
A Brief Intro to Scala
Informatica III

AA 19/20

Origin

• Started at 2001 by Martin Odersky at EPFL
Lausanne, Switzerland

• Scala 2.0 released in 2006

• Current version 2.12.4

• IDE (eclipse based) 4.7.0

• Twitter backend runs on Scala

– LinkedIn, Siemens, Sony, …

Scala

• Statically Typed

• Runs on JVM, full inter-op with Java

• Object Oriented

• Functional

• Dynamic Features

Scala is Practical

• Can be used as drop-in replacement for Java

– Mixed Scala/Java projects

• Use existing Java libraries

• Use existing Java tools (Ant, Maven, JUnit, etc…)

• Decent IDE Support (NetBeans, IntelliJ, Eclipse)

5

Java

• What’s wrong with Java?
– Verbose

• Too much of Thing thing = new Thing();

• Too much “boilerplate,” for example, getters and setters

– …

• What’s right with Java?
– Very popular

– Object oriented (mostly), which is important for large projects

– Strong typing (more on this later)

– The fine large library of classes

– The JVM! Platform independent, highly optimized

6

Scala is like Java, except when it isn’t

• Java is a good language, and Scala is a lot like it

• For each difference, there is a reason--none of the
changes are “just to be different”

• Scala and Java are (almost) completely interoperable
– Call Java from Scala? No problem!

– Call Scala from Java? Some restrictions, but mostly OK.

– Scala compiles to .class files (a lot of them!), and can be
run with either the scala command or the java command

• To understand Scala, it helps to understand the reasons
for the changes, and what it is Scala is trying to
accomplish

7

Consistency is good

• In Java, every value is an object--unless it’s a primitive
– Numbers and booleans are primitives for reasons of

efficiency, so we have to treat them differently (you can’t
“talk” to a primitive)

• In Scala, all values are objects. Period.
– The compiler turns them into primitives, so no efficiency is

lost (behind the scenes, there are objects like RichInt)

• Java has operators (+, <, ...) and methods, with
different syntax

• In Scala, operators are just methods, and in many cases
you can use either syntax

Differences with Java - basic

• Scala does not require semicolons to end statements.

• Value types are capitalized: Int, Double, Boolean instead of int, double, boolean.

• Parameter and return types follow, rather than precede as in C.

• Methods must be preceded by def.

• Local or class variables must be preceded by val (indicates an immutable
variable) or var (indicates a mutable variable).

• The return operator is unnecessary in a function (although allowed); the value of
the last executed statement or expression is normally the function's value.

• Instead of the Java cast operator (Type) foo, Scala uses foo.asInstanceOf[Type], or
a specialized function such as toDouble or toInt.

• Instead of Java's import foo.*;, Scala uses import foo._.

• Function or method foo() can also be called as just foo;

Scala is Concise

Type Inference

val sum = 1 + 2 + 3
val nums = List(1, 2, 3)
val map = Map("abc" -> List(1,2,3))

“capisce” il tipo di una espressione.

Statically typed lo stesso !

Nota: we use scala
worksheet

Explicit Types

val sum: Int = 1 + 2 + 3

val nums: List[Int] = List(1, 2, 3)

val map: Map[String, List[Int]] = ...

Higher Level

// Java – Check if string has uppercase character

boolean hasUpperCase = false;

for(int i = 0; i < name.length(); i++) {

if(Character.isUpperCase(name.charAt(i))) {

hasUpperCase = true;

break;

}

}

Higher Level

// Scala

val hasUpperCase = name.exists(_.isUpperCase)

Posso passare come argomento di una funzione una funzione

Funzione f Argomento di f

Less Boilerplate
// Java
public class Person {

private String name;
private int age;
public Person(String name, Int age) { // constructor

this.name = name;
this.age = age;

}
public String getName() { // name getter

return name;
}
public int getAge() { // age getter

return age;
}
public void setName(String name) { // name setter

this.name = name;
}
public void setAge(int age) { // age setter

this.age = age;
}

}

Less Boilerplate

// Scala

class Person(var name: String, var age: Int)

var: implicit
declaration

of field

Local or class variables must be preceded by val (indicates an
immutable variable) or var (indicates a mutable variable).

http://en.wikipedia.org/wiki/Immutable
http://en.wikipedia.org/wiki/Mutable

Less Boilerplate

// Scala

class Person(var name: String, private var _age:
Int) {

def age = _age // Getter for age

def age_=(newAge:Int) { // Setter for age

println("Changing age to: "+newAge)

_age = newAge

}

}

Variables and Values

// variable

var foo = "foo"

foo = "bar" // okay

// value

val bar = "bar"

bar = "foo" // nope

l-value vs r-value

18

null

• “I call it my billion-dollar mistake. It was the invention of the
null reference in 1965. At that time, I was designing the first
comprehensive type system for references in an object
oriented language (ALGOL W). My goal was to ensure that all
use of references should be absolutely safe, with checking
performed automatically by the compiler. But I couldn't resist
the temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last forty
years.”

--Tony Hoare

19

null in Scala

• In Java, any method that is supposed to return an object could
return null
– Here are your options:

• Always check for null

• Always put your method calls inside a try...catch

• Make sure the method can’t possibly return null

• Yes, Scala has null--but only so that it can talk to Java

• In Scala, if a method could return “nothing,” write it to return
an Option object, which is either Some(theObject) or None
– This forces you to use a match statement--but only when one is really

needed!

Esempio uso None

def toInt(in:String):Option[Int] = {

try {

Some(Integer.parseInt(in.trim))

} catch {

casee:NumberFormatException => None

}

}

21

Referential transparency

• In Scala, variables are really functions
– Huh?

• In Java, if age is a public field of Person, you can say:
david.age = david.age + 1;

but if age is accessed via methods, you would say:
david.setAge(david.getAge() + 1);

• In Scala, if age is a public field of Person, you can say:
david.age = david.age + 1;

but if Person defines methods age and age_=, you would say (the same!)
david.age = david.age + 1;

• In other words, if you want to access a piece of data in Scala, you don’t have to
know whether it is computed by a method or held in a simple variable
– This is the principle of uniform access

– Scala won’t let you use parentheses when you call a function with no parameters

Scala is Object Oriented
Scala is Functional

What is Multiparadigm Programming?

• Definition:

• A multiparadigm programming language provides “a
framework in which programmers can work in a variety
of styles, freely intermixing constructs from different
paradigms.” [Tim Budd]

• Programming paradigms:

• imperative versus declarative (e.g., functional, logic)

• other dimensions – object-oriented, component-
oriented, concurrency-oriented, etc.

CS3180 (Prasad) ScalaMulti

Why Learn Multiparadigm
Programming?

• Tim Budd:

“Research results from the psychology of programming
indicate that expertise in programming is far more
strongly related to the number of different programming
styles understood by an individual than it is the number
of years of experience in programming.”

• The “goal of multiparadigm computing is to provide ...
a number of different problem-solving styles” so that a
programmer can “select a solution technique that best
matches the characteristics of the problem”.

CS3180 (Prasad) ScalaMulti

Why Teach Multiparadigm
Programming?

• Contemporary imperative and object-oriented
languages increasingly have functional programming
features, e.g.,
– higher order functions (closures)

– list comprehensions

• New explicitly multiparadigm (object-
oriented/functional) languages are appearing, e.g.,
– Scala on the Java platform (and .Net in future)

– F# on the .Net platform

CS3180 (Prasad) ScalaMulti

26

Functional languages

• The best-known functional languages are ML,
OCaml, and Haskell

• Functional languages are regarded as:

– “Ivory tower languages,” used only by academics
(mostly but not entirely true)

– Difficult to learn (mostly true)

– The solution to all concurrent programming problems
everywhere (exaggerated, but not entirely wrong)

• Scala is an “impure” functional language--you can
program functionally, but it isn’t forced upon you

27

Scala as a functional language

• The hope--my hope, anyway--is that Scala will let people
“sneak up” on functional programming (FP), and gradually
learn to use it
– This is how C++ introduced Object-Oriented programming

• Even a little bit of functional programming makes some things
a lot easier

• Meanwhile, Scala has plenty of other attractions

• FP really is a different way of thinking about programming,
and not easy to master...

• ...but...

• Most people that master it, never want to go back

28

Genealogy

Scala

Java

C

C++

Simula

Smalltalk

Prolog

Erlang
Haskell

ML

Lisp

functional

programming syntax

objects

pattern

matching

Actors

Scala is Dynamic

(Okay not really, but it has lots of
features typically only found in

Dynamic languages)

Read-Eval-Print Loop

bash$ scala
Welcome to Scala version 2.8.1.final (Java HotSpot(TM) 64-Bit Server VM,

Java 1.6.0_22).
Type in expressions to have them evaluated.
Type :help for more information.
scala> class Foo { def bar = "baz" }
defined class Foo
scala> val f = new Foo
f: Foo = Foo@51707653
scala> f.bar
res2: java.lang.String = baz

Noi usermo però ScalaIDE

Structural Typing
// Type safe Duck Typing
def doTalk(any:{def talk:String}) {

println(any.talk)
}

class Duck { def talk = "Quack" }
class Dog { def talk = "Bark" }

doTalk(new Duck) → "Quack"
doTalk(new Dog) → "Bark"

tipizzazione dinamica dove la semantica di un oggetto è determinata dall'insieme
corrente dei suoi metodi e delle sue proprietà anziché dal fatto di estendere una
particolare classe o implementare una specifica interfaccia

il duck typing permette il polimorfismo (sottotipazione) senza ereditarietà

http://it.wikipedia.org/wiki/Tipizzazione_dinamica
http://it.wikipedia.org/wiki/Polimorfismo_(informatica)

Scala has tons of other cool stuff

Default Parameter Values

def hello(foo:Int = 0, bar:Int = 0) {

println("foo: "+foo+" bar: "+bar)

}

hello() → foo: 0 bar: 0

hello(1) → foo: 1 bar: 0

hello(1,2) → foo: 1 bar: 2

Named Parameters

def hello(foo:Int = 0, bar:Int = 0) {

println("foo: "+foo+" bar: "+bar)

}

hello(bar=6) → foo: 0 bar: 6

hello(foo=7) → foo: 7 bar: 0

hello(foo=8,bar=9) → foo: 8 bar: 9

Everything Returns a Value

val a = if(true) "yes" else "no"

val b = try{
"foo"

} catch {
case _ => "error"

}

val c = {
println("hello")
"foo"

}

Non esiste il void

Lazy Vals

// initialized on first access
lazy val foo = {
println("init")
"bar"

}

foo → init
foo →

foo →

Nested Functions

// Can nest multiple levels of functions
def outer() {

var msg = "foo"
def one() {

def two() {
def three() {

println(msg)
}
three()

}
two()

}
one()

}

By-Name Parameters

• ... argument is not evaluated at the point of
function application, but instead is evaluated
at each use within the function.

• Sintassi

– Pass by value

def f (x:Int, y:Int) = x;

- Pass by name

def f (x: => Int, y: => Int) = x;

By-Name Parameters

• Ci sia una funzione che ha side effect e
che restituisce qualcosa

def something() = {

println("callingsomething")

1

}

Poi due funzioni che stampano due volte
l’argomento che passo:

def callByValue(x: Int) = {

println("x1=" + x)

println("x2=" + x)

}

def callByName(x: => Int) = {

println("x1=" + x)

println("x2=" + x)

}

• Se chiamo:
callByValue(something())

Come al solito ho:
• Valuto something() e passo il

suo valore.
calling something

x1=1
x2=1

• Se chiamo:
callByName(something())

Valuto something() dentro in
callByname:
calling something

x1=1
calling something

x2=1

Which is faster?
def test (x:Int, y:Int)= x*x

def test (x: =>Int, y:=>Int)= x*x

We want to examine the evaluation strategy and
determine which one is faster (less steps) in these
conditions:

• test (2,3)

• call by value: test(2,3) -> 2*2 -> 4

• call by name: test(2,3) -> 2*2 -> 4

• test (3+4,8)

• call by value: test (7,8) -> 7*7 -> 49

• call by name: (3+4) (3+4) -> 7(3+4)-> 7*7 ->49

• Here call by value is faster.

• test (7,2*4)

• call by value: test(7,14) -> 7*7 -> 49
• call by name: 7 * 7 -> 49
• Here call by name is faster

• test (3+4, 2*4)

• call by value: test(7,2*4) -> test(7, 8)
-> 7*7 -> 49

• call by name: (3+4)(3+4) -> 7(3+4) ->
7*7 -> 49

• The result is reached within the same
steps.

Foreach

val list = List("mff", "cuni", "cz")

• Following 3 calls are equivalent

list.foreach((s : String) => println(s))

list.foreach(s => println(s))

list.foreach(println)

Many More Features

• Actors
• Annotations → @foo def hello = "world"
• Case Classes → case class Foo(bar:String)
• Currying → def foo(a:Int,b:Boolean)(c:String)
• For Comprehensions

→ for(i <- 1.to(5) if i % 2 == 0) yield i
• Generics → class Foo[T](bar:T)
• Package Objects
• Partially Applied Functions
• Tuples → val t = (1,"foo","bar")
• Type Specialization
• XML Literals → val node = <hello>world</hello>
• etc…

