding
between alternative splits. This decision algorithm is based
the concept of Shannon Entropy. The split that provides the
greatest gain in information (and equivalently the greatest
reduction in entropy) is the chosen split. The R script used
to build the decision tree (FBT) follows.

# Building decision tree
# Using the dataSet previously prepared we build
# the decision tree using rpart
crs$rpart <- rpart(generator ~ .,
data=crs$dataset[crs$train,c(crs$input,crs$target)],
method="class",
parms=list(split="information"),

control=rpart.control(minsplit=50,
minbucket=16, maxdepth=10, cp=0.015000))

The two final decision trees CBT and FBT are reported in
Fig. 5 and 4. Although FBT is more complex than CBT, both
trees are rather understandable and easy to follow in order to
get guidance on what tool to use even by hand.

D. Evaluation

During this phase, we evaluate the prediction models ob-
tained in the previous phase. The results of the evaluation are
presented in Section IV.

E. Deployment

During this phase we describe how it is possible to re-
use our predictive models, computed using Rattle, in a Java
application and consequently integrating them in the CITLAB
framework. Our deployment is based on the use of the Pre-
dictive Model Markup Language (PMML), which is an XML-
based file format developed by the Data Mining Group to pro-
vide a way for applications to describe and exchange models
produced by data mining and machine learning algorithms.



Figure 4: FBT: feature-based decision tree

Figure 5: CBT: cost-based decision tree

It supports common models such as logistic regression, feed-
forward neural networks and decision trees. Rattle supports
the export of predictive models to PMML language. Using
JPMML is possible to use PMML models in Java allowing
their integration in CITLAB as a plug-in for Eclipse. Using
JPMML, we have noticed these pros and cons.
Advantages:

• No lock-in; you can run your models with any library
that can read PMML models.

• Runs inside the Java process. No inter-process commu-
nication.

• Pure Java solution at run-time.
Disadvantages:

• Supported models depend on the PMML library (for ex-

ample, JPMML does not support support vector machines
SVM, even though it is in the specification of PMML
4.1).

IV. EXPERIMENTS

In the experiments, we want to compare the two decision
trees and measure the advantages of using our classifiers
against the use of a single generator.

First, we build the best possible predictor one could reason-
ably have. We identify the generator that gives the minimum
average total cost for each model and for each single test cost
over all the run we have performed, in order to simulate an
average optimum predictor. Starting from these data, we build
an optimum classifier, which would always select on average



Figure 6: Test generator distribution of the optimum predictor

the best generator for every model. The main problem of the
optimum predictor is that it can be computed only after the
data have been generated ("a-posteriori" predictor).

RQ1 Which generators would choose the optimum
predictor?

Fig. 6. shows the distribution of the predicted generators
performed by the optimum predictor for each UEC. ACTS
is the privileged choice for small test costs due to its fast
generation speed while CASA is the best solution for high
test costs because it is very slow compared to ACTS but
it produces smaller test-suites. MEDICI stays in between
ACTS and CASA. MEDICI_1_1_1 produces test suites a
little smaller then ACTS’s ones but it is 10 times slower,
MEDICI_10_30_5 produces test suites comparable to CASA
but it can be faster [8]. Overall, ACTS is chosen in the 85%
of cases for a single test cost of 0.01s and its percentage
continuously decreases until 18% at the test cost of 500s
while the percentages of the other generators increase. We can
estimate that for a single test cost of about 100s to 500s the
4 generators under test reach a sort of stability point in the
distribution between the chosen generators. After this point,
the increase of cost does not produce any kind of further
changes in the percentages of the selection distribution.

The figure confirms that there is no one best generator. By
varying the UEC the distribution of generator choices may
sensibly change. The data also show that, even the test cost
were fixed, the choice of the best generator depends on the
model features. This confirms the validity of our assumptions.

RQ2 When does FBT choose a wrong generator?

Fig. 7 shows the distribution of generators selected by FBT.
It differs from the optimum reported in Fig. 6. Gray cells
of Tab. I display the confusion matrix of the predictor. The
difference between the optimum and the predicted one is
reported as percentage of generator confusion. A confusion

Figure 7: Generation tools distribution using FBT

matrix displays the percentage of correct or incorrect pre-
dictions made by a classifier such as a Bayesian network or
decision trees. It is automatically computed by Rattle using
the test set. Diagonal elements of the matrix show the percent-
age of correct predictions, while off-diagonal elements show
incorrect predictions. The sum of diagonal values represents
the accuracy of the classifier under validation process. False
negative rate (FNR) is computed, for each row, as the ratio
between the sum of off-diagonal values (false negatives) and
the sum of each value of the row values (false negatives +
true positives). The high FNRs of the two configurations of
MEDICI show a criticality of FBT in their right identification
and prediction. FBT presents an accuracy of 58%.

Table I: FBT confusion matrix for the test set

Optimum choice Predicted
CASA M_1_1_1 M_10_30_5 ACTS FNR2

CASA 22% 1% 4% 1% 25%
M_1_1_1 8% 6% 4% 7% 76%

M_10_30_5 5% 2% 5% 0% 58%
ACTS_IPOG 7% 1% 2% 24% 29%

Accuracy3 58%

Table II: CBT confusion matrix for the validation set

Optimum choice Predicted
CASA M_1_1_1 M_10_30_5 ACTS FNR

CASA 22% 0% 0% 6% 21%
M_1_1_1 13% 0% 0% 12% 100%

M_10_30_5 11% 0% 0% 2% 100%
ACTS_IPOG 11% 0% 0% 24% 31%

Accuracy 46%

RQ3 When does CBT choose a wrong generator?

2False negative rate is the proportion of events that are being tested
for which yield negative test outcomes with the test, i.e., the conditional
probability of a negative test result given that the event being looked for
has taken place. False Negative Rate = (false negative)/(true positive + false
negative).

3accuracy=(true positives + true negatives)/(positives + negatives)



Figure 8: Generation tools distribution using CBT

Fig. 8 shows a distribution of selected generators that
differs, as expected, from the optimum reported in Fig. 6. The
difference between the optimum generator and the predicted
one is reported in Tab. II as percentage of generator confu-
sion. We notice that CBT performs a trivial choice between
ACTS_IPOG and CASA ignoring the other 2 generators.
For MEDICI, the FNRs are 100%. CBT decision exchanges
MEDICI_10_30_5 to CASA because MEDICI generator per-
formance, in terms of size, is similar to CASA’s one but it
differs from it in terms of time consumption at the varying
of models complexity. The reduction of FBT model to CBT
decreases the accuracy rate of 12% (from 58% to 46%). These
data suggest that a right estimation of the total cost produced
by a generator and a right selection of the generator should
consider other feature besides the UEC.

RQ4 Can our predictors outperform the other fixed
generators?

Table III reports the total cost over all the combinatorial
models for the optimum predictor in seconds and the percent-
age of variation w.r.t. the optimum for all the other generators
by varying the single test cost. The numbers in bold are
the minimum values for each cost with the exception of the
optimum. It shows that some generators performs very well
when the single test cost is small and other ones performs
very well when the single test cost increases. It shows that
FBT outperforms fixed generator selection in 7 cases over 9.
In only one case, the FBT is defeated by CBT. For an UEC of
50 both the decision trees are defeated by MEDICI_1_1_1 that
is never selected by CBT. The gap between both decision trees
and the optimum a-posteriori predictor makes the possibility
of further improvements, in the prediction strategy, concrete.

RQ5 How much is the gain achieved by using decision
trees?

Fig. 9 shows the performances of the two predictors CBT
e FBT versus the use of a fixed generation tool. The data are

Figure 9: Performance comparison of Predictors versus the use
of a fixed tool using the optimum as measure of comparison

presented as percentage of the difference between the total cost
for a single generator or predictor and the total cost obtained
by the optimum predictor. The percentage of improvement of
the total cost achieved using the decision tree decreases with
the augment of the single test cost but in terms of absolute
time saving is very advantageous. The difference between the
two predictors is rather small, but the difference with a single
test generator can be quite high. This proves that choosing a
single test generator for every test generation task can lead to
a significant loss of time.

RQ6 How much are decision trees better than a
random selection?

We have compared decision trees with a random selector
that randomly choses the test generators. A random selector
has the advantage that it does not need anything to make the
prediction. The decision trees strategies always outperform
a random selection policy as shown in Fig. 10. The gap of
performance decreases with the augment of the single test
cost but it remains significant if compared to the results of
the optimum.

V. THREATS TO VALIDITY

Our findings are subject to the following threats to validity.
First, our decision tree models may fail to predict the right
test generator for a particular model and UEC. Indeed, our
models can give only a statistical estimation, but they cannot
guarantee to find the best solution. However, the wide range
of models we have used to build the decision trees and the
extensive set of UECs can give a good confidence that the
right generator is most likely chosen and even if this is not
the case, the loss of time is always rather small. Even CBT,
as shown in Table III, behaves on average of all the models as
the best fixed generator for almost each UEC. One of the most
significant issues that afflicts decision tree models is the over-
fitting of training data which, produces a loss of performance



Table III: Total Mean Cost varying single test cost

Single test cost – UEC (seconds)
0.01 0.1 1 10 50 100 500 1000 5000

Optimum 87.79 388.75 3349.11 32268.57 159313.06 317345.41 1573761.56 3136876.52 15635276.52
ACTS 21.14% 5.49% 2.94% 4.82% 5.97% 6.37% 7.23% 7.59% 7.93%
CASA 16770.17% 3783.26% 436.13% 44.26% 8.99% 4.77% 1.88% 1.75% 1.69%

MEDICI_10_30_5 8900.82% 2006.81% 230.68% 23.71% 5.52% 3.47% 2.32% 2.42% 2.54%
MEDICI_1_1_1 1231.65% 277.01% 32.32% 5.65% 4.14% 4.21% 4.78% 5.10% 5.40%

FBT 21.11% 5.48% 14.66% 2.93% 4.72% 2.56% 1.33% 1.41% 1.52%
CBT 21.11% 5.48% 2.94% 4.82% 8.99% 4.77% 1.88% 1.75% 1.69%

Random 6567.49% 1586.49% 201.61% 18.99% 6.25% 4.94% 4.14% 4.22% 4.39%

Figure 10: Performance comparison of predictors versus ran-
dom selection of generators using the optimum as measure of
comparison

on new data. In general, when a decision tree model is too
complex is unable to correctly match new, previously unseen
data. The process that governs the complexity of a model is
"Pruning". We have tried to reduce the impact of this issue
iteratively pruning our models in order to find the less complex
model that presents and acceptable error rate according to Cost
complexity pruning methodology.

VI. RELATED WORK

Algorithm selection problem is widely studied in literature.
John R. Rice formalized the concept of algorithm selection in
[18] seeking to answer the question: "Which algorithm is likely
to perform best for my problem?". In the early 1990’s, the
scientific community recognizes Algorithm selection problem
as a learning task so, the machine learning community has
developed the field of meta-learning, focused on learning about
learning algorithm performance on classification problems. M.
G. Lagoudakis and M. L. Littman in [19] consider the problem
of algorithm selection: dynamically choose an algorithm to
attack an instance of a problem with the goal of minimizing the
overall execution time. This conception is similar to the one
that aimed our approach even if they formulate the problem as
a kind of Markov decision process (MDP), and use ideas from
reinforcement learning to solve it while we used decision tree
technique. In our paper, we focused on the use of machine

learning techniques applied to the combinatorial testing algo-
rithm selection in order to minimize the sum of generation
time and execution time for the generated test- suites. The
SATzilla team in [20] made an interesting observation about
the absence of a dominant SAT solver and about the fact
that different solvers perform best on different instances. They
suggest, rather than following the traditional approach, to
choose the best solver for a given class of instances. We notice
a similar situation for the different generation algorithms for
combinatorial interaction testing and we advocated the need
to aid the practitioners in algorithm selection. Their approach
takes as input a distribution of problem instances and a set
of component solvers, and constructs a portfolio optimizing
a given objective function (such as mean runtime, percent of
instances solved, or score in a competition). We automated
the selection of an algorithm at a time while they execute
different algorithms in parallel. We plan to implement parallel
execution too and to set different execution timeouts for the
different algorithms according to the different probabilities
given by our classifier. Very few works that apply machine
learning techniques to combinatorial testing. Jia at al. presents
in [21] an algorithm for combinatorial interaction testing
based on a Hyperheuristic search. They have implemented
a reinforcement learning agent that is iteratively used for
the tuning of the configuration parameters of the simulation
annealing operators during the test-suite generation.

VII. FUTURE WORKS

We plan to investigate on the influence of the complexity of
constraints over the generation time and over the size of the
test-suites. The cost function we have used in this paper, could
be improved by considering the complexity of the constraints
and the cardinality of the parameters that compose the domains
of the models under test. Another factor to consider could be
the number of attempts needed to produce the final test-suite.
When the system under test is very complex, it is necessary
to run the generation tools many times during the different
stages of software testing process. We want also to experiment
other predictive techniques like support vector machines which
seem, by a preliminary study, to have a more accuracy in terms
of classification but they need further tunings to be deployed
in Java.



VIII. CONCLUSIONS

The combinatorial testing community has produced many
algorithms, techniques, and tools for test generation in these
years. Even if one considers only the performances, it remains
unclear which is the best solution. For example, a very fast
tool may produce a very big test suite that would require much
more time during the test execution. In this paper we have
introduced a simple cost model for comparing test generation
tools and we have shown that there is no best combinatorial
tests generator. Depending on the cost of executing a single
test, a tool may be more suitable than another. In addition,
combinatorial model characteristics should play a role in the
choice of the generator. In order to automatize the decision
of the right test generator, we have devised a data-mining
process able to produce two decision trees to be used in the
choice. Experimental results show that our decision trees can
efficiently help the tester in the generation process with a
significant reduction of the total testing cost. However we can
isolate two points that are not worthwhile for our approach
adoption. The first weakness of our methodology is that our
predictor models take some data as inputs like number of
variables, number of constraints, and so on, that may require
some time to be computed. The time spent to find model
features may be greater than the time saved by choosing the
right generator. For this reason, we have chosen only very
simple model characteristics and we have devised the CBT
model, which requires only UEC. Moreover, we have ignored
N.valid as input because it is rather costly to be computed.
Computing all the model features used by FBT requires around
3.5 seconds for all the models.

The cost of switching to a general framework as CITLAB
that allows the use of multiple generators may be not worth-
while for researchers using already a specific tool. In addition
in this case, our work can be used as guidance to check if the
chosen tool is suitable for the testing tasks to be performed.
For instance, a serious loss of time is very likely to occur if
the tester uses ACTS for generating tests which require a lot
of time each to be executed. Our study shows that the random
choice can lead to very high time losses.
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