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Abstract—Modern software systems operate in complex and
changing environments and are exposed to multiple sources of
uncertainty. Testing methods shall be tailored to uncertainty as
a first-class concern in order to quantify it and deliver increased
confidence in the level of assurance of the final product. In
this paper, we introduce novel model-based exploration strategies
that generate test cases targeting uncertain components of the
system under test. Our testing framework leverages Markov
Decision Processes as modeling formalism of choice. The tester
explicitly specifies uncertainty by means of beliefs attached to
transition probabilities. The structural properties of the model
and the uncertainty specification are then exploited to drive
the test case generation process. Bayesian inference is used to
achieve this objective by updating the initial beliefs through the
evidence collected by testing. The proposed uncertainty-aware
test selection strategies have been systematically evaluated on
three realistic benchmarks and nine synthetic systems exhibiting
up to 10k model transitions. We demonstrate the effectiveness of
the novel strategies with well-established metrics. Results show
they outperform existing testing methods with a gain up to 2.65×
in terms of accuracy of the inference process.

Index Terms—Model-based testing, Probabilistic systems, Un-
certainty quantification, Bayesian inference

I. INTRODUCTION

Model-based testing (MBT) relies on explicit models that

encode the intended behaviors of a system under test (SUT)

and/or the behavior of its environment [1], [2], [3]. However,

modern software systems are exposed to sources of uncer-

tainty that can arise from an ambiguous specification of the

system, and execution environments’ characteristics that are

unknown before the system is running [4]. To deal with this

challenge [5], testing techniques have been tailored not only

to detect failures, but also to actively learn the SUT dynamics

and its surroundings in order to verify initial hypothesis [6],

[7]. In particular, endowing conventional software testing with

techniques and practices able to model, quantify, and mitigate

uncertainty is becoming crucial [8], [9], [10].

The research community is recently investigating the pos-

sibility of endowing MBT approaches with awareness of

possible sources of uncertainty [11], [12]. Existing approaches

focus on spotting unknown occurrences of environmental

uncertainties in Cyber-Physical Systems (CPS) [13], [14]. An

initial attempt to explicitly model and quantify uncertainty

with Markov Decision Processes (MDP) is shown in [15], [16],

however, fixed reward values are used to generate tests. To the

best of our knowledge, there is no approach leveraging fine-

grained characteristics of existing uncertainties to drive MBT.

Thus, further investigation on this topic is required.

The goal of our research is to introduce and compare novel

MBT strategies that are tailored to uncertainty quantifica-

tion and incremental refinement of an initial underspecified

MDP. To achieve this objective, the testing process embeds

awareness on the sources of uncertainty and quantifies it

by applying Bayesian inference [17]. The uncertainty-aware

MBT strategies proposed in this paper are: (i) History, that

tracks information about visited model regions to select those

test cases that increase the probability of testing unexplored

uncertain components of the SUT; (ii) Distance, that uses

information on the SUT branching points that are more likely

to execute components associated with a higher level of

uncertainty; and (iii) Frequency, that considers the likelihood

of using the different components, hence the actual usage of

the SUT is exploited for the selection of tests. This paper

provides the following main contributions:

• novel MBT strategies that take into account uncertainty-

related characteristics of the SUT;

• extensive evaluation of the effectiveness of these strate-

gies under bounded effort, by comparing the updated

beliefs after testing and the accuracy of the inference

process to quantify existing uncertainties.

As running example, we adopt a CPS benchmark called

SafeHome [9]. The empirical evaluation has been performed

on three realistic systems from literature [9], [18], [19] and

nine synthetic systems generated from pseudorandom MDP

models with the goal of increasing structural complexity (from

250 to 10k model transitions). The empirical evaluation shows

that the Distance strategy yields the smallest relative error

and the highest fault detection rate when testing the selected

realistic systems. The uncertainty quantification capability in-

creases when increasing structural complexity of the synthetic

systems. With complex models, the Distance strategy is likely

to be the best choice, with few exceptions when the overall

level of uncertainty is either very low or very high and

when the number of possible inputs is high. In this case, the

Frequency strategy is likely to be superior.
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The remainder of the paper is as follows. Sect. II provides

background concepts. Sect. III describes the SafeHome run-

ning example. Sect. IV provides an overview of our testing

framework and Sect. V presents our novel MBT strategies.

Sect. VI reports an extensive empirical evaluation, all exper-

iments and replication data is publicly available1. Sect. VII

discusses related work, and Sect. VIII concludes the paper.

II. PRELIMINARIES

This section introduces basic concepts and techniques used

throughout the paper: Markov Decision Processes (MDPs)

with rewards, Bayesian inference, and online MBT of proba-

bilistic systems.

A. Markov Decision Processes and Rewards

MDPs [20], [21] represent a widely used formalism for

modeling systems exhibiting both probabilistic and nonde-

terministic behavior. Formally, a MDP is defined as a tuple

M = (S, s0, A, δ), where:

• S is a finite set of states (s0 ∈ S initial state);

• A is a finite alphabet of actions;

• δ : S ×A → Dist(S) is a partial probabilistic transition

function. Dist(S) represents the set of discrete probability

distributions over a countable set S.

State transitions occur in two steps: i) a nondeterministic

choice among the actions from state s: A(s) = {a ∈ A :
∃δ(s, a)}; ii) a stochastic choice of the successor state s′,
according to the probability distribution δ, such that δ(s, a)(s′)
represents the probability that a transition from s to s′ occurs

when a happens. The function δ satisfies
∑

s′ δ(s, a)(s
′) = 1,

for each source state s, action a and target state s′.
MDPs can be augmented with rewards to quantify a benefit

(or loss) due to the sojourn in a specific state or to the

occurrence of a certain state transition. A reward is a non-

negative value assigned to states and/or transitions that can

represent information such as average execution time, power

consumption or usability. A reward structure associated with

a MDP M is defined as a pair r = (rs, ra) composed of a

state reward function rs : S → R≥0 and an action reward

function ra : S × A × S → R≥0 that assigns rewards to

states and transitions, respectively. Given a reward structure, a

common problem is to find a policy function π that specifies

the action π(s) chosen by a decision maker when state s
holds. The best policy π∗ maximizes some function of the

cumulated rewards, typically the expected discounted sum over

a potentially infinite path. Namely, given a reward structure r,

π∗ can be computed solving a dynamic decision problem [20].

The best policy π∗ returns for each state s the action that

allows the cumulated reward to be maximized.

1The dataset containing experimental results is available at https://doi.org/
10.5281/zenodo.4095279. The software used to obtain raw data is an open
source project available at https://github.com/SELab-unimi/mbt-module.

B. Bayesian Inference

A very common goal in statistics is to learn about one

(or more) uncertain parameter(s) θ describing some details

of a stochastic phenomenon of interest. To learn about θ,

we observe the phenomenon and collect a data sample y =
(y1, y2, ..., yn) to compute the conditional density f(y|θ) of

the observed data given θ, i.e., the likelihood function. The

Bayesian inference approach consists of taking into account

the hypothesis (or assumptions) about θ. This information is

often available from external sources, such as expert informa-

tion based on past experience or previous studies [22]. The

hypothesis is given in probabilistic terms distribution f(θ),
so called prior. The Bayes’ theorem formulation given below

defines how the prior and the likelihood can be combined to

obtain the posterior distribution:

Posterior ∝ Likelihood · Prior (1)

The posterior f(θ|y) describes the best knowledge of the

true value of θ, given the data sample y. It can be used in

turn to perform point and interval estimation of the uncer-

tain parameters. The estimation yields the notion of updated
beliefs. As described in [17], this is typically addressed by

summarizing the distribution through the posterior mean and

the smallest possible credible region of 0.95 probability, called

Highest Density Region (HDR). This region is defined as the

set of θ values, such that HDRθ = {θ : f(θ|y) ≥ 0.95}. The

HDR contains the values considered most likely a posteriori

(i.e., credible values having the highest density). The magni-

tude of the region, denoted as ‖HDRθ‖, is traditionally used

in Bayesian statistics as a measure of the highest possible

accuracy in the estimation [22]. Namely, it represents the

confidence of the inference process, i.e., the smaller the

magnitude, the higher the confidence.

III. A RUNNING EXAMPLE

To illustrate our novel testing methods, we adopt the Safe-
Home case study, i.e., an open-source security system bor-

rowed from [9]. It is in charge of controlling and configuring

alarms and sensors that implement some safety features, e.g.,

the intrusion detection.

Fig. 1 shows the high-level behavior of the system modeled

with MDP. After the setup phase, the system exhibits three

main phases: initializing, monitoring and alarm, in charge

of sensor initialization, detection, and alarm handling, re-

spectively. Annotations follow the standard notation “[pre-

condition] trigger / post-condition” and provide guidance on

the interpretation of the MDP model. As an example, from

state s2 (during monitor initialization), the SafeHome system

tries to initialize all the available sensors by executing the a2
action, i.e., the trigger of initSensors. If the task succeeds,

the sensors are correctly registered and the a3 action can be

executed (i.e., the pre-condition initialized holds) to proceed

towards the monitoring and alarm phases.

According to [23], sources of uncertainty in CPSs affect

the behavior of the SUT at different levels: i) application
level, due to events/data originating from software components
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source target [pre-condition] trigger / post-condition

s0 s1 [systemOk] a0: activate / ready
s1 s2 [ready] a1: startInit / monitor
s2 s2 [!initialized] a2: initSensors / registered
s2 s1 [!initialized] a2: initSensors / failed
s2 s3 [initialized] a3: startMonitoring / monitoring
s3 s5 [timeout] a4: sensorsCheck / !sensorsOk
s3 s3 [timeout] a4: sensorsCheck / sensorsOk
s3 s8 [timeout and tooManyFailures] a4: sensorsCheck / !sensorsOk
s5 s2 [sensorsLost] a9: resetSensors / !registered
s8 s8 [assistance] a9: wait / assistance
s3 s3 [sensorsOk] a5: intrusionOccurred / !sensed
s3 s4 [sensorsOk] a5: intrusionOccurred / sensed
s4 s3 [!verified] a6: cancel / setTimerOn
s4 s6 [verified] a7: turnAlarmOn / setTimerOn
s6 s4 [!timeout] a6: cancel / setTimerOff
s6 s6 [timeout or tooManyDetections] a8: notify / success
s6 s7 [timeout or tooManyDetections] a8: notify / networkError
s7 s7 [notificationSent] a9: wait / notificationSent

Fig. 1: MDP model of the SafeHome system

running upon physical units of the CPS; ii) infrastructure
level, due to data transmission through networking and/or

cloud infrastructure; iii) integration level, due to interactions

among physical units at either application level or infrastruc-

ture levels. To exemplify some of these uncertainties, let us

consider the following scenario. When the system is in state

s3, it means that monitoring holds, sensors can send the a5:

intrusionOccurred trigger to the security system that makes

the alarm ring via the effect of a7: turnAlarmOn attached

to the outgoing transition of the state s4 intrusionDetected.

Nevertheless, the intrusion detection capability is affected by

uncertainty at integration level. This capability is influenced

by the interaction of sensors and their individual ability of

correctly sensing the physical environment. Thus, the a5 action

leads to either state s4 (i.e., the intrusion has been sensed)

or state s3 (i.e., the intrusion has not been sensed) with a

substantial degree of uncertainty. This uncertain outcome is

explicitly represented by uncertain probability values (i.e.,

0.97 and 0.03, respectively), as shown in the arcs of the

MDP model. We refer to a set of uncertain probability values

associated with a state-action pair in the model as uncertain
region and we denote it as θi. Note that the disjoint union of

all θi is θ, i.e., the set of uncertain model parameters. The full

list of uncertain regions (and affected levels) of the SafeHome

example is reported in Table I.

IV. APPROACH OVERVIEW

Our approach adopts online (or on-the-fly) MBT to drive

the selection of tests from an MDP model by stochastically

TABLE I: Uncertain regions

region state-action affected level target states probability values

θ1 s2-a2 integration s2, s1 0.95, 0.05
θ2 s3-a4 integration s3, s4 0.03, 0.97
θ3 s3-a5 application s3, s5, s8 0.01, 0.97, 0.02
θ4 s6-a8 infrastructure s6, s7 0.02, 0.98

sampling its state space. The functional evaluation procedure

adopted in our framework is based on a conformance game
approach [24]. Beside the conformance game, our focus is the

application of statistical inference during testing to incremen-

tally refine uncertain beliefs of an initial underspecified MDP

model. We make use of Bayesian inference (while gathering

evidence from test executions) to compute the posterior density

function of uncertain/unknown θ parameters of the MDP.

Our approach relies on the assumption that a partial specifi-

cation of the SUT is available. Namely, the state-action space

is known while transition probabilities can be unknown/uncer-

tain. Thus, design-time uncertainty affects a subset of model

parameters. Furthermore, we assume that we can anticipate

the location (i.e., which model parameters are uncertain/un-

known). These assumptions are valid in many practical cases

as described in [19]. The advantages (and costs) of modeling in

testing are discussed in many existing papers [5]. We consider

this latter point outside the scope of this paper.

Fig. 2 provides an overview of our approach, where num-

bered labels refer to the major components detailed in the

following. The starting point is a Modeling module (1) that

allows the SUT behavior to be specified as a MDP model (2)

through a simple textual Domain Specific Language (DSL).

This language is also used to define the uncertain param-

eters by annotating MDP transitions with initial (a priori)

hypothesis, given in terms of prior density functions. The

priors (3) describe the modeler’s beliefs on the uncertain

transition probabilities. In addition to that, the DSL permits the

declaration of a number of controllable APIs and observable

outcomes. We adopt the approach introduced in [25] to distin-

guish between controllable behavior from the tester (i.e., the

environment, such as user requests) and observable behavior

from the running software system.

The DSL allows the modeler to map model elements and

software components. More precisely, the modeler uses the

DSL to define a model-system binding that provides the

framework with a high-level view of the SUT behavior at

the abstraction level of the MDP model as follows. Arbitrary

input data for the system is associated with each MDP action

a denoted as I(a). Input data is a vector �vin of parameters

provided to a controllable API associated with each MDP state

and denoted by H(s). Arbitrary pre- and post- conditions are

then associated with MDP transitions. Namely, Pre(s, a) must

hold for I(a) and Post(s, a) must hold for �vout, i.e., the output

obtained by executing H(s) with input I(a). The binding

is then used by the framework to automatically generate a

test harness (4) used by the MBT module to carry out the

conformance game upon the SUT (5).
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Fig. 2: Uncertainty-aware MBT framework

The software tools implementing our approach have been

released as publicly available open-source software using the

Java language for the MBT module and the Xtext/Xtend [26]

framework to develop the Modeling module. However, the

approach is general and does not refer to any specific feature

of our programming language of choice. Therefore, it can

be applied (with limited technological modifications) to other

languages. In the following we provide further details on the

major components of the MBT module: the Controller (6) and

the Observer (7), and the Bayesian analyzer (8).

A. Controller and Observer

The aforementioned conformance game is carried out by

the Controller and the Observer components. These software

modules verify the existence of a conformance relation be-

tween the model and the SUT, formalized by means of the

notions of alternating simulation [27] and refinement [24].

From an operational perspective, the conformance game

starts from the initial state of the model, and it consists of

a sequence of steps. For each step of the game, the Controller

makes its own move: it chooses an available action in A(s)
from the current state s of the model, according to the

adopted test selection strategy. Then, it uses the corresponding

controllable API H(s) to supply the input I(a) to the running

system. During execution, the test harness provides a serialized

view of the observable behavior resulting from the execution

of the SUT in response of the external stimuli. Thus, the

observer, taking this information as input, makes its own move:

it evaluates the pre-condition Pre(s, a) on the supplied input.

If the pre-condition holds, then it determines the target state

s′, such that the post-condition Post(s, a), evaluated on the

observed output, holds. Whenever a pre-condition does not

hold or does not exist a target state s′ such that the post-

condition holds, there is a conformance failure. The game

continues until the Controller decides to end the game (i.e.,

a termination condition has been reached) or a conformance

failure is found (i.e., the output produced by the SUT is not

predictable by the model).

B. Bayesian analyzer

During the conformance game, the Observer feeds the

Bayesian analyzer to carry out statistical hypothesis testing.

Namely, starting from the priors defined by the modeler,

we incrementally update the knowledge about the uncertain

parameters taking into account the evidence gathered during

testing by applying Bayesian inference (see Eq. 1). In the

following we provide a brief overview on the statistical

machinery used to perform this activity, but we refer the reader

to [17] for more details.

Dirichlet distributions [28] are commonly used in Bayesian

statistics as prior density functions. In particular, the Dirichlet

distribution is the natural conjugate prior of the categorical
distribution: a discrete probability distribution describing the

possible outcomes of a random variable that can assume one

of k possible values (i.e., categories), having each category

associated with a specific probability. In our context, we use

Dirichlet distributions as conjugate priors for the uncertain

transition probabilities of a MDP model. Namely, the prior

knowledge on transition probabilities pai = (pai,j , ..., p
a
i,k),

where pai,j is the probability to observe a transition from si
to sj when the action a is chosen, is described by letting pai
have a Dirichlet distribution with concentration parameters αi

as follows:

pai ∼ Dir(αi), where αi = (αi,j , ..., αi,k) (2)

The observer component collects statistics on the occurring

model transitions in order to update the prior knowledge. More

precisely, it collects a sample y that yields for each i, j, a, the

occurrences na
i,j from si to sj , when the action a is selected.

Given the sample y, the posterior distribution is also a Dirichlet

distribution and can be computed very efficiently as follows:

pai |y ∼ Dir(α′
i), where α′

i = (αi,j+na
i,j , ..., αi,k+na

i,k) (3)

When little information is available, a natural choice is to

use a uninformative prior with αa
i,j = 1/2, ∀i, j, a. Otherwise,

when past experience is available, it is possible to use a prior

having αi,j = na
i,j . For instance, considering the SafeHome

case study (see Sect. III) we describe the hypothesis on θ3
with a Dirichlet prior and concentration parameters equal to

the following values: (α4,4 = 970, α4,6 = 20, α4,9 = 10), if

in our past experience we observed 970 transitions from s4 to

s4, 20 transitions from s4 to s6, and 10 transitions from s4 to

s9, in a sample of 1k observations.

The online MBT process calibrates the uncertain θ pa-

rameters using the posterior mean and the HPD region, as

introduced in Sect. II. The intuition behind our proposal is to

take advantage of the specification of uncertain parameters to

drive test case generation.

V. TEST SELECTION STRATEGIES

To describe our strategies, we firstly introduce the notion of

uncertainty-aware reward structure, motivated by the practical

need to identify model actions that maximize the probability
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of exploring uncertain state transitions (associated with θ pa-

rameters). The uncertainty-aware reward structure is formally

defined as follows:

Definition 1 (uncertainty-aware reward structure): Given a

MDP model (S, s0, A, δ) and a set of uncertain parameters

θi ⊆ θ, the uncertainty-aware reward structure is u = (us, ua),
s.t.,

• us(s) =

{
k ∃a ∈ A(s), s′ ∈ S : δ(s, a)(s′) ∈ θi

0 otherwise

• ua(s, a, s
′) =

{
k δ(s, a)(s′) ∈ θi

0 otherwise

where k ∈ N>0.

The rationale behind this definition is to assign a high and

fixed reward value (k) to uncertain state transitions (and a

low reward value to the other model elements). The best

exploration policy that maximizes the expected cumulated

uncertainty-aware rewards is then computed by applying dy-

namic programming, as anticipated in Sect. II.

Intuitively, parameters in θi for each i, compose the un-

certain regions (θ1, θ2, etc. in Table. I) and the set of best

policies (π∗
1 , π∗

2 , etc., respectively) maximizes the probability

to reach each one of them. Thus, for each model state, we have

in general multiple choices to act optimally towards different

uncertain model regions. For example, from s2 we might select

either a2 or a3, depending on the target uncertain region,

i.e., either θ1 or θ2, respectively. The number of alternative

choices leading to different testing scenarios depends on the

model complexity and/or the number of uncertain regions.

Thus, multiple uncertainty-aware testing methods are likely

to act differently in terms of delivered confidence.

After computing the best policies, our MBT algorithm

makes dynamic (on-the-fly) choices for exploring the uncertain

regions, and these choices are regulated by the adopted test
selection strategy. Such a strategy provides control over test

scenarios by selecting actions during testing based on the

following probabilistic function:

P(s, a) =

{
0 ω(s, a) = 0

ω(s, a)/
∑

a′∈A(s) ω(s, a
′) otherwise

(4)

where ω represents a per-state weight function that maps a

state s and an action a to a value in R≥0. The weight ω
is used to drive the direction of the exploration, i.e., it can

be used to selectively increase or decrease the probability of

certain actions depending on different model-based exploration

strategies.

In the following, we describe the strategies currently imple-

mented in our framework. The flat strategy is used as baseline

(Sect. V-A) and the novel strategies are: history (Sect. V-B);

distance (Sect. V-C); frequency (Sect. V-D); and we also

propose a combination of distance and frequency (Sect. V-E).

A. Flat Strategy

The flat strategy represents a pseudo-random test selection

criterion that allows to select the actions depending on a stat-

ically defined weight function ωRT, where RT is the acronym

for random testing, and it maps a pair (s, a) to a fixed value.

The idea is to choose among the available actions by using a

discrete uniform distribution whereby all the available actions,

leading to uncertain model regions, have equal weight. Given

the set of best policies {π∗
i }, the function ωRT is defined as

follows:

ωRT(s, a) =

{
1 ∃i : π∗

i (s) = a

0 otherwise
(5)

Intuitively, the weight function ωRT makes the Controller

able to stochastically sample the available actions increasing

the likelihood of guiding the testing towards uncertain model

regions.

On the one hand, the flat strategy (originally introduced

in [16]) is guided by the awareness of uncertain model

regions. On the other one hand, it does not take into account

fine-grained information from updated beliefs and structural

properties of the model. Furthermore, as described in [15],

it has been shown superior to traditional MBT strategies.

Thus, we selected this strategy as a baseline in our empirical

evaluation to understand to what extent alternative uncertainty-

aware strategies yield increased cost-effectiveness.

B. History Strategy

History-based test selection strategy (hist) has been intro-

duced to take into account aging of the available actions.

Specifically, we propose a strategy based on global informa-

tion (i.e., considering the full history) which leverages the

notion of decrementing weight commonly adopted when the

tester wants to guide the direction of the exploration balancing

the number of times actions are selected. This strategy selects

among the available actions based on a weight function ωHT

(i.e., HT stands for history testing) defined as follows:

ωHT(s, a) =

{
1/#(s, a) ∃i : π∗

i (s) = a

0 otherwise
(6)

where #(s, a) denotes a counter function whose role is to keep

balanced the number of times an uncertain region is visited

during MBT. In this strategy, the more an uncertain model

region is visited, the smaller is the probability to choose again

actions leading to that region. The counter function denotes

how many times the region θi has been visited during testing;

e.g., from state s2, the history strategy is likely to choose

action a2 (i.e., the choice given by π∗
1) if θ1 has been visited

less than θ2 during past testing activity.

C. Distance Strategy

The distance strategy (dist) is introduced to consider the

variability of uncertain parameters by calculating the magni-

tude of the HDR containing the credible values, as anticipated

in Sect. II. Thus, dist selects actions depending on a weight

function ωDT, where DT stands for distance testing. Such

a function maps a pair (s, a) to a value that quantifies the

magnitude of the corresponding uncertain region. Namely,

the weight ωDT is ‖HDRθi‖ if the best policy π∗
i maps the

state s to the action a. This way parameters that show higher
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possible variability are associated with a higher weight versus

parameters whose uncertainty spans in a smaller range. Given

the set of best policies {π∗
i }, the function ωDT is defined as:

ωDT(s, a) =

{
‖HDRθi‖ ∃i : π∗

i (s) = a

0 otherwise
(7)

The weight function ωDT modifies the behavior of the

Controller component that stochastically samples the available

actions maximizing the probability to reach the parameters

showing larger uncertainty in their specification. As a simple

example, suppose the tester starts MBT from diverse prior

knowledge on θ1 and θ2. High degree of uncertainty may be

associated with θ1 (rather than θ2) if little information on the

SafeHome behavior in alarm conditions is available. In this

case the tester can adopt an uninformative prior for θ1 (i.e.,

large‖HDRθ1‖) and a prior expressing definite information for

θ2 (i.e., small‖HDRθ2‖). This unbalanced confidence in beliefs

affects the dist strategy during test case selection. Namely, the

distance strategy is likely to choose those actions given by π∗
1

to collect more evidence on region θ1. Our hypothesis is that

dist outperforms both flat and hist when beliefs on uncertain

regions exhibit diverse variability. Thus, testing prioritizes

model regions having higher uncertainty with the aim of

delivering uniform posterior knowledge.

D. Frequency Strategy

The frequency strategy is introduced to consider how many

times an uncertain parameter is involved in a computation, thus

to prioritize the most frequent uncertain regions. Actions are

selected depending on a weight function ωFT, where FT stands

for frequency testing. A pair (s, a) is associated to a value that

quantifies the frequency of invoking such actions within the

system actual running. For example, if the uncertain regions θ1
and θ2 have been visited n and m times, respectively, then the

weight ωFT can be calculated by using the ratio n/(n +m),
denoted as freq(θi). This way, parameters that are invoked

more frequently have a higher weight versus parameters that

are less involved in the system running. Given the set of best

policies {π∗
i }, the function ωDT is defined as follows:

ωFT(s, a) =

{
freq(θi) ∃i : π∗

i (s) = a

0 otherwise
(8)

Intuitively, the weight function ωFT modifies the behavior

of the Controller component that stochastically samples the

available actions maximizing the probability to reach the

parameters showing a higher probability of being invoked. We

expect that this strategy outperforms random choices when

there exist uncertain regions frequently invoked during the

system running. The subsequent actions under test are then

affected by such system property.

E. Combined Strategy

The combined strategy is introduced to jointly consider the

magnitude of the uncertainty and how many times an uncertain

parameter is invoked, thus to prioritize the most large and

frequent uncertain regions. This means that actions are selected

depending on a weight function ωCT, where CT is the acronym

for combined testing. Such function maps a pair (s, a) to a

value jointly quantifying the largeness and the frequency of

uncertain regions. To this end, let us introduce two tuning

constant values (i.e., cd and cf ) that denote the importance

of distance and frequency, respectively. The function ωCT is

defined by a weighted sum of the distance and the frequency

strategies. If they are equally important, then cd = cf = 0.5.

This way both the distance and the frequency of uncertainty

are associated to parameters, thus to distinguish their influence

in the MBT. Given the set of best policies {π∗
i }, the function

ωCT is defined as follows:

ωCT(s, a) = cd · ωDT(s, a) + cf · ωFT(s, a) (9)

where cd, cf are real values in [0, 1] and cd + cf = 1.

Similarly to previous strategies, the weight function ωCT

modifies the behavior of the Controller component that max-

imizes the probability to reach the parameters showing a

larger distance and a higher probability of being invoked. The

importance of these two system properties is regulated by

the tester that can set different values on the basis of her/his

preference. We expect that this strategy outperforms the flat

strategy whether there exist uncertain regions showing a large

gap in their specification of uncertainty and, at the same time,

frequently invoked during the system running.

VI. EVALUATION

In this section we introduce our research questions

(Sect. VI-A) for the evaluation of the proposed uncertainty-

aware testing strategies. We describe the experiments in

Sect. VI-B, and the results are presented in Sect. VI-C. We

finally discuss threats to validity in Sect. VI-D.

A. Research Questions

The purpose of the evaluation is to study the effectiveness

of our novel uncertainty-aware MBT methods under bounded

effort. In case an unbounded number of tests is allowed, all the

strategies may eventually converge to the optimal uncertainty

mitigation. We are instead interested in investigating the ability

to converge faster or slower for a bounded number of tests. In

particular, we aim to answer three research questions:

RQ1: What is the effectiveness of our strategies in terms of

relative error of updated beliefs and detection rate of

injected faults?

RQ2: What is the practical relevance of our strategies in

terms of HDR magnitude and their effect size?

RQ3: How do our strategies compare in terms of HDR ratio

and their occurrence as best choice?

B. Design of the Evaluation

The strategies under evaluation are discussed in Sect. V,

specifically: flat, history (hist); distance (dist), and frequency
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(freq)2, and the combination of distance and frequency strate-

gies by setting cd-cf with the following values: 20%-80% (c-
2-8), 50%-50% (c-5-5), and 80%-20% (c-8-2).

To address RQ1, all the strategies have been experimented

on three selected benchmarking examples from different ap-

plication domains: the SafeHome cyber physical system [9],

the Tele Assistant service-based system (TAS) [18], and an

e-commerce web application (e-comm) [19].

To address RQ2 and RQ3, we generated a number of

synthetic systems from pseudorandom MDP models. This

setting allowed us to control structural properties of interest

and to avoid possible biases of preselected and ad hoc case

studies. Namely, we controlled: #states, #actions per state,

and #transitions, that define the size (i.e., complexity) of

the generated systems. For each size, we varied the level of
uncertainty (i.e., percentage of transitions associated with θ
parameters) between 20% and 80%. We also varied the prior
knowledge by constructing two testing scenarios as follows: (i)

the balanced case, where all the priors express same degree

of confidence (in terms of HDR magnitude); and (ii) the

unbalanced case, where half randomly selected θ parameters

are more certain (i.e., smaller HDR magnitude) than others.

For all experiments (with both realistic and synthetic bench-

marks), we compared our novel strategies with respect to the

state-of-the-art baseline, i.e., the flat [15]. As anticipated in

Sect. V, this choice is motivated by: (i) it embeds and leverages

a coarse grained notion of uncertainty to select tests; and (ii) it

has been shown superior to traditional MBT strategies. Testing

strategies were executed 100 times for each benchmark to

avoid bias in the results and consequently in the findings.

C. Results

RQ1. The MDPs and the uncertain regions of the selected

benchmarks have been obtained following the specification of

these systems presented in [9], [18], and [19], respectively.

Their number of states varies from 9 to 12, the actions

from 6 to 10, the transitions from 20 to 21, and the θ
parameters from 4 to 7. Even though from the perspective

of the structural complexity, the three MDP specifications

show similar characteristics, these systems have very diverse

behavior. For each benchmark we executed all the strategies by

assuming bounded effort equal to 2k tests. We compared the

effectiveness, under bounded effort, by measuring: the Relative
Error3 (RE) of the updated beliefs (point summarization of

posteriors) with respect to actual values of θ parameters;

and the Detection Rate (DR) of injected faults. The injection

process has been carried out by applying perturbations to the

θ values, i.e., uniform sampling between 0.02 and 0.08. Here,

we define detection as the ability to recognize that updated

beliefs (interval summarization of posteriors) exclude initial

beliefs that were set to meet requirements. Thus, the DR can

be interpreted as the ability to spot requirements violations.

2The frequency strategy makes use of an operational profile which assigns
values proportional to the HDR magnitude of priors.

3The RE is computed as the magnitude of the difference between the exact
value and the estimation divided by the magnitude of the exact value.
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Fig. 3: Effectiveness of strategies on realistic benchmarks.

Fig. 3a reports mean and standard deviation of RE results.

Common patterns can be observed in all the three target

systems. The flat strategy is likely to exhibit the worst RE

values. On average, it is above 50% with values above 90%
at peak. The difference between maximum and minimum

values is 0.69, i.e., on average 34% more compared to the

other strategies. This means that the flat strategy yields less

predictability. The lowest RE values correspond to the distance

strategy. On average, we observed mean RE values between

0.09 (e-comm) and 0.23 (TAS). The history is likely to

score better than flat but worse than distance. The usage of

operational profiles (i.e., frequency strategy and combination

of frequency and distance) is not likely to decrease the RE

with respect to distance in all the three target systems.

Fig. 3b reports the DR results. Consistently with our previ-

ous findings, the distance strategy yields the highest DR values

across the three benchmarks. With this strategy we were able

to detect on average 30% more faults compared to the flat

strategy. The flat strategy yields the worst DR values. The

DR values measured by using the history strategy are close

to the one obtained with frequency: the average difference

across the three benchmarks is 2%. The frequency strategy

and combinations of frequency and distance do not yield better

DR values.

Summary: By using representative benchmarks, we found

the distance strategy as the most effective one in terms

of RE and DR. The flat baseline strategy is always less

effective compared to our strategies.

RQ2. To answer this question, we measured the accuracy

of the inference process (i.e., uncertainty quantification capa-

bility) through the HDR magnitude of the posteriors, i.e., a

traditional metric for this purpose in Bayesian statistics (see

Sect. II). Table II shows the results obtained by testing the

synthetic systems mdp1 to mdp9, having complexity ranging

from 250 to 10k structural elements, respectively. To ensure a

fair comparison among the strategies, the testing campaign on

the synthetic systems have been conducted by assuming equal
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TABLE II: HDR magnitude using flat, history, distance, frequency, and combined strategies for 9 synthetic systems varying:

structural compexity, %uncertainty, and balanced/unbalanced prior knowledge.

balanced unbalanced
size (states;

actions; transitions) %uncertainty flat hist dist freq c-2-8 c-5-5 c-8-2 flat hist dist freq c-2-8 c-5-5 c-8-2

mdp1 (10; 5; 250)
20 0.367 0.144 0.159 0.174 0.150 0.149 0.150 0.215 0.108 0.086 0.089 0.088 0.089 0.084
50 0.316 0.256 0.243 0.258 0.269 0.247 0.240 0.212 0.194 0.138 0.153 0.158 0.161 0.147
80 0.411 0.382 0.344 0.383 0.362 0.359 0.347 0.317 0.317 0.352 0.276 0.324 0.307 0.352

mdp2 (10; 10; 500)
20 0.312 0.108 0.108 0.132 0.121 0.111 0.106 0.175 0.076 0.063 0.063 0.064 0.063 0.065
50 0.357 0.194 0.217 0.233 0.226 0.206 0.216 0.227 0.142 0.125 0.132 0.132 0.129 0.125
80 0.381 0.282 0.258 0.254 0.251 0.246 0.246 0.305 0.226 0.183 0.197 0.190 0.181 0.173

mdp3 (10; 20; 1k)
20 0.387 0.064 0.062 0.073 0.070 0.066 0.062 0.189 0.050 0.046 0.045 0.044 0.046 0.045
50 0.341 0.124 0.134 0.149 0.142 0.136 0.133 0.249 0.097 0.079 0.095 0.094 0.091 0.089
80 0.327 0.250 0.215 0.217 0.208 0.211 0.206 0.247 0.196 0.141 0.146 0.150 0.141 0.134

mdp4 (20; 5; 1k)
20 0.241 0.154 0.145 0.169 0.155 0.152 0.150 0.180 0.125 0.122 0.119 0.120 0.124 0.130
50 0.226 0.234 0.216 0.228 0.218 0.212 0.207 0.166 0.193 0.148 0.153 0.146 0.146 0.143
80 0.231 0.293 0.225 0.227 0.222 0.230 0.222 0.183 0.226 0.196 0.182 0.189 0.182 0.189

mdp5 (20; 10; 2k)
20 0.212 0.100 0.107 0.122 0.111 0.111 0.106 0.161 0.091 0.080 0.078 0.077 0.077 0.082
50 0.229 0.209 0.178 0.209 0.190 0.189 0.178 0.166 0.154 0.131 0.126 0.127 0.126 0.127
80 0.211 0.184 0.184 0.200 0.192 0.191 0.183 0.167 0.146 0.146 0.140 0.148 0.140 0.148

mdp6 (20; 20; 4k)
20 0.260 0.091 0.089 0.105 0.093 0.090 0.089 0.222 0.075 0.069 0.068 0.069 0.068 0.068
50 0.225 0.164 0.127 0.133 0.128 0.127 0.128 0.170 0.134 0.098 0.099 0.099 0.100 0.100
80 0.222 0.156 0.155 0.166 0.163 0.153 0.155 0.184 0.132 0.123 0.123 0.121 0.118 0.120

mdp7 (30; 5; 2.5k)
20 0.174 0.156 0.129 0.157 0.144 0.130 0.123 0.101 0.100 0.060 0.096 0.096 0.096 0.095
50 0.174 0.227 0.169 0.171 0.173 0.162 0.165 0.143 0.175 0.123 0.129 0.131 0.125 0.125
80 0.186 0.179 0.175 0.180 0.181 0.175 0.175 0.169 0.169 0.156 0.151 0.154 0.161 0.165

mdp8 (30; 10; 5k)
20 0.178 0.127 0.105 0.101 0.099 0.102 0.098 0.124 0.092 0.071 0.074 0.075 0.070 0.071
50 0.161 0.166 0.141 0.148 0.144 0.138 0.136 0.126 0.138 0.118 0.122 0.124 0.112 0.125
80 0.173 0.232 0.167 0.173 0.173 0.166 0.167 0.143 0.213 0.147 0.138 0.139 0.142 0.149

mdp9 (30; 20; 10k)
20 0.209 0.081 0.082 0.093 0.087 0.085 0.084 0.148 0.069 0.066 0.065 0.065 0.064 0.065
50 0.166 0.108 0.110 0.116 0.112 0.109 0.112 0.139 0.093 0.086 0.085 0.086 0.086 0.088
80 0.167 0.150 0.121 0.119 0.119 0.119 0.121 0.134 0.121 0.095 0.097 0.098 0.096 0.095

effort proportional to the model size4. Detailed results for each

single θ parameter within a specific experiment are provided in

the publicly available dataset paired with this paper. Boldface

entries in Table II highlight the best results (i.e., smallest

HDR magnitude) when considering all the strategies. Gray

cells instead emphasize the comparison between flat, history,

distance, and frequency strategies, i.e., excluding their combi-

nation. Results show that the flat strategy (i.e., the baseline)

is often associated with high HDR magnitude. It exhibits the

worst behavior in 85% of the experiments. Few exceptions

have been observed within high level of uncertainty (80%)

and small number of actions (5).

To deepen our investigation we compared each individual

strategy with the baseline by following the practical guidelines

introduced in [29]. Namely, we used the standardized non-

parametric Vargha and Delaney’s Â12 effect size to measure

practical value of the HDR magnitude. In our context, the

Â12 indicates the probability that a selected strategy yields

increased confidence compared to the flat one. Results are

shown in Table III. Values represent the effect size by varying

three major factors: %uncertainty, model structural complexity

(#actions per state), and the prior knowledge (balanced vs

unbalanced). Similarly to Table II, the best values are high-

lighted. We can observe that all the strategies in both balanced

and unbalanced conditions outperform the flat strategy (i.e.,

Â12 > 0.5). In most cases, the distance method is associated

with the highest value. On the contrary, the history is the

method exhibiting the lowest values (e.g., 0.53 with 80% un-

4The total effort is N × #transitions, with N constant value equal to 4 in
our experimental campaign.

TABLE III: Efect size as measured by Â12.

%uncertainty #actions

balanced 20 50 80 5 10 20
hist 1.000 0.716 0.531 0.617 0.704 0.926
dist 1.000 0.790 0.679 0.741 0.802 0.951
freq 1.000 0.728 0.630 0.704 0.753 0.951
c-2-8 1.000 0.765 0.654 0.741 0.753 0.975
c-5-5 1.000 0.815 0.667 0.728 0.852 0.951
c-8-2 1.000 0.815 0.691 0.753 0.802 0.975

unbalanced 20 50 80 5 10 20
hist 0.963 0.716 0.556 0.531 0.642 0.901
dist 0.988 0.951 0.691 0.741 0.741 0.975
freq 0.988 0.926 0.716 0.741 0.840 0.975
c-2-8 0.988 0.926 0.667 0.728 0.790 0.951
c-5-5 0.988 0.926 0.741 0.741 0.790 0.975
c-8-2 0.975 0.926 0.704 0.728 0.704 1.000

certainty in the balanced case, and 5 actions in the unbalanced

scenario). Consistently with our initial intuition, see Sect. V,

those strategies that take into account prior knowledge (i.e.,

distance, frequency, and combinations) improve their perfor-

mance for high level of uncertainty (80%) in the unbalanced

conditions w.r.t. the same strategies in balanced conditions.

When increasing structural complexity (i.e., increasing the

degrees of freedom during MBT) all the new strategies in-

crease the magnitude of the improvement. Such a trend can

be understood by reading the values in both the balanced and

unbalanced conditions. The effect size of combined strategies

has been the highest in 90% of the experiments. However, they

are not likely to achieve the highest confidence, especially in

unbalanced conditions. Overall, we can observe the highest

confidence without combination in 75% of our experiments.
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TABLE IV: Gain in terms of HDR ratio.

%uncertainty #actions

balanced 20 50 80 5 10 20
hist 2.549 1.399 1.111 1.232 1.383 2.305
dist 2.622 1.478 1.253 1.331 1.537 2.385
freq 2.283 1.378 1.214 1.222 1.462 2.164

c-2-8 2.469 1.421 1.240 1.292 1.510 2.256
c-5-5 2.565 1.485 1.257 1.336 1.565 2.333
c-8-2 2.649 1.492 1.270 1.358 1.588 2.374

unbalanced 20 50 80 5 10 20
hist 2.084 1.317 1.093 1.125 1.271 1.910
dist 2.357 1.617 1.272 1.389 1.560 2.190
freq 2.419 1.524 1.308 1.329 1.527 2.140

c-2-8 2.363 1.523 1.272 1.301 1.516 2.154
c-5-5 2.359 1.550 1.306 1.301 1.578 2.167
c-8-2 2.352 1.560 1.305 1.316 1.546 2.175

Summary: Our testing methods are likely to outperform

the flat strategy to a large extent in both balanced and

unbalanced scenarios. We observed that the magnitude

of the improvement increases by increasing the structural

complexity of the SUT.

RQ3. To answer this question, we studied the gain obtained

out of the testing activity in terms of accuracy of the inference

process. Such a gain is calculated as the ratio of the HDR

magnitude obtained using a target strategy vs the baseline (i.e.,

the flat strategy). Table IV shows the results when varying:

%uncertainty, structural complexity, and prior knowledge.

Values are always greater than 1.0, meaning that our strate-

gies deliver more confidence than the flat one. Consistently

with the discussion for RQ2, the gain is smaller when decreas-

ing the level of uncertainty. Nevertheless, we can observe a

decreased gain loss in the unbalanced case. On average, the

gain loss is 43% in the balanced case when passing from 20%
to 50% uncertainty level. Such a value is reduced to 34% in

the unbalanced case. On the contrary, the gain increases when

scaling up the model complexity (#actions per state). In the

balanced case, the gain increases on average from 16% to 78%
when increasing the #actions from 5 to 10 and from 10 to 20,

respectively. In the unbalanced condition the same values are

15% and 65%, respectively. Overall, the gain of the distance

and frequency strategies is always larger than the history one.

More specifically, the distance exhibits the largest one in the

balanced scenario, whereas the frequency scores better in the

unbalanced scenario, with 20% and 80% uncertainty level.

Combined strategies, instead, show higher effectiveness mostly

in the balanced condition, largest value is 2.65 obtained with

c-8-2 and 20% uncertainty, see Table IV. Here they achieve

highest gain values in 85% of our experiments, whereas in the

unbalanced case this percentage is lower (30%).

To determine the best strategy (between history, distance,

and frequency) depending on the characteristics of the SUT,

we measured the frequency of occurrence of best confidence

gain for all the experiments on the synthetic systems. Table V

shows the results summarized by prior knowledge (balanced

vs unbalanced), level of uncertainty, and model complexity.

Insights extracted from data follow. We can observe that by

increasing the uncertainty level, the history strategy undergoes

TABLE V: Best choice frequency.

%uncertainty #actions

balanced 20 50 80 5 10 20
hist 0.33 0.33 0.00 0.22 0.33 0.33
dist 0.55 0.67 0.78 0.78 0.56 0.44
freq 0.11 0.00 0.22 0.00 0.11 0.22

unbalanced 20 50 80 5 10 20
hist 0.00 0.00 0.00 0.00 0.00 0.00
dist 0.33 0.78 0.33 0.56 0.44 0.33
freq 0.67 0.22 0.67 0.44 0.56 0.67

a degradation in favor of the distance one. With high level of

uncertainty (80%) the distance has been the best choice in 78%
of the experiments. Considering the unbalanced condition,

history is always worse than both distance and frequency. We

found that the distance is likely to be the most effective choice

when the level of uncertainty is � 0.5 (i.e., the number of

certain vs uncertain regions is almost equal). On the contrary,

when the number of θ parameters is very high (≥ 80%) or very

low (≤ 20%), the usage of operational profiles that selectively

increase/decrease chances to hit uncertain regions (depending

on the degree of uncertainty), reveals a substantial effective-

ness. In these cases, the frequency strategy has been the best

choice in 67% of the performed experiments. Taking into

account the #actions factor, we can observe that both distance

and frequency are always better than history. This trend is

even more evident with unbalanced condition. Furthermore, by

increasing the #actions, the effectiveness of distance decreases

whereas the effectiveness of frequency increases. Despite this

trend, in the unbalanced case, the distance strategy always

results the best choice the tester can do. In the unbalanced

condition instead, frequency is better than distance with high

#actions, e.g., frequency increased by 34% with 20 #actions

per state.

Summary: In terms of accuracy of the inference process,

our strategies yield a gain up to 2.65×. The distance is the

best choice in case of balanced scenarios. The frequency

is better in the unbalanced scenario with an increasing

structural complexity.

D. Threats to Validity

Generalization of results is a typical threat to external
validity in empirical evaluations. We mitigated such a threat

by conducting a large testing campaign on several case studies

showing different structural complexity. Furthermore, we de-

tailed all the factors controlled in our experiments (i.e., model

structural characteristics, uncertain regions, prior knowledge).

To mitigate threats to internal validity, we designed our

experimental environment to have direct manipulation of the

factors of interest. In particular, we controlled both true values

of θ parameters and design-time beliefs expressed by priors.

This setting has been crucial to assess cause-effect relations

between external factors and effectiveness of our strategies.

This fine-grained access to independent variables provides

a greater internal validity based on an association observed
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without manipulation. Direct manipulation enables also the

replication of the same experimental setting when varying test

generation strategy.

We addressed threats to conclusion validity by reducing

the possibility of producing results by chance. We repeated

experiments 100 times and using for each experiment a very

large sample size (between 200 and 4k). We followed the

guidelines introduced in [29] to detect statistical differences.

Namely, we conducted a pairwise comparison among selected

strategies using the Mann-Whitney U test to calculate p-value

with significance level α = 0.05. In addition to statistical

differences, we used the standardized Vargha and Delaney’s

Â12 non-parametric effect size measure.

We handled major construct validity threats by assessing the

validity of the metrics used during our experimental campaign.

The effort has been measured by considering the total number

of executed tests that represents a traditional choice to assess

randomized testing algorithms [29]. The effectiveness has

been measured by adopting the RE ad the DR that represent

sensible choices to measure the precision of updated beliefs

as reported in [15]. The HDR magnitude yields instead the

highest possible accuracy in estimating the θ parameters. As

described in [17], this is a traditional measure in Bayesian

inference to assess the confidence of the posterior knowledge.

VII. RELATED WORK

A survey on MBT approaches is reported in [30] where the

strategy for test case generation is highlighted as challenging.

In [31] the idea of variability-aware testing is fostered, test

cases are generated with the goal of minimizing the effort

and maximizing the accuracy. In [32] testing is supported

by behavioral coverage using machine learning algorithms

to augment standard syntactic testing. In [33] reachability

information is used to generate test cases for different goals

and/or program variants. All these MBT methodologies pro-

pose optimized test case generation but they do not consider

system uncertainties for such a scope.

Several approaches have been defined to measure the vari-

ation of uncertain input parameters and system output [34].

A taxonomy of potential sources of uncertainty is presented

in [35] where a distinction is made for the different phases of

software development, but testing is almost neglected. Uncer-

tainty propagation for dependability has been investigated in

analytical models [36], and there exist approaches embedding

the specification of uncertain parameters for performance and

reliability [37], [38]. However, to the best of our knowledge,

there is no approach modifying the very analysis process.

Probabilistic models and their adaptation is proposed by: (i)

[39], i.e., time-varying transition probabilities of Markov mod-

els are continuously updated; (ii) [19], i.e., runtime quantitative

verification and sensitivity analysis are used to support self-

adaptive systems; (iii) [40], i.e., queueing networks include

adaptation knobs dynamically set to fulfill performance goals.

However, all these works modify the system models to react to

runtime changes, whereas our approach exploits uncertainties

to deeper analyze specific parts of such a model.

Uncertainty awareness in MBT recently gained attention due

to the potential of increasing the level of assurance of delivered

software [41], [42]. In [43] uncertainty sampling is used to

generate test data and it outperforms conventional random

testing. An uncertainty-wise modeling framework has been

proposed in [23] to create test-ready models and support MBT

of uncertain CPSs. Discovering uncertainties (occurred with

unknown sources) of CPSs is tackled in [9] where test cases

are generated to guarantee coverage of models. Uncertainty

is considered as first-class concern also in [16], however all

uncertainties are equally treated, there is no distinction on

their peculiar characteristics. In [10] the test case generation

process takes into account the uncertainty in timing properties

(e.g., the detection time of external events), and statistical

model checking is adopted to verify timing constraints. In [11]

an approximation-refinement loop (consisting of incrementing

the training data and refining a target system’s model) is

introduced in combination with testing to detect requirements

violations. A domain specific language to deal with the uncer-

tainty affecting physical behavior of CPSs has been introduced

in [12] where sampling and machine learning techniques are

adopted to generate appropriate test cases.

Summarizing, this paper differs from the state-of-the-art

since it leverages on fine-grained characteristics of the un-

certain model regions to drive MBT exploration strategies.

VIII. CONCLUSION

In this paper we presented novel MBT strategies that

exploit awareness on sources of uncertainty to drive the testing

process. Our fine-grained strategies are based on past knowl-

edge (History), magnitude of the variability of the uncertain

parameters (Distance), and operational profiles (Frequency).

We empirically evaluated the effectiveness of these strategies

on three representative benchmarks from different domains

and nine synthetic systems with increasing structural com-

plexity up to 10k model transitions, and varying percentage

of uncertainty, and balanced/unbalanced prior knowledge. We

show that our novel strategies outperform the flat baseline in

terms of relative error, detection rate of injected faults, and

the accuracy of the estimations.

Summarizing, the Distance strategy greedily optimizes the

local density regions and resulted to be the best choice,

with few exceptions in the unbalanced scenario where the

Frequency strategy instead scores better in the presence of

a high number of model actions. As future work, we plan to

further investigate the trade-off between these two strategies,

in fact when a limited number of samples is available the

greediness of Distance may reduce its overall performance,

due to limited coverage of some parameters. Moreover, we

plan to conduct additional assessment of our uncertainty-aware

testing methods in industrial case studies.
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