
Objects in C++

Subtyping

C++ Object System

▪Object-oriented features

1.Classes and Data Abstraction

2.Encapsulation

3.Inheritance

▪Single and multiple inheritance

▪Public and private base classes

4.Objects, with dynamic lookup of virtual functions

5.Subtyping

▪Tied to inheritance mechanism

Subtyping (1)

▪Subtyping is a relation on types that allows values of one
type to be used in place of values of another.

▪If some object a has all of the functionality of
another object b, then we may use a in any context
expecting b.

▪ Inheritance Is Not Subtyping

▪“Subtyping is a relation on interfaces, inheritance is
a relation on implementations.”

▪A typical example is C++, in which

▪A class A will be recognized by the compiler as a
subtype of B only if B is a public base class of A

Subtyping (2)

▪(A<:B = A subtype of B)

▪Subtyping in principle

▪A <: B if every A object can be used without type
error whenever a B object is required

Pt: int getX();

void move(int);

ColorPt: int getX();

int getColor();

void move(int);

void darken(int tint);

▪C++: A <: B if class A has public base class B

Public members

Public members

Sample public derived class

class ColorPt: public Pt {

public:

ColorPt(int xv,int cv);

ColorPt(Pt* pv,int cv);

ColorPt(ColorPt* cp);

int getColor();

virtual void move(int dx);

virtual void darken(int tint);

protected:

void setColor(int cv);

private:

int color;

};

Overloaded constructor

Non-virtual function

Virtual functions

Protected write access

Private member data

In C++: public base class
gives supertype!

Public inheritance and subtyping

class ColorPt: public Pt {

….

};

ColorPt is a subtype of Pt.

I can write

Pt * p = new ColorPt;

// not so good

ColorPt cpt;

Pt p = cpt;

private derived class are not
subtypes

class ColorPt: private Pt {

….

};

ColorPt is not a subtype of Pt.

I cannot write

Pt * p = new ColorPt;

ColorPt cpt;

Pt p = cpt;

Independent classes not subtypes

class Point {

public:

int getX();

void move(int);

…

};

class ColorPoint {

public:

int getX();

void move(int);

int getColor();

void darken(int);

…

};

▪C++ does not treat ColorPoint <: Point as written

▪Need public inheritance ColorPoint : public Pt

▪Subtyping based on inheritance:

▪An efficiency issue

▪An encapsulation issue: preservation under modifications to base class
… inheritance breaks encapsulation

▪We will see “duck subtyping”

Why C++ design?

▪Client code depends only on public interface

▪In principle, if ColorPt interface contains Pt interface,
then any client could use ColorPt in place of point

▪However -- offset in virtual function table may differ

▪Lose implementation efficiency

▪Without link to inheritance

▪ subtyping leads to loss of implementation efficiency

▪Also encapsulation issue:

▪Subtyping based on inheritance is preserved under
modifications to base class …

In C++ - from 1998

▪C++ supports the covariance of return types

▪Only virtual

▪Only pointers

▪Example
class A{

public:

virtual A * create() ...

};

class B : public A{

public:

virtual B * create() … // overriding

};

Subtyping with functions

▪In principle: can have ColorPoint <: Point

▪In practice: some compilers allow, others have not

This is covariant case; contravariance is another story

class Point {

public:

int getX();

virtual Point *move(int);

protected: ...

private: ...

};

class ColorPoint: public Point {

public:

int getX();

int getColor();

ColorPoint * move(int);

void darken(int);

protected: ...

private: ...

};

Inherited, but repeated

here for clarity

In Java

▪Covarianza del tipo restituito, già visto

Slicing - attenzione

class A {

int foo;

};

class B : public A

{

int bar;

};

▪So an object of type B
has two data members,
foo and bar

▪Polimorfism does not
work without pointers,
but copy constructor:

▪B b;

▪A a = b

▪a will have only the foo
attribute ! The member
bar of b is lost

Details, details

▪This is legal
class Point { …

virtual Point * move(int);

… }

class ColorPoint: public Point { …

virtual ColorPoint * move(int);

… }

▪But not legal if *’s are removed
class Point { … virtual Point move(int); … }

class ColorPoint: public Point { …virtual ColorPoint move(int);… }

Related to subtyping distinctions for object L-values and object R-values

(Non-pointer return type is treated like an L-value for some reason)

Abstract Classes

▪Abstract class:

▪A class that has at least one pure virtual member function, i.e a
function with an empty implementation

▪Declare by: virtual function_decl = 0;

▪A class without complete implementation

▪Useful because it can have derived classes

Since subtyping follows inheritance in C++, use abstract classes

to build subtype hierarchies.

▪Establishes layout of virtual function table (vtable)

▪Example

▪Geometry classes

▪Shape is abstract supertype of circle, rectangle, ...

C++ Summary

▪Objects

▪Created by classes

▪Contain member data and pointer to class

▪Encapsulation

▪member can be declared public, private, protected

▪object initialization partly enforced

▪Classes: virtual function table

▪Inheritance

▪Public and private base classes, multiple inheritance

▪Subtyping: Occurs with public base classes only

