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ABSTRACT
Neural networks (NNs) play a crucial role in safety-critical fields,

requiring robustness assurance. Bayesian Neural Networks (BNNs)

address data uncertainty, providing probabilistic outputs. However,

the literature on BNN robustness assessment is still limited, mainly

focusing on adversarial examples, which are often impractical in

real-world applications. This paper introduces a fresh perspective

on BNN classifier robustness, considering natural input variations

while accounting for prediction uncertainties. Our approach ex-

cludes predictions labeled as “unknown”, enabling practitioners to

define alteration probabilities, penalize errors beyond a specified

threshold, and tolerate varying error levels below it. We present a

systematic approach for evaluating the robustness of BNNs, intro-

ducing new evaluation metrics that account for prediction uncer-

tainty. We conduct a comparative study using two NNs – standard

MLP and Bayesian MLP – on the MNIST dataset. Our results show

that by leveraging estimated uncertainty, it is possible to enhance

the system’s robustness.
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1 INTRODUCTION
The robustness of artificial neural networks (ANN) refers to their

ability to provide reliable and stable predictions in the face of un-

certainty, noise, or alterations in the input data. Robustness is a

desirable characteristic for ANNs, especially when used in criti-

cal scenarios [7]: since real-world data are often imperfect, noisy,
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and subject to unpredicted variations, ANNs may give wrong pre-

dictions causing harm to people. To address some shortcomings

of ANNs, Bayesian NNs (BNNs) have been introduced, offering

several advantages and proving valuable in various applications

owing to their unique characteristics. A primary advantage lies in

the fact that BNNs provide a probabilistic framework for modeling

uncertainty through the use of Bayesian inference [9]. Instead of

producing a single point estimation, they generate probability dis-

tributions over predictions, allowing for a better understanding and

quantification of uncertainty associated with each prediction. This

is particularly important in applications where awareness of un-

certainty levels is crucial, such as in medical diagnoses or financial

predictions [8, 26]. In these scenarios, BNNs offer the capability to

take into account uncertainty in predictions, despite the potentially

higher computational cost associated with their usage compared to

conventional ANNs [16].

For this reason, BNNs started to be widely studied, although

limited attention has been given to their robustness assessment.

Specifically, existing works in the literature mainly analyze the

robustness of BNNs in a probabilistic manner, focusing solely on

adversarial examples, which do not represent all possible forms of

input perturbations. Indeed, with adversarial examples, attackers

exploit the internal structure of the NN to create artificial inputs

that, in most cases, cannot be disclosed from the original ones

but are designed in a way that they are misclassified or misinter-

preted [20]. Moreover, several research studies have shown that

adversarial examples are uncommon and unlikely to occur in many

fields [19], such as in the medical one. Hence, it is preferable to

give more attention to natural input perturbations, which are more

probable to occur and are domain-specific. In particular, inputs sub-

ject to natural alterations are different from the original ones, due

to input acquisition errors or unexpected environmental conditions.

The desired property of the NNs is to keep the correct output even

when inputs are altered.

In this paper, we propose a novel approach for evaluating the

robustness of BNNs, incorporating uncertainty into the classifica-

tion process by introducing the concept of unknown predictions. In
this way, uncertainty can be exploited by the system to prevent

taking decisions when the BNN is not certain about its predictions

and, for example, it may require human users to intervene and take

the burden of the decision (e.g., collaborative AI ). Our approach
evaluates the robustness of BNNs against natural input alterations

and builds upon the framework introduced in [2], extending its

application from deterministic ANNs to BNNs. With the proposed

approach, in this paper, we aim to determine whether BNNs are

more robust than standard NNs and if the utilization of uncertainty
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can enhance their robustness. Additionally, we propose a compre-

hensive evaluation framework for BNNs that takes into account

both predictive correctness and uncertainty.

In this study, we apply the proposed framework to a Bayesian

Multilayer Perceptron (MLP) specifically designed for the classifica-

tion task on the MNIST dataset. We then compare its performance

with that of a standard deterministic MLP with the same structure.

Our experiments show that the two networks demonstrate simi-

lar robustness when assessed through a deterministic robustness

evaluation process. However, when the uncertainty is considered

during classification, the BNN exhibits higher robustness. This un-

derscores that adopting BNNs and considering their uncertainty

can enhance both the performance and safety of the systems when

the presented approach is employed in safety-critical domains.

The remainder of this paper is structured as follows. In Sect. 2,

we provide an overview of BNNs, the uncertainty they model, and

how they can be used to perform classification tasks. Moreover,

we introduce the notion of input alterations used in the robust-

ness analysis process. Following that, Sect. 3 and Sect. 4 detail the

contributions made in this work. In the former, we delve into the

classification using uncertainty, introducing the concept of inde-

cision and extending the definition of accuracy by including the

number of unknown samples. In the latter, we extend the definition

of robustness proposed in [4], by adapting it to BNNs and including

the number of unknown predictions for a more comprehensive

assessment. Moving forward, in Sect. 5, we investigate whether

the approach in Sect. 3 can enhance the robustness of the system

embedding the BNN, using the robustness measures detailed in

Sect. 4. Lastly, Sect. 6 provides a review of related works and Sect. 7

concludes the paper.

2 BACKGROUND
In this section, we first start by presenting the concepts of BNNs.

Then, we delve into the uncertainty modeling, both aleatoric and

epistemic. Finally, we introduce the classification problem, together

with the definition of accuracy, and we give an intuition of what

an input alteration is.

2.1 Bayesian Neural Networks
This section gives a brief description of BNNs in order to understand

the main differences with standard NNs. A BNN is the result of

the Bayesian approach applied to a standard NN, which introduces

stochasticity [13]. In general, the goal of a standard NN is to find a

function 𝑦 = 𝑓W (𝑥) that maps input x and output y, where W are

the parameters of the network. In a standard NN, the parameters

W are found during the training and are fixed point estimations.

In a BNN, instead, the parametersW are considered to be random

variables, and the training is done through Bayesian inference. This

modeling strategy introduces stochasticity, meaning that at each

prediction a sampling on the weights’ distribution is performed.

This allows multiple models 𝑓W, depending on the weights sam-

pled, with a probability distribution 𝑝 (W). The output can thus be

modeled as y = 𝑓W (𝑥) + 𝜖 , where 𝜖 is a random noise indicating

that 𝑓W is only an approximation of the real mapping function.

Therefore, a BNN can be defined as any standard NN where

the weights are assumed to be random variables and trained using

Bayesian inference. Consequently, the output of the network also

becomes a random variable. This allows for modeling the output

using a probabilistic distribution.

During the training process, given a prior distribution on the

weights and a training set 𝐷 , the posterior is computed using the

Bayes’ theorem:

𝑝 (w|𝐷) = 𝑝 (𝐷 |w) · 𝑝 (w)
𝑝 (𝐷) (1)

Through the use of a prior distribution over the weights, it is

possible to incorporate prior knowledge into the model. However,

calculating the posteriormay be challenging, as the term 𝑝 (𝐷) could
result in complex integrals that are computationally intractable.

2.1.1 Inference algorithms.
To overcome the complexity of integral computation, two main ap-

proaches are commonly used: Markov Chain Monte Carlo (MCMC),

which is a sampling technique, and variational inference, which
aims to provide an approximation of the posterior.

Markov Chain Monte Carlo
Markov Chain Monte Carlo (MCMC) is a popular family of algo-

rithms that allows sampling from complex probability distribu-

tions [15]. While MCMC algorithms are powerful with exact poste-

rior distributions, they face limitations in terms of scalability. As

the size of the model grows, applying MCMC becomes increasingly

computationally expensive and, in some cases, infeasible.

Variational inference
This set of techniques consists in finding the optimal approximation

for the desired distribution [5]. This method introduces a distribu-

tion, referred to as the variational distribution, which is parame-

terized by a set of parameters. The goal is to learn the parameter

values in a way that the variational distribution approximates the

exact posterior. Essentially, the inference is reformulated as an op-

timization problem, aiming to minimize the disparity between the

variational distribution and the true posterior distribution. This

optimization process enhances the scalability and computational

efficiency of variational inference compared to traditional MCMC

methods. In the realm of ML, a common choice employed is the

mean-field variational family [10]. This last inference algorithm is

selected for this study due to its adequacy for our purposes and

computational efficiency.

2.1.2 Uncertainty modeling.
The main advantage of using BNNs lies in the possibility to model

the uncertainty, which can come both from the data or from the

model itself.

Aleatoric uncertainty
Aleatoric uncertainty, also known as data uncertainty, refers to the

inherent stochasticity present in the process being modeled with a

BNN. This kind of uncertainty emerges from noisy and ambiguous

data points. It represents an error that cannot be eliminated even

with the addition of more data [12]. This type of uncertainty can be

interpreted as the network’s knowledge about a specific input: when

a data point is very different from the ones used during training,

the network would provide a prediction with higher uncertainty.

Epistemic uncertainty
Epistemic uncertainty, also referred to as model uncertainty, repre-

sents the uncertainty in the model parameters. Within the context
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of BNNs, epistemic uncertainty captures the uncertainty in the

model structure and architecture. This type of uncertainty can be

reduced by acquiring more data or by employing a different model

architecture. It can also be used for assessing the model quality.

2.1.3 Classification with BNNs.
In this work, we analyze the scenario of classification with BNNs.

The BNN classifier’s predicted output undergoes the same pro-

cess as a standard NN. The network generates as output an N-

dimensional vector 𝑝 , where N represents the number of classes.

The predicted class is determined as 𝐶 (𝑑) = argmax (𝑝). Notably,
due to the probabilistic nature of BNNs, the vector 𝑝 is derived by

averaging multiple predictions for the same input, expressed as:

𝑝 =
1

𝑇

𝑇∑︁
𝑡=1

𝑓W𝑡 (𝑥)

where w𝑡 epresents the weight samples at the 𝑡𝑡ℎ prediction,

and 𝑇 is the number of predictions performed for the same input 𝑥 .

This averaging approach ensures a more stable output.

As for more classical deterministic NN classifiers, the correctness

of a BNN classifier can be assessed through the accuracy.

Definition 1 (Accuracy). Let𝐶 be a classifier and 𝐷 a set of inputs.

The accuracy of 𝐶 on 𝐷 is defined as:

𝑎𝑐𝑐 (𝐶, 𝐷) = ∥𝑑 ∈ 𝐷 |𝐶 (𝑑) = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐿𝑎𝑏𝑒𝑙 (𝑑)∥
∥𝐷 ∥

where𝐶 (𝑑) represents the classification output for the input 𝑑 , and

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐿𝑎𝑏𝑒𝑙 (𝑑) gives the correct label for the input 𝑑 .

Intuitively, the accuracy measures how many samples in 𝐷 are

correctly classified w.r.t. the total number of samples. In this study,

the accuracy will serve as a quality metric for evaluating the classi-

fier. Specifically, we will introduce a framework that enables the

selection of a target accuracy value against which the robustness is

to be assessed. The specified value can be seen as the minimum ac-

ceptable accuracy, and its choice is based on the user’s requirements

and the criticality of the task.

2.2 Input alterations
As in other previous works investigating the robustness of NN clas-

sifiers [2], in this paper we consider only real-world alterations that
can affect the network’s performance. In particular, an alteration
can be defined as follows.

Definition 2 (Alteration). An alteration of type A of an input t
is a transformation of t that mimics the possible effect on t when
a problem occurs in reality. The range of plausible alterations of

type A is identified as [𝐿𝐴,𝑈𝐴]. Given a dataset 𝐷 , 𝐷𝐴𝑖
denotes the

set obtained by altering all the data in 𝐷 with an alteration of type

A with level 𝑖 ∈ [𝐿𝐴,𝑈𝐴]. The range of plausible alterations must

be defined in a manner guaranteeing the existence of a level 𝑢 for

which 𝐷𝐴𝑢 = 𝐷 , signifying the absence of alteration.

Considering real-world scenarios, e.g., when images are given

to a classifier, examples of alterations may be blur, zoom, Gaussian

noise, etc. In general, alterations can happen with different prob-

abilities that depend on the alteration level. Therefore, we model

this phenomenon by defining an alteration probability.

Definition 3 (Alteration probability). Let 𝐴 be an alteration. 𝑝𝐴
identifies the probability distribution of the alteration level having

as support the interval [𝐿𝐴,𝑈𝐴].

In practice, one may not know a priori the probability of each

level of alteration. For this reason, the alteration probability can

also serve as a tool to assign greater importance to certain alteration

levels compared to others. An example of alteration probability is

the uniform one: this distribution assigns equal importance to all

alteration levels. Formally:

𝑝𝐴 (𝑖) =


1

𝑈𝐴 − 𝐿𝐴
, 𝑓 𝑜𝑟 𝐿𝐴 ≤ 𝑖 ≤ 𝑈𝐴

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3 CLASSIFICATION USING UNCERTAINTY
As previously introduced, BNNs allow for obtaining probability

distribution as outputs modeling the uncertainty of the prediction.

In this section, we leverage this uncertainty and we consider it dur-

ing the classification process. The classification using uncertainty

estimated by a BNN empowers the classifier from making wrong

decisions, since only “certain” predictions will be considered valid.

The idea is to establish a threshold, andwhenever the uncertainty

surpasses this threshold, the system will output an unknown state-

ment. Specifically, aleatoric uncertainty is employed as quantity to

be kept under a defined threshold due to its closer association with

the data, making it more appropriate. The threshold value should

be proportional to the desired confidence in the predictions. In our

investigation, we define the threshold using linear interpolation

between the maximum and minimum uncertainty levels, formally:

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = maxUnc ∗ (1 − 𝛼)

where𝑚𝑎𝑥𝑈𝑛𝑐 is the maximum uncertainty that can occur (in most

cases, it can be considered 100%) in the specific application and

𝛼 ∈ [0, 1] is the confidence level. The maximum level of aleatoric

uncertainty is reached by considering the most uncertain scenario,

wherein all values in the output vector are equal. On the other

side, the minimum uncertainty achievable is 0, as it is always a

non-negative quantity. This minimum is reached when the output

vector contains only zero values, except for one, since this means

that the network is sure of its decision. The use of this threshold

allows us to introduce the concept of indecision, defined as follows.

Definition 4 (Indecision). Let𝐶 be a classifier and𝐷 a set of inputs.

The indecision of 𝐶 on 𝐷 is defined as:

𝑖𝑛𝑑 (𝐶, 𝐷) = ∥𝑑 ∈ 𝐷 |𝐶 (𝑑) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝐿𝑎𝑏𝑒𝑙 ∥
∥𝐷 ∥

where 𝐶 (𝑑) represents the classification output for the input 𝑑 .

Intuitively, this quantity measures the portion of samples in𝐷 for

which𝐶 is not able to give a “certain” classification w.r.t. to the total

number of samples. To take into account the number of unknown

predictions of a BNN, the definition of accuracy previously given

in Def. 1 is modified to exclude from its computation the samples

on which the BNN is indecisive.

Definition 5 (Accuracy in the presence of indecision). Let 𝐶 be a

classifier and 𝐷 a set of inputs. The accuracy of 𝐶 on 𝐷 when the
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indecision is considered is defined as:

𝑎𝑐𝑐 (𝐶, 𝐷) = ∥𝑑 ∈ 𝐷 |𝐶 (𝑑) = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐿𝑎𝑏𝑒𝑙 (𝑑)∥
∥𝐷 ∥ − ∥𝑑 ∈ 𝐷 |𝐶 (𝑑) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝐿𝑎𝑏𝑒𝑙 ∥

where𝐶 (𝑑) represents the classification output for the input 𝑑 , and

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐿𝑎𝑏𝑒𝑙 (𝑑) gives the correct label for the input 𝑑 .

Excluding unknowns aims to emphasize the network accuracy

in its actual predictions. This choice can be justified, particularly in

critical applications like medical diagnosis. In such cases, receiving

an unknown statement and seeking support from a (human) doctor

is preferable to making an inaccurate decision. Def. 5 formally

captures this concept, evaluating the BNN only on predictions that

are not considered as unknown and are thus potentially critical.

4 ROBUSTNESS MEASURE
In Arcaini et al. [2], a novel approach to evaluate the robustness

of a CNN classifier has been presented. Our study extends this ap-

proach to BNNs to take into account uncertainty. Indeed, exposing

a network to altered images typically leads to a reduction in overall

accuracy. The concept here is to measure the robustness by evaluat-

ing howmuch the accuracy decreases when the network encounters

perturbed data due to some alteration (see Sect. 2.2). Intuitively, a

lower reduction in accuracy indicates higher robustness.

To articulate this, we introduce the notion of tolerance, which
quantifies the reward for maintaining an acceptable performance.

This performance can be measured through accuracy or any other

quality metric, such as precision, recall, or F1-score. Therefore,

given a quality metric, we need to define the worst-case accepted

value and tolerate differently every value that is “better” than the

worst accepted one.

Definition 6 (Tolerance). Within the context of classification,

given a quality metric 𝑥 and the minimum accepted threshold 𝑡ℎ,

the tolerance is a function denoted as 𝑡𝑜𝑙 (𝑥, 𝑡ℎ), such that:{
0 ≤ 𝑡𝑜𝑙 (𝑥, 𝑡ℎ) ≤ 1, 𝑓 𝑜𝑟 𝑥 ≥ 𝑡ℎ

𝑡𝑜𝑙 (𝑥, 𝑡ℎ) = 0, 𝑓 𝑜𝑟 𝑥 < 𝑡ℎ

Depending on the case-specific requirements, different functions

may be used. One typical example of tolerance is the linear toler-
ance, that can be expressed as:

𝑡𝑜𝑙 (𝑥, 𝑡ℎ) = 𝑚𝑎𝑥 (𝑚𝑖𝑛(𝑥, 𝑥𝑚𝑎𝑥 ) − 𝑡ℎ, 0)
𝑥𝑚𝑎𝑥 − 𝑡ℎ

This function is suitable when it is necessary to be above the thresh-

old with some margin. The denominator is added for normalization,

𝑥𝑚𝑎𝑥 represents the value of 𝑥 with maximum tolerance. In general,

it can be the maximum value that 𝑥 can assume, but lower values

may also make sense. In other words, 𝑥𝑚𝑎𝑥 defines the baseline

with respect which to evaluate the robustness.

Following the same idea, it is possible to define a way to penalize

instances where the performance declines to unacceptable levels.

Definition 7 (Penalization). Within the context of classification,

given a quality metric 𝑥 and the minimum accepted threshold 𝑡ℎ,

the penalization is a function denoted as 𝑑𝑒𝑝 (𝑥, 𝑡ℎ), such that:{
0 ≤ 𝑑𝑒𝑝 (𝑥, 𝑡ℎ) ≤ 1, 𝑓 𝑜𝑟 𝑥 ≤ 𝑡ℎ

𝑑𝑒𝑝 (𝑥, 𝑡ℎ) = 0, 𝑓 𝑜𝑟 𝑥 > 𝑡ℎ

The two previously presented functions are intended to sepa-

rately formulate strategies for rewarding and penalizing the per-

formance trend. Specifically, the tolerance function operates solely

within the range where performance remains acceptable, whereas

the penalization function yields positive values when performance

falls below acceptable levels.

4.1 Robustness without uncertainty
Given the previous definitions, we now introduce the definition

of robustness against an alteration 𝐴. In particular, given 𝐴, the

robustness takes into account the probability of each alteration

level, the tolerance of the system to the decrease in accuracy, and

the penalization for unacceptable accuracy values.

Definition 8 (Robustness). Let 𝐶 be a classifier, 𝑡𝑜𝑙 be a tolerance

function, 𝑑𝑒𝑝 be a penalization function, and 𝑎𝑐𝑐 (𝐶, 𝐷𝐴𝑖 ) be the
accuracy of the classifier 𝐶 over the input dataset 𝐷 when the

alteration 𝐴 is applied with level 𝑖 . The robustness robA (𝐶, 𝐷) ∈
[0, 1] of a classifier𝐶 w.r.t. alteration of type A in the range [𝐿𝐴,𝑈𝐴]
on a dataset 𝐷 is formally defined as:

robA (𝐶, 𝐷) =
∫ 𝑈𝐴
𝐿𝐴
[𝑡𝑜𝑙 (𝑎𝑐𝑐 (𝐶,𝐷𝐴𝑖 ),Θ)−𝑑𝑒𝑝 (𝑎𝑐𝑐 (𝐶,𝐷𝐴𝑖 ),Θ) ] ·𝑝𝐴 (𝑖 ) 𝑑𝑖

2
+ 1

2

where Θ is a threshold referring to minimum accuracy accepted,

𝑝𝐴 is the probability distribution of the alteration levels, and
1

2
is a

regularization factor added to make the robustness always in [0, 1].

This formula is derived from [4] and has been adjusted to incor-

porate penalization terms. Intuitively, the robustness is calculated as

the sum (i.e., integral) of the difference between the reward (i.e., the

𝑡𝑜𝑙 function) and the penalization (i.e., the 𝑑𝑒𝑝 function) assigned

to the results obtained when a defined level of alteration is applied

to all input samples, with weighting based on the probability of the

considered alteration level.

4.2 Robustness evaluation using uncertainty
The presented approach relies solely on accuracy as the quality

metric. However, when dealing with uncertainty, this may result in

a non-comprehensive metric. For example, using the definition of

accuracy in Def. 5, a network that outputs only unknown values

would achieve 100% accuracy. Although the robustness formula

in Def. 8 would produce a result of 1, indicating high robustness,

the network is essentially ineffective. These observations led to the

concept of robustness against indecision, defined as follows:

Definition 9 (Robustness against indecision). Let 𝐶 be a classifier,

𝑡𝑜𝑙 a tolerance function, and 𝑑𝑒𝑝 a penalization function. The ro-

bustness against indecision robAInd (𝐶, 𝐷) ∈ [0, 1] of a classifier 𝐶
w.r.t. alteration of type A in the range [𝐿𝐴,𝑈𝐴] on a dataset 𝐷 is

defined formally as:

robAInd (𝐶, 𝐷) =
∫ 𝑈𝐴
𝐿𝐴
[𝑡𝑜𝑙 (1−𝑖𝑛𝑑 (𝐶,𝐷𝐴𝑖 ),𝛾 )−𝑑𝑒𝑝 (1−𝑖𝑛𝑑 (𝐶,𝐷𝐴𝑖 ),𝛾 ) ] ·𝑝𝐴 (𝑖 ) 𝑑𝑖

2
+ 1

2

where 𝛾 is a threshold referring to minimum accepted ratio of

“certain” predictions, 𝑝𝐴 is the probability distribution of the alter-

ation levels and 𝑖𝑛𝑑 (𝐶, 𝐷𝐴𝑖 ) is the unknown ratio of 𝐶 evaluated

on 𝐷𝐴𝑖
.
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This new definition has a similar structure to the one in Def. 8.

Nonetheless, in this instance, the robustness metric assumes a dif-

ferent meaning. It pertains to the network’s capacity to provide

“certain” predictions even in the presence of altered input data.

The metrics introduced in Def. 8 and Def. 9 can be employed

in conjunction to achieve a more comprehensive evaluation, by

considering both accurate results and only “certain” predictions,

when uncertainty is used in the classification process.

4.3 Effectiveness
The inclusion of uncertainty into the robustness evaluation pro-

cess is crucial. However, sometimes it is more practical to have a

single comprehensive metric that incorporates all the necessary

information. Following the approach presented in Sect. 3, when un-

certainty is used to compute the accuracy, the two primary quality

metrics used are accuracy and indecision. In this study, we propose

to combine both metrics to derive a complete, singular metric called

effectiveness and defined as follows.

Definition 10 (Effectiveness). Let 𝐶 be a classifier, 𝐷 an input

dataset, and 𝑎𝑐𝑐 (𝐶, 𝐷) and 𝑖𝑛𝑑 (𝐶, 𝐷), respectively, the accuracy

and the indecision of the classifier 𝐶 over 𝐷 . The effectiveness of 𝐶
on 𝐷 is:

𝑒 𝑓 𝑓 (𝐶, 𝐷) = 𝑎𝑐𝑐 (𝐶, 𝐷) · (1 − 𝑖𝑛𝑑 (𝐶, 𝐷))
𝑖𝑛𝑑 (𝐶, 𝐷) + 1

Intuitively, this definition implies that a network that outputs

exclusively unknown values is equally ineffective as one that solely

produces incorrect predictions. Furthermore, it is directly propor-

tional to accuracy and inversely proportional to indecision. As a

result, it quantifies how much the network is effective in its predic-

tions. This metric exhibits the following properties:

• When the accuracy is zero, the effectiveness is zero;

• When the indecision is one, the effectiveness is zero;

• When the indecision is zero, the effectiveness reflects the

accuracy, i.e., 𝑒 𝑓 𝑓 (𝐶, 𝐷) = 𝑎𝑐𝑐 (𝐶, 𝐷);
• For a fixed accuracy value, the lower the indecision value,

the higher the effectiveness. Thus, given two networks with

the same accuracy, it penalizes the most uncertain one.

With this new quality metric, it becomes possible to derive a com-

prehensive robustness metric, evaluating indecision and accuracy

at the same time. This can be achieved by using the effectiveness

as the quality metric in the integral presented in Def. 11. We refer

to this new comprehensive metric as augmented robustness.

Definition 11 (Augmented robustness). Let 𝐶 be a classifier, 𝑡𝑜𝑙 a

tolerance function, and𝑑𝑒𝑝 a penalization function. The augmented

robustness robAAug (𝐶, 𝐷) ∈ [0, 1] of a classifier 𝐶 w.r.t. alteration of

type A in the range [𝐿𝐴,𝑈𝐴] on a dataset 𝐷 is defined formally as:

robAAug (𝐶, 𝐷) =
∫ 𝑈𝐴
𝐿𝐴
[𝑡𝑜𝑙 (𝑒 𝑓 𝑓 (𝐶,𝐷𝐴𝑖 ),𝛽 )−𝑑𝑒𝑝 (𝑒 𝑓 𝑓 (𝐶,𝐷𝐴𝑖 ),𝛽 ) ] ·𝑝𝐴 (𝑖 ) 𝑑𝑖

2
+ 1

2

where 𝛽 is a threshold referring to minimum effectiveness accepted

and 𝑝𝐴 is the probability distribution of the alteration levels.

In this definition, selecting the 𝛽 parameter might be challenging

as it is less intuitive. One possible approach for its determination is

to independently choose the parameters Θ in Def. 8 and 𝛾 in Def. 9,

and then set 𝛽 = Θ
𝛾+2 · 𝛾 .

5 EXPERIMENTAL EVALUATION
In this section, we present the results of the robustness analysis con-

ducted on our developedmodels and we draw comparisons between

them. Specifically, we define a set of plausible alterations, inspired

by the work of Arcaini et al. [2]. This enables us to compute the

accuracy on the altered data and subsequently to compute the ro-

bustness scores introduced in Sect. 4. Our experimental evaluations

aim to answer to the following research questions (RQs):

RQ1 Are BNNs, used in a deterministic manner, more robust than

standard NNs?

RQ2 Can the robustness of BNNs be improved by incorporating

uncertainty into the classification process?

RQ3 Is relying only on the accuracy adequate for evaluating BNNs

when uncertainty is employed?

5.1 Case Study
In the following experiments, we will use the Modified National

Institute of Standards and Technology (MNIST) dataset [17], which

is a popular benchmark for image classification tasks.

To assess the proposed methods, we compare two networks with

identical architecture: a standard NN and a BNN. The performance

of the standard NN will serve as a benchmark, providing a refer-

ence against which the performance of the BNN can be compared.

The architecture chosen in this work is a Multilayer Perceptron

(MLP). Although for image processing tasks Convolutional Neu-

ral Networks (CNNs) are a better choice [1], the MLP has a more

understandable, simple, and intuitive structure. Indeed, during the

design phase, CNNs require the specification of more hyperparam-

eters such as the number of filters, their dimensions, stride, and

padding. Although these settings enhance CNNs’ effectiveness in

handling grid-scale data, they simultaneously introduce complexity

in model interpretation. Consequently, CNNs are more sensitive

to the choice of hyperparameters and the evaluation results may

be influenced by this selection. It is important to note that the net-

work architecture does not impact the generality of the applied

approaches. Future work studies may explore alternative architec-

tures for further investigations with the same framework. Both

networks have three fully connected layers, with 784 neurons in

the input layer, 100 in the hidden layer, and 10 in the output layer.

However, in terms of trainable parameters, the standard NN has

79, 510 parameters, whereas the BNN has 161, 040 trainable param-

eters, approximately double the count. This higher number is due

to the weight modeling using normal distributions. Consequently,

for each connection, two parameters are needed: the mean and the

variance of the distribution.

5.2 Alterations
The alterations selected in the experiments are general perturba-

tions that could potentially arise during image acquisition. It is

important to note that networks used in this work are designed for

research purposes and are not intended for a specific application.

Consequently, a precise domain analysis prior to the experiments

was not feasible. Nevertheless, we took care to select general and

plausible perturbations to assess the validity of our approach.

For each alteration, we define an alteration range [𝐿𝐴,𝑈𝐴], in
which we uniformly sample 21 alteration levels to evaluate the
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Table 1: Alterations used for robustness analysis

Alteration type Alteration level [𝐿𝐴,𝑈𝐴]
Gaussian noise (GN) Variance noise [0, 0.20]

Blur (B) Blurring radius [0, 2]
Brightness variation (BV) Brightness % [−0.5, 0.5]
Horizontal translation (HT) Pixel number [−20, 20]
Vertical translation (VT) Pixel number [−20, 20]
JPEG Compression (JC) Compression level [0, 100]

Zoom (Z) Zoom level [1, 2]

accuracy. Tab. 1 shows the alterations chosen for the robustness

analysis with their respective ranges.

5.3 Experimental setup
Initially, for both models, the robustness computation follows Def. 8

and we do not consider any uncertainty in our evaluation. In these

experiments, the tolerance function is linear, with a threshold Θ =

0% and𝑚𝑎𝑥𝐴𝑐𝑐 set to the nominal accuracy (i.e., the accuracy of

the network when no alteration is applied to the input samples).

The choice of the minimum accepted accuracy Θ = 0% aims to yield

independent results across different application domains, but this

does not undermine the generality of our approach. With Θ = 0%,

no penalization is applied, resulting in a metric ranging from 0.5 in

the worst-case scenario to 1 in the best-case scenario. This metric

is computed for both models as it employs only the accuracy.

For the BNN, we conduct a further analysis. Specifically, for each

alteration, we perform the classification without and with aleatoric

uncertainty to investigate whether there is a performance improve-

ment. The threshold to generate unknown predictions is calculated

with a confidence level of 𝛼 = 0.80, and aleatoric uncertainty is

computed using the approach presented in [14]. Subsequently, we

compute the robustness against indecision, as defined in Def. 9, by

using a linear tolerance and a threshold𝛾 = 0%. Finally, we compute

the augmented robustness, as defined in Def. 11.

Additionally, to ensure a fair comparison between various types

of alterations and robustness metrics, we maintain a uniform prob-

ability distribution of alteration levels for all alteration types. More-

over, in the case of BNNs, given their probabilistic nature, we per-

form ten predictions for each input sample.

5.4 Evaluation results
Initially, in this section, we compare the robustness of the BNN

with the one of the standard NN without employing uncertainty

in the classification process. Subsequently, we integrate the un-

certainty into the classification to assess whether this technique

could improve the BNN’s robustness compared to the deterministic

scenario.

RQ1: Robustness analysis without uncertainty.
Alg. 1 reports the process we have followed to perform the robust-

ness analysis without uncertainty. Initially, the process starts by

sampling all alteration steps within the alteration interval (line 1).

Subsequently, for each alteration level, the algorithm computes the

accuracy over the modified input data set. During this procedure,

the input data set is altered by applying the chosen alteration at

the alteration level at that step (line 3). Subsequently, by using an

Algorithm 1 Robustness evaluation algorithm without uncertainty

Require: image_data, the test set of images used to evaluate the network

Require: labels, the true labels for the image_data
Require: model, the model trained to classify image_data
Require: alteration, the applied alteration

Require: alt_range, the identified alteration range [𝐿𝐴,𝑈𝐴 ]
Require: n, the number of levels to uniformly sample from the alteration range

Require: alt_prob, the probability distribution of the alteration to be applied

Require: tol, the tolerance function to use

Require: dep, the penalization function to use

Ensure: rob, the computed robustness value

1: alt_steps← 𝑠𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑛𝑔𝑒 (𝐿𝐴,𝑈𝐴, 𝑛)
2: for all 𝑙 ∈ alt_steps do ⊲ For each level of alteration

⊲ Apply the alteration level to all the image_data with level 𝑙

3: 𝑎𝑙𝑡𝑒𝑟𝑒𝑑_𝑖𝑚𝑎𝑔𝑒_𝑑𝑎𝑡𝑎 ← 𝑎𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (image_data, 𝑙 )
4: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ←𝑚𝑜𝑑𝑒𝑙 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑎𝑙𝑡𝑒𝑟𝑒𝑑_𝑖𝑚𝑎𝑔𝑒_𝑑𝑎𝑡𝑎)
5: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦 (𝑜𝑢𝑡𝑝𝑢𝑡𝑠 )
6: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠 )
7: 𝑠𝑡𝑒𝑝_𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑙 )
8: 𝑎𝑐𝑐_𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
9: end for
10: rob← Robustness(acc_list, step_list, tol, dep, alt_steps)
11: return rob

Table 2: Robustness of the two NNs w.r.t. natural alterations

Alteration GN B BV HT VT JC Z Avg.

robA std. NN [%] 97.40 96.01 99.88 81.03 84.12 62.62 74.67 85.10

robA BNN [%] 96.81 93.31 99.88 85.63 86.25 62.08 77.31 85.90

altered input data set, the NN is tasked with predicting the classes

to which all inputs belong (from line 4 to line 5). The accuracy over

the whole altered input data set is calculated at line 6. Lastly, using

all accuracy values computed for each alteration level, the algo-

rithm determines the robustness of the NN (line 10) by applying

the formula as in Def. 8.

We have executed this algorithm for all the alterations specified

in Tab. 1, and the obtained results are summarized in Tab. 2. Notably,

both networks exhibit similar performance across all alterations.

Interestingly, the lack of robustness to translation is consistent with

expectations, considering one of the inherent limitations of MLPs,

namely their inefficiency in handling translation and grid data [1].

Consequently, the Bayesian approach does not appear to overcome

the structural limitations of the network’s architecture.

Answer to RQ1: Our experiments have shown that, in general,
using a BNN deterministically does not lead to any significant
robustness enhancement. Moreover, we have shown that the BNN
exhibit the same architectural limitations of the standard NN.

RQ2 and RQ3: Robustness analysis using uncertainty.
To include the uncertainty in the classification process, we use

Alg. 2 which has the same structure as Alg. 1, except that the

classification can output unknown statements. In particular, the

main differences between the two procedures lie in line 5, where

the output probabilities are compared with the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to define

which samples are classified as “unknown”, and in line 7 and 8,

where the indecision and effectiveness, used to compute robAInd and

robAAug , are calculated.
The evaluation results are summarized in Table 3. In addition to

the robustness metrics, we also report the increase in robustness

Δ𝑟𝑜𝑏 w.r.t. the deterministic case reported in Table 2.



A Framework for Including Uncertainty in Robustness Evaluation of Bayesian Neural Network Classifiers DeepTest ’24, April 20, 2024, Lisbon,Portugal

Algorithm 2 Robustness evaluation algorithm using uncertainty

Require: image_data, the test set of images used to evaluate the network

Require: labels, the true labels for the image_data
Require: model, the model trained to classify image_data
Require: alteration, the applied alteration

Require: alt_range, the identified alteration range [𝐿𝐴,𝑈𝐴 ]
Require: n, the number of levels to uniformly sample from the alteration range

Require: alt_prob, the probability distribution of the alteration to be applied

Require: tol, the tolerance function to use

Require: dep, the penalization function to use

Require: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the desired threshold for “certain” predictions

Ensure: rob, the computed robustness value

Ensure: rob_ind, the computed robustness against indecision value

Ensure: rob_aug, the computed augmented robustness value

1: alt_steps← 𝑠𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑛𝑔𝑒 (𝐿𝐴,𝑈𝐴, 𝑛)
2: for all 𝑙 ∈ alt_steps do ⊲ For each level of alteration

⊲ Apply the alteration level to all the image_data with level 𝑙

3: 𝑎𝑙𝑡𝑒𝑟𝑒𝑑_𝑖𝑚𝑎𝑔𝑒_𝑑𝑎𝑡𝑎 ← 𝑎𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (image_data, 𝑙 )
4: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ←𝑚𝑜𝑑𝑒𝑙 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑎𝑙𝑡𝑒𝑟𝑒𝑑_𝑖𝑚𝑎𝑔𝑒_𝑑𝑎𝑡𝑎)
5: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦𝑈𝑠𝑖𝑛𝑔𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝑜𝑢𝑡𝑝𝑢𝑡𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 )
6: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠 )
7: 𝑖𝑛𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐼𝑛𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠 )
8: 𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑖𝑛𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
9: 𝑠𝑡𝑒𝑝_𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑙 )
10: 𝑎𝑐𝑐_𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
11: 𝑖𝑛𝑑_𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑖𝑛𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
12: 𝑒 𝑓 𝑓 _𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 )
13: end for
14: rob← Robustness(acc_list, step_list, tol, dep,alt_steps)
15: rob_ind← RobustnessIndecision(ind_list, step_list, tol, dep,alt_steps)
16: rob_aug← RobustnessAugmented(eff_list, step_list, tol, dep,alt_steps)
17: return rob, rob_ind, rob_aug

It is noteworthy that the increase is always positive, meaning

that leveraging uncertainty enables the attainment of more robust

models. However, this enhanced robustness does not come without

trade-offs, as there is always a cost associated with the number of

unknown predictions. For instance, in the case of GN, the increase in

robustness (ΔrobA = 1.02% in Tab. 3) comes with good robustness

against indecision (96.24%). Depending on specific user require-

ments, this trade-off may or may not be acceptable as someone

may prefer to have a higher increase in robustness at the expense

of a lower robustness against indecision. The same situation does

not apply uniformly to translation, where although there is a sig-

nificant increase in robustness (8.82% for HT and 5.82% for VT)

but at the expense of lower robustness against indecision (around

90%). Therefore, we can infer that, in general, the developed BNN

exhibits greater robustness to GN compared to translation.

All these observations are encapsulated in our novel metric

robAAug , which essentially combines robustness concerning both

accuracy and indecision. While the 𝑟𝑜𝑏 metric alone may suggest

that the network is robust at a similar level to GN, B, and BV, robAAug
values indicate that the best performance is achieved for BV, where

a high robustness is accomplished along with an equally high level

of robAInd . rob
A
Aug is particularly valuable when comparing networks

with similar robustness and can serve as a selection criterion. Fur-

thermore, it proves beneficial in applications where it is desired

that robustness comes with a low degree of unknown predictions.

Answer to RQ2:We have shown that leveraging uncertainty in the
classification process can successfully identify ambiguous situations,
thereby preventing wrong decisions. This inherently contributes to
making BNNs more robust compared to standard NNs.

Table 3: Robustness using uncertainty w.r.t. the analyzed
alterations

Alteration GN B BV HT VT JC Z Avg.

robA [%] 98.42 96.16 99.97 89.85 89.94 75.33 79.50 89.88

robAInd [%] 96.24 91.60 98.90 89.93 90.65 76.55 89.01 90.41

robAAug [%] 92.17 85.90 98.13 77.91 78.63 58.54 72.09 80.48

ΔrobA [%] +1.02 +0.15 +0.09 +8.82 +5.82 +12.71 +4.83 +3.98

Answer to RQ3: Using accuracy alone is insufficient for a compre-
hensive evaluation of BNNs when uncertainty is used during classi-
fication. It is crucial to employ metrics that describe the network’s
performance in terms of uncertainty. In this study, we introduced
the concepts of indecision in Def. 4 and effectiveness in Def. 10.

6 RELATEDWORK
ANNs are nowadays commonly used in safety-critical tasks, and

thus, in the literature, a lot of effort has been spent on their vali-

dation. However, unlike classical software, in which the behavior

of the artifacts is known a priori and classical white-box testing

approaches can be applied, with NNs mainly empirical strategies

can be used [23]. In the last years, several attempts at testing NNs

have been carried on, especially by focusing on evaluating the

robustness of such systems. Most of the works are focused on as-

sessing the robustness of NN-based systems against adversarial

inputs [20, 24, 25, 27, 28], i.e., inputs designed to fool NN systems

by taking into account their internal structure. However, various

research studies have demonstrated that such adversarial input per-

turbations are not common in real-world scenarios [19]. Therefore,

there is a growing consensus on the importance of directing atten-

tion towards other more plausible scenarios to comprehensively

evaluate the actual robustness of an ANN [11, 22]. For this reason,

in [2], the authors introduced the concept of robustness against

natural alterations, which considers the domain-specific perturba-

tions more likely to occur in practice. This concept was initially

applied to CNNs, used for classification, and is further supported

by a dedicated Python library [3]. Following that, this definition of

robustness has been extended in [4] for NNs used as estimators.

In the context of BNNs, the problem of assessing the robustness

is conventionally approached in a probabilistic way. For example,

in [6], robustness is defined as the probability that, given a test

point, there exists a point within a bounded set such that the predic-

tion of the BNN differs between the two points. Instead, our paper

presents a distinctive approach by introducing the novel concept

of unknown predictions, a dimension that has not been explored in

the literature analyzing the robustness of BNNs so far. In contrast

to previous works, our focus is to investigate the implications of

unknown predictions on BNN robustness assessment. Finally, as for

more classical NNs, many researchers have focused on analyzing

the performance (e.g., the robustness) of BNNs when adversarial

attacks are performed [18, 21]. Nevertheless, as previously stated,

adversarial inputs are often unlikely in numerous critical applica-

tion domains, such as in the medical field. For this reason, our paper

focuses on more plausible and natural input alterations, reflecting

the practical constraints and requirements of critical applications.
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Our work builds upon the concept of incorporating uncertainty

into robustness evaluation thanks to the use of BNNs. Although

recent works, such as [14], frequently delve into exploring the

uncertainty outputted by BNNs, a notable gap in the literature

exists. Indeed, the integration of uncertainty into the robustness

assessment has not been widely studied. This is a key aspect of

our research, aiming to explore and leverage uncertainty estimates

provided by BNNs to obtain and assess more robust models.

7 CONCLUSIONS
This paper introduces the first approach for evaluating robustness

considering both prediction accuracy and uncertainty through the

novel indecision concept. Furthermore, we combine precision and

indecision in a new metric referred to as effectiveness. Our proposed
robustness definition, to be applied when inputs are subject to nat-

ural perturbations, enables independent expression of tolerance

and penalization of performance w.r.t. a specified threshold. Fur-

thermore, our definitions allow practitioners to obtain continuous

metrics (instead of using a yes/no metric), making it possible to

finely characterize the network’s performance. The experimental

assessment reveals that BNNs show a robustness level comparable

to that of standard NNs with the same architecture when they are

utilized conventionally. However, incorporating uncertainty into

the classification process has the potential to yield more robust

models. We believe that this approach could serve as a founda-

tional starting point toward the development of more robust and

autonomous artificial intelligence systems. It is noteworthy that

while this framework was developed using a BNN, its applicability

extends beyond, as it can be generalized for any machine learning

model that provides uncertainty estimations.

Limitations and Future Work. In our experimental evaluation, we

have used the simple MNIST case study in order to verify the feasi-

bility of our approach and to introduce the problem of robustness

estimation for BNNs. Indeed, this paper presents a preliminary at-

tempt to introduce uncertainty in robustness evaluation. However,

we are working on applying the same framework to a more complex

case study, to verify the scalability of the proposed approach and

its generalizability to other application scenarios and domains.

Incorporating uncertainty enhances classifier robustness is some-

what expected. Our definition of robustness is able to capture this.

However, we would like to work on assessing the usefulness of our

approach by discussing it with experts and by applying it to indus-

trial case studies. Additionally, we aim to investigate the possible

enhancement of BNN robustness through the adoption of existing

methods and techniques of robust training. In particular, we seek

to analyze changes in indecision when those methods are used. An-

other interesting aspect is to study whether a correlation between

“unknown” and incorrect predictions exists. This would provide

valuable insights into the network’s efficiency in making accurate

predictions.
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