Objects In C++
Subtyping

(RS 50 N LA T AN B o N LA SR T TS S 1 S 1
el G " LD G I T A NS 30 o ¥ LA T AN S
. O ST PRI W LT
2 e L NS 3 o B N LA SR TS AN S Y I,
" {17 IoT A NS B0 B LG T
g SR AT A

C++ Ob]ect System

LI TP S G ST S T TP S G T e N T I O G ST B e W TV PR i S ST B R O R PR I G ST A

=Object-oriented features

1.Classes and Data Abstraction

2.Encapsulation

3.Inheritance

=Single and multiple inheritance

=Public and private base classes

4.0bjects, with dynamic lookup of virtual functions
5.5ubtyping

=Tied to inheritance mechanism

Subtyping (1)

AL OA NG SRS AN Wb R e N LR

=Subtyping is a relation on types that allows values of one
type to be used in place of values of another.

=]f some object a has all of the functionality of
another object b, then we may use a in any context
expecting b.

= Inheritance Is Not Subtyping

= "Subtyping is a relation on interfaces, inheritance is
a relation on implementations.”

=A typical example is C++, in which

»A class A will be recognized by the compiler as a
subtype of B only if B is a public base class of A

Subtyping (2)

WS IS TA TN S RIS AN B LN L

*"(A<:B = A subtype of B)
=Subtyping in principle
*A <: B if every A object can be used without type

error whenever a B object is required
Pt: int getX(); Public members
void move(int);
ColorPt: int getX();
int getColor(); Public members
void move(int);
void darken(int tint);

*C++: A <: Bif class A has_public base class B

Sample publlc derlved cIass

CEFLY NS B S SAENS BB S ZOAENAE RPN B N oL AN WP N LR g

In C++ publlc base class

class ColorPt: public Pt {
gives supertype!

public:
ColorPt(int xv,int cv);
ColorPt(Pt* pv,int cv); Overloaded constructor
ColorPt(ColorPt* cp);
int getColor(); Non-virtual function

virtual void move(int dx);

virtual void darken(int tint); } Virtual functions
protected:

void setColor(int cv);
private:

int color;
) Private member data

Protected write access

Public inheritance and subtyping

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

class ColorPt: public Pt {

b
ColorPt is a subtype of Pt.

I can write
Pt * p = new ColorPt;
// not so good

ColorPt cpt;
Pt p = cpt;

private derived class are not
subtypes

class ColorPt: private Pt {

0 AT e VN P TP G ST e N T I O G ST B R N TV PR O G SIS R

b
ColorPt is not a subtype of Pt.
I cannot write

Pt * p = new ColorPt;

ColorPt cpt;
Pt p = cpt;

Independent cIasses not subtypes

LEA NS s

class CoIorPomt {

== ==

class Point {
public: public:
int getX(); |nt- getX(); |
void move(int); YOId move(int);
int getColor();

void darken(int);

)i
b
»C++ does not treat ColorPoint <: Point as written
=*Need public inheritance ColorPoint : public Pt
=Subtyping based on inheritance:

»An efficiency issue

=An encapsulation issue: preservation under modifications to base class
.. Inheritance breaks encapsulation

= We will see "duck subtyping”

N P D 2 T B P D S T B P I T B P I S T B AW P Y T

=Client code depends only on public interface

=In principle, if ColorPt interface contains Pt interface,
then any client could use ColorPt in place of point

=However -- offset in virtual function table may differ
=| ose implementation efficiency

=\Without link to inheritance

= subtyping leads to loss of implementation efficiency
=Also encapsulation issue:

=Subtyping based on inheritance is preserved under
modifications to base class ...

In C++ - from 1998

-

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

=C++ supports the covariance of return types
=Only virtual

=Only pointers

=Example

class A{
public:

virtual A * create() ...
s
class B : public A{

public:
virtual B * create() .. // overriding

}s

Subtyping with functions

PR O L ST B R O RV PR N G ST A

class Point { class ColorPoint: public Point {
public: public: / Inherited, but repeated
int getX(); int getx(); here for clarity
virtual_Point »move(int); int getColor();
protected: move(int);
private: void darken(int);
y ' protected:
' private:
b

=Tn principle: can have ColorPoint <: Point

=In practice: some compilers allow, others have not
This is covariant case; contravariance is another story

In Java

N S N e P S o 0 e W P v o T e P Y T B P P Y T B
N L RS TR, - .

=Covarianza del tipo restituito, gia visto

Slicing - attenzione

class A {
int foo;

)i
class B : public A

{

int bar;

)i
=S0 an object of type B

has two data members,
foo and bar

=Polimorfism does not
work without pointers,
but copy constructor:

=B b;
sAa=0>b

=a will have only the foo
attribute ! The member
bar of b is lost

Detalls detalls

W PR O G ST R VT TP G ST e T TP O G ST e W T P i G S ST B e O RV PR S G ST A

=This is legal
class Point { ...
virtual Point * move(int);
)
class ColorPoint: public Point {
virtual ColorPoint * move(int);

-

=But not legal if *'s are removed
class Point { ... virtual Point move(int); ... }
class ColorPoint: public Point { ...virtual ColorPoint move(int);... }

Related to subtyping distinctions for object L-values and object R-values
(Non-pointer return type is treated like an L-value for some reason)

Abstract

b ¥

Classes

S RO AL SO AN A B0 L N LA RIS AN S B T N oLl A S

=Abstract class:
=A class that has at least one pure virtual member function, i.e a
function with an empty implementation

=Declare by: virtual function decl = 0;
=A class without complete implementation
=Useful because it can have derived classes

Since subtyping follows inheritance in C++, use abstract classes
to build subtype hierarchies.

=Establishes layout of virtual function table (vtable)
=Example

=Geometry classes

=Shape is abstract supertype of circle, rectangle, ...

O I N T B S P i o T B M LY

. T - — . o~
s S O F LA SR IST AN S 30 O F LA

=Objects

=Created by classes

=Contain member data and pointer to class
=Encapsulation

=member can be declared public, private, protected
=object initialization partly enforced

=Classes: virtual function table

=Inheritance

=Public and private base classes, multiple inheritance
=Subtyping: Occurs with public base classes only

